
A Low Cost Advanced Encryption Standard (AES)
Co-Processor Implementation

Orlando J. Hernandez, Thomas Sodon, Michael Adel, and Nathan Kupp

E-mail: hernande@tcnj.edu
Department Electrical and Computer Engineering, The College of New Jersey

Ewing, New Jersey 08628-0718, USA

ABSTRACT
The need for privacy has become a major priority for both
governments and civilians desiring protection from signal
interception. Widespread use of personal communications
devices has only increased demand for a level of security
on previously insecure communications. This paper
presents a novel low-cost architecture for the Advanced
Encryption Standard (AES) algorithm utilizing a field
programmable gate array (FPGA). In as much as possible,
this architecture uses a bit-serial approach, and it is also
suitable for VLSI implementations. In this implementation,
the primary objective was not to increase throughput or
decrease latency, but to balance these factors in order to
lower the cost. A focus on low cost resulted in a design
well-suited for SoC implementations. This allows for
scaling of the architecture towards vulnerable portable and
cost-sensitive communications devices in consumer and
military applications.
Keywords: AES; Cryptographic Architectures; FPGA
Design; Specialized Architectures; VLSI Design

1. INTRODUCTION
The Advanced Encryption Standard (AES) was officially
named the successor to the Data Encryption Standard
(DES) in 2001. In 1997, the National Institute of Standards
and Technology promoted worldwide research into a
replacement for DES, in response to the discovery of
theoretical weaknesses in the encryption of DES as well as
successful brute force attacks carried out against the
algorithm. After four years of research and testing, the
Rijndael algorithm was selected from a set of 15
candidates on the merits of its reliability and speed in
encryption and decryption, key and algorithm expansion
time and resistance to attacks. In December of 2001, the
Federal Information Processing Standard document FIPS-
197 [1] was released, specifying that all sensitive and
unclassified government documents will use AES for data
encryption.
Both DES and AES are defined as symmetric key block
ciphers, with the primary distinction being the length of
the key (56 bit for DES, in contrast to the 128, 192, and
256 bit modes of AES). These symmetric-key encryption
schemes use the same key for both the sender and receiver,
and as a result eliminate the need for the verification
server needed in public keying. Symmetric keying lends
itself well to working independently of an open network
and in turn a higher level of system interoperability.
Since the decommissioning in 2001 of DES and the
approval of AES as its successor, various AES
implementations have been proposed both in software and
hardware. This paper presents a low-cost and AES
hardware architecture. By incorporating most of the AES
algorithm complexity into a controller, components are
reused and efficiency is increased. A Verilog® hardware
implementation in an FPGA is presented, allowing for
easy migration to an ASIC implementation in an SoC
overall architecture.

2. THE AES ALGORITHM

The AES encryption and decryption processes for a 128-
bit plain text block are shown in Fig. 1. The AES
algorithm specifies three encryption modes: 128-bit, 192-
bit, and 256-bit. Each cipher mode has a corresponding
number of rounds Nr based on key length of Nk words.
The state block size, termed Nb, is constant for all
encryption modes. This 128-bit block is termed the state.
Each state is comprised of 4 words. A word is
subsequently defined as 4 bytes. Table 1 shows the
possible key/state block/round combinations.
Both encryption and decryption begin with the round key
expansion created by the key schedule function. Using the
RCON values in combination with a series of XOR,
SubBytes, and RotWord (rotate word) operations, an
expanded round key is generated with a size of
() br NN ⋅+1 bytes. For the 256-bit key expansion, the
SubBytes operation is reapplied 4 words after each use of
the RCON.
The AES algorithm consists of the sequential execution of
the four operations SubBytes, ShiftRows, MixColumns,
and AddRoundKey Nr times in a loop (these four
operations in sequence constitute a round). For encryption,
Nr is initialized to 10, 12 or 14 rounds, corresponding to
the 128, 192, and 256 bit key lengths, respectively. The
four operations of the AES algorithm are then executed
Nr-1 times resulting in a 128-bit block of cipher text. For
decryption, the same process occurs simply in reverse
order – taking the 128-bit block of cipher text and
converting it to plaintext by the application of the inverse
of the four operations. AddRoundKey is the same for both
encryption and decryption. However the three other
functions have inverses used in the decryption process:
Inverse SubBytes, Inverse ShiftRows, and Inverse
MixColumns.
SubBytes is a nonlinear transformation in which one byte
is substituted for another by means of the affine
transformation over the Galois Field GF(2)

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

1 0 0 0 1 1 1 1 1
1 1 0 0 0 1 1 1 1
1 1 1 0 0 0 1 1 0
1 1 1 1 0 0 0 1 0
1 1 1 1 1 0 0 0 0
0 1 1 1 1 1 0 0 1
0 0 1 1 1 1 1 0 1
0 0 0 0 1 1 1 1 0

b b
b b
b b
b b
b b
b b
b b
b b

′⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢′⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
′⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢

⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢′⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢= −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢′
⎢ ⎥ ⎢ ⎥⎢ ⎥
′⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎢ ⎥′
⎢ ⎥ ⎢ ⎥⎢ ⎥
′ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣⎣ ⎦ ⎣ ⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

. (1)

ShiftRows is a shift operation performed on the last three
rows of the state. The last three rows are rotated to the left
by 1, 2, or 3 bytes, as seen in Fig. 1. MixColumns is finite
field matrix multiplication applied every round except the

JCS&T Vol. 8 No. 1 April 2008

8

last. Each column is multiplied as a four-term polynomial

Fig. 1. AES encryption and decryption.

S’01

AddRoundKey

X

Left rotate by 3

S’01
S-Box

AddRoundKey

SubBytes
ShiftRows

AddRoundKey
MixColumns

SubBytes
ShiftRows

SubBytes
ShiftRows

AddRoundKey
MixColumns

Cipher Text

Plain Text

...

Key (Nr)

Key (0)

Key (1)

Key (Nr-1)

S00

S01

S20 S30S10

S02

S11

S12

S03 S13

S31

S23

S22

S33

S32

S’00

S’12

S’33

S’10

S’03

S’02

S’23

S’32

S’31

S’22

S’11

S’30S’20

S’13

Sij S’ij

S’01

S00

S01

S20 S30S10

S02

S11

S12

S03 S13

S31

S23

S22

S33

S32

S’00

S’33

S’10

S’12S’02S’32S’22

S’30S’20

S’03 S’23S’13

S’31S’21S’12S21 Left rotate by 1
Left rotate by 2

No rotation

S03

No rotation

S’01

S00

S01

S20 S30S10

S02

S11

S12

S03 S13

S31

S23

S22

S33

S32

S’00

S’12

S’33

S’10

S’03

S’02

S’23

S’32

S’31

S’22

S’11

S’30S’20

S’13

S1j

S2j

S3j

S0j

S’1j

S’2j

S’3j

S’0j
C(x)

+

S00

S01

S20 S30S10

S02

S11

S12

S03 S13

S31

S23

S22

S33

S32

S’00

S’12

S’33

S’10

S’03

S’02

S’23

S’32

S’31

S’22

S’11

S’30S’20

S’13

S1j

S2j

S3j

S0j

S’1j

S’2j

S’3j

S’0j

K1j

K2j

K3j

K0j

S’01

AddRoundKey

XX

Left rotate by 3

S’01
S-Box

AddRoundKey

SubBytes
ShiftRows

AddRoundKey
MixColumns

SubBytes
ShiftRows

AddRoundKey
MixColumns

SubBytes
ShiftRows

SubBytes
ShiftRows

AddRoundKey
MixColumns

SubBytes
ShiftRows

AddRoundKey
MixColumns

Cipher Text

Plain Text

....

.

.

Key (Nr)

Key (0)

Key (1)

Key (Nr-1)

S00

S01

S20 S30S10

S02

S11

S12

S03 S13

S31

S23

S22

S33

S32

S’00

S’12

S’33

S’10

S’03

S’02

S’23

S’32

S’31

S’22

S’11

S’30S’20

S’13

SijSij S’ijS’ij

S’01

S00

S01

S20 S30S10

S02

S11

S12

S03 S13

S31

S23

S22

S33

S32

S’00

S’33

S’10

S’12S’02 S’12S’02S’32S’22 S’32S’22

S’30S’20

S’03 S’23S’13S’03 S’23S’13

S’31S’21S’12 S’31S’21S’12S21 Left rotate by 1
Left rotate by 2

No rotation

S03

No rotation

S’01

S00

S01

S20 S30S10

S02

S11

S12

S03 S13

S31

S23

S22

S33

S32

S’00

S’12

S’33

S’10

S’03

S’02

S’23

S’32

S’31

S’22

S’11

S’30S’20

S’13

S1j

S2j

S3j

S0j

S1j

S2j

S3j

S0j

S’1j

S’2j

S’3j

S’0j

S’1j

S’2j

S’3j

S’0j
C(x)

++

S00

S01

S20 S30S10

S02

S11

S12

S03 S13

S31

S23

S22

S33

S32

S’00

S’12

S’33

S’10

S’03

S’02

S’23

S’32

S’31

S’22

S’11

S’30S’20

S’13

S1j

S2j

S3j

S0j

S1j

S2j

S3j

S0j

S’1j

S’2j

S’3j

S’0j

S’1j

S’2j

S’3j

S’0j

K1j

K2j

K3j

K0j

K1j

K2j

K3j

K0j

S03

S’10 S’30S’20S’00

S’01

AddRoundKey

X

AddRoundKey

InvShiftRows
InvSubBytes

InvMixColumns
AddRoundKey

InvShiftRows
InvSubBytes

InvShiftRows
InvSubBytes

InvMixColumns
AddRoundKey

Plain Text

Cipher Text

...

Key (0)

Key (Nr)

Key (Nr-1)

Key (Nr-2)
S’01

S00

S01

S20 S30S10

S02

S11

S12

S03 S13

S31

S23

S22

S33

S32

S’00

S’12

S’33

S’10

S’03

S’02

S’23

S’32

S’31

S’22

S’11

S’30S’20

S’13

S1j

S2j

S3j

S0j

S’1j

S’2j

S’3j

S’0j
C’(x)

+

S00

S01

S20 S30S10

S02

S11

S12

S03 S13

S31

S23

S22

S33

S32

S’00

S’12

S’33

S’10

S’03

S’02

S’23

S’32

S’31

S’22

S’11

S’30S’20

S’13

S1j

S2j

S3j

S0j

S’1j

S’2j

S’3j

S’0j

K1j

K2j

K3j

K0j

Right rotate by 3

S00

S01

S20 S30S10

S02

S11

S12

S03 S13

S31

S23

S22

S33

S32

S21 Right rotate by 1
Right rotate by 2

No rotation

S03

No rotation

S’01
Inv S-Box

S00

S01

S20 S30S10

S02

S11

S12

S03 S13

S31

S23

S22

S33

S32

S’00

S’12

S’33

S’10

S’03

S’02

S’23

S’32

S’31

S’22

S’11

S’30S’20

S’13

Sij S’ij

S31

S22

S01

S32

S13 S23

S21

S33

S02 S12

S11

S03

S’10 S’30S’20S’00

S’01

AddRoundKey

XX

AddRoundKey

InvShiftRows
InvSubBytes

InvMixColumns
AddRoundKey

InvShiftRows
InvSubBytes

InvMixColumns
AddRoundKey

InvShiftRows
InvSubBytes

InvShiftRows
InvSubBytes

InvMixColumns
AddRoundKey

Plain Text

Cipher Text

....

.

.

Key (0)

Key (Nr)

Key (Nr-1)

Key (Nr-2)
S’01

S00

S01

S20 S30S10

S02

S11

S12

S03 S13

S31

S23

S22

S33

S32

S’00

S’12

S’33

S’10

S’03

S’02

S’23

S’32

S’31

S’22

S’11

S’30S’20

S’13

S1j

S2j

S3j

S0j

S1j

S2j

S3j

S0j

S’1j

S’2j

S’3j

S’0j

S’1j

S’2j

S’3j

S’0j
C’(x)

++

S00

S01

S20 S30S10

S02

S11

S12

S03 S13

S31

S23

S22

S33

S32

S’00

S’12

S’33

S’10

S’03

S’02

S’23

S’32

S’31

S’22

S’11

S’30S’20

S’13

S1j

S2j

S3j

S0j

S1j

S2j

S3j

S0j

S’1j

S’2j

S’3j

S’0j

S’1j

S’2j

S’3j

S’0j

K1j

K2j

K3j

K0j

K1j

K2j

K3j

K0j

Right rotate by 3

S00

S01

S20 S30S10

S02

S11

S12

S03 S13

S31

S23

S22

S33

S32

S21 Right rotate by 1
Right rotate by 2

No rotation

S03

No rotation

S’01
Inv S-Box

S00

S01

S20 S30S10

S02

S11

S12

S03 S13

S31

S23

S22

S33

S32

S’00

S’12

S’33

S’10

S’03

S’02

S’23

S’32

S’31

S’22

S’11

S’30S’20

S’13

Sij S’ij
S’01

Inv S-Box
S00

S01

S20 S30S10

S02

S11

S12

S03 S13

S31

S23

S22

S33

S32

S’00

S’12

S’33

S’10

S’03

S’02

S’23

S’32

S’31

S’22

S’11

S’30S’20

S’13

Sij S’ij
S’01

Inv S-Box
S00

S01

S20 S30S10

S02

S11

S12

S03 S13

S31

S23

S22

S33

S32

S’00

S’12

S’33

S’10

S’03

S’02

S’23

S’32

S’31

S’22

S’11

S’30S’20

S’13

SijSij S’ijS’ij

S31

S22

S01

S32

S13 S23

S21

S33

S02 S12

S11

Table 1. AES Bit-Mode specifications.

Bit Mode Key Length Block Size Number of Rounds
 (Nk words) (Nb words) (Nr)

128 4 4 10
192 6 4 12
256 8 4 14

JCS&T Vol. 8 No. 1 April 2008

9

last. Each column is multiplied as a four-term polynomial
in GF (28) mod (x4 + 1) using the array

0, 0,

1, 1,
b

2, 2,

3, 3,

02 03 01 01
01 02 03 01

 for 0 c N
01 01 02 03
03 01 01 02

c c

c c

c c

c c

s s
s s
s s
s s

′⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥′⎢ ⎥ ⎢ ⎥⎢ ⎥= ≤ <
′⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎢ ⎥′ ⎣ ⎦⎣ ⎦ ⎣ ⎦

.

 (2)

AddRoundKey performs a bitwise XOR operation with the
current state and the expanded round key every round
including an initial round and the last round. The round
key is read from round 0 to (Nr – 1) for encryption and
vice versa for decryption.
The decryption process is similar to the encryption process,
simply executing the inverse of each function. Inverse
SubBytes involves taking an inverse affine transformation.
Inverse ShiftRows rotates the bytes to the right by: 3, 2, or
1 byte(s). Inverse MixColumns uses the same operations
as MixColumns but uses the inverse matrix

0, 0,

1, 1,

2, 2,

3, 3,

0 0 0 09
09 0 0 0
0 09 0 0
0 0 09 0

c c

c c

c c

c c

s se b d
s se b d
s sd e b
s sb d e

′⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥′⎢ ⎥ ⎢ ⎥⎢ ⎥=
′⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎢ ⎥′ ⎣ ⎦⎣ ⎦ ⎣ ⎦

. (3)

Because of the inherent symmetry of addition modulo-2
(XOR), AddRoundKey is the same for both encryption
and decryption processes.

3. RECENT RELATED WORK
Recent AES implementations have focused on speed gains
obtained by manipulations in the SubBytes and
MixColumns, two of the more time-consuming functions
in the algorithm. The work of References [2] and [3] take
an approach involving a high level of parallelism, enabling
very high throughput to be achieved (29 Gbps in
Reference [2] and 21.56 Gbps in [3]), but at a high cost.
The use of pipelining and parallelization techniques
increases throughput to above 20 Gbps. However, these
designs are primarily focused on speed, and cost and
power are not a concern. In Reference [2], the power usage
exceeds 2 watts, far too high for portable applications
where power is a major concern. In as much as possible,
this implementation takes a bit-serial approach, resulting
in lower throughput but utilizing far fewer gates and
limiting cost and power usage.
There has been little to no research done regarding
lowering cost and power requirements by de-emphasizing
processing speed. Relatively high throughput (2.381 Gbps)
for 128-bit key mode was achieved in one FPGA
implementation with a cost of only 58.5K gates on a single
chip [4]. This was done by introducing a 4-stage pipeline
for the main functions and performing a basis
transformation on SubBytes. The alternative S-Box design
would be to use a ROM/RAM address lookup table (LUT),
which is cost-effective. The approaches to S-Box
implementation in the literature generally fall into these
two categories: this basis transformation – an on-the-fly
generation of the S-Box values and look up tables (LUTs).
It is clear that out of the four functions, manipulating
SubBytes is the key to increasing performance. However,
modifications to the SubBytes and MixColumns functions

will often result in increased sensitivity to noise and
operating temperature, as well as extremely large fan-outs,
adding higher propagation delays. Based on previous
implementations, it was decided this design would use a
straightforward, simplified approach using LUTs, keeping
functions independent of one another.

4. ARCHITECTURE AND RESULTS
The AES algorithm specification FIPS-197 [1] was
followed, while minimizing redundancy. Processes shared
between the encryption and decryption processes were
reused as often as possible. It was observed that the
MixColumns and SubBytes functions took up significant
processing time. MixColumns specifically required
sequential left shifts, each followed by a conditional XOR
operation. The condition of the XOR operation depends on
the existence of a 1 in the most significant bit of the
current byte before it is shifted. If the condition is true, the
shifted byte is XOR-ed with byte {1b}, the irreducible GF
polynomial

1)(348 ++++= xxxxxm . (4)

The affine transformation used by SubBytes and Inverse
SubBytes can be implemented as a 16x16 lookup table. An
attempt at splitting the search process into sixteen smaller
comparisons did not significantly increase efficiency. The
LUT used a great deal of memory in software, and
similarly a large number of gates in the hardware design.
Various methods for reducing GF circuit size exist, such as
composite (or tower field inversion), Fermat’s little
theorem or extended Euclidean algorithms [5]. However,
these methods introduce large propagation delays and
increased power consumption. The low-cost and low-
power approach minimizes the complexity of GF
operations by sacrificing speed.

FPGA Implementation
The main components of the data path are the Register File
(RF), 8-bit XOR gate, S-Box, Inverse S-Box, Working
Register, Round Constant lookup table (RCON LUT),
Instruction Module (IM), the Multi-Staged Controller,
ModFlag block and the MixColumns accumulator
(MCACC). Fig. 2 shows a block diagram of the overall
design including all these components.
The IM consists of a sequencer, an output mux, as well as
six separate ROMs comprised of each bit-mode and its
corresponding encrypt and decrypt functions. The IM is
used simply to correctly sequence the encryption and
decryption processes for each bit mode. The bit-mode and
the crypt-mode are selected by the main processor, or
more specifically the user. The user can also choose to
clear all the data in the co-processor using the Reset line. It
is configured for synchronous reset.
To maximize throughput, the data is handled in parallel
upon completion of the state operations. The 8-bit register
is the core component of the architecture. It has parallel
read/write functionality and the capability to right shift.
The Working Register is a derivative of the 8-bit register,
and is covered in greater detail later in this section.
The 3-bit BitMode, Enc/Dec and Start lines select the
desired ROM to process commands sequentially. The
microinstructions are then output to the Controller, RF,
RCON LUT and the MixColumns. Much of the work in
decreasing the data path can be done within the IM, as a
majority of the functions are shared between the bit-modes.
While the 128 and 192-bit modes are quite similar, the 256

JCS&T Vol. 8 No. 1 April 2008

10

mode is more drawn out and has a significantly different
key expansion. Despite this fact, about 60% of the
functions are shared between the bit-modes.
Experimentation in consolidating these six ROMs into one
module was done. This would require internal addressing
within the ROM and a method to compare values. An
ALU would be needed for such functionality. An optimum
balance could be reached between the gates decreased in
the ROM and gates increased with the implementation of
the ALU. Another consideration is that this can be done
using a Finite State Machine. Further research can be done
in regards to this, and is covered in greater detail in the
Conclusions section.
The Program Counter (PC) is a register that contains the
address of the current instruction used in the cryptographic
process. The PC is automatically incremented after each
instruction is fetched from the IM to point to the next
instruction. It is not manipulated like an ordinary register,
as special instructions are used to occasionally alter the
program flow. However, for the purposes of minimizing
the area of the data path, many of these commands have
been excised. Such conditional jump and compare
commands would require the use of an ALU, as previously
stated, which would increase the gate count.
Assuming the data and key are first loaded by the main
processor into the register files, the key expansion process
can begin. The RF will receive addresses from the
controller allowing individual bytes to be chosen for
manipulation. Once the round key is generated, the values
are held constant until the main processor assigns a new
key. The current state values are contained in the RF and
changes after each function call. The RF can be broken
down intrinsically into three separate components: the Key,
State and RoundKey RFs. Fig. 3 shows a layout of the RF,
including these three RFs.

The Controller generates control signals for data transport,
key expansion, encryption and decryption. The Controller
utilizes combinational logic to generate 19-bit control
signals that initiate the different modules of the
architecture. An instruction set of 32 commands is used to
delegate the signals for the various operations. Fig. 4
shows a block diagram of the Controller. Figs. 5 and 6
show the Controller microinstruction set format and a list
of the Controller Instructions, respectively.
The Key RF is designed to hold the first 16, 24 or 32 bytes
of the round key as shown in Fig. 2. Similarly, the
RoundKey RF is simply a 208 byte extension of the Key
RF design. The State RF consists of 4 sets of 4 8-bit shift
registers. Each set constitutes a row and is configured so
that the ShiftRows and Inverse ShiftRows operation can be
performed internally. The data in the State RF is moved
from one shift register to the next until the each byte
reaches its respective register during either ShiftRows
operation.
Three muxes control the output from the RF. They are
muxes A, B and OutMux. Mux A selects between RD and
the output from the MixColumns Accumulator. Mux B
chooses between the MixColumns Accumulator, WR,
ModFlag block and the 10-term RCON LUT. The RCON
LUT, or Round Constant table, contains AES specified 8-
bit values. The output of Muxes A and B are connected to
the 8-bit XOR gate.
The OutMux chooses between four different inputs to
output based on the 2-bit OutMux signal from the
Controller. The OutMux selects between the S-Box,
Inverse S-Box, RD and output from the XOR gate. The S-
Box and Inverse S-Box LUTs are tied to the RDoutput of
the RF and both operate similarly. The LUTs process bytes
by combinational logic.

Fig. 2. Overall hardware design.

ModRW

3

OutMux

RF

WR

ADDR

RD

WD

RFRW RN

MC
ACC

MCRWRN

ByteOut

DataMux

SH

RN

WRRW

S-Box
LUT

Inverse
S-Box
LUT

2

2

ByteIn 8

ShiftCtl

MixCtl

Mod
Flag

RN ModRW

8-bit
XOR

MuxB

MuxA

RCON
LUT

Start

00

Reset
RN

PCRW

OutMux
2

MuxB
2

DataMux
2

MixCtl
2

ShiftCtl
2

Output
ROM

RFRW
MCRW

WRRW
SH
RCON

2
MuxA

BitMode

5 Multi-Staged
Controller

Instruction
ROMs

8

StoreMux

RCON

StoreMux

8

ModRWModRW

33

OutMux

RF

WR

ADDR

RD

WD

RFRW RN

MC
ACC

MCRWRN

ByteOut

DataMux

SH

RN

WRRW

S-Box
LUT

Inverse
S-Box
LUT

22

22

ByteIn 8

ShiftCtl

MixCtl

Mod
Flag

RN ModRW

Mod
Flag

RN ModRW

8-bit
XOR
8-bit
XOR

MuxB

MuxA

RCON
LUT

Start

00

Reset
RN

PCRW

OutMux
2

OutMux
2

MuxB
2

MuxB
2

DataMux
2

DataMux
2

MixCtl
2

MixCtl
2

ShiftCtl
2

ShiftCtl
2

Output
ROM

RFRWRFRW
MCRWMCRW

WRRWWRRW
SHSH
RCONRCON

2
MuxA

2
MuxA

BitMode

5 Multi-Staged
Controller

Instruction
ROMs

8

StoreMux

RCON

StoreMux

8

JCS&T Vol. 8 No. 1 April 2008

11

An 8-bit temporary register, called the Working Register
or WR, is placed at the output of the OutMux to assist in
byte operations during the key expansion and
MixColumns. The Working Register operates in tandem
with the 4-byte MixCols Accumulator to compute both
MixColumns functions. The MixCols Accumulator is
simply a temporary register comprised of four 8-bit
registers with specific register select capability and
without shifting.
The controller reads flags from the ModFlag block and
Instruction Memory (IM). The ModFlag block signals the
controller as to the status of the most significant bit in the
current output byte for use in the conditional XOR during

MixColumns. The byte values {1b} and {00} are output
from the block depending on the value in the register. The
IM contains a listing of all the possible commands the co-
processor will respond to when referenced by an address
line.
To test the Verilog design in actual hardware, the Spartan-
3 XC3S200 FPGA was chosen for prototyping. This
FPGA board utilizes 200K+ gates, 1 MB SRAM and 80
dedicated I/O ports. The amount of I/O ports and number
of gates suited the requirements for the design.

5. CONCLUSIONS

Fig. 3. Register file layout.

RoundKey
128 192 256

State Key
192 256128

0

1

2

3

4

5

6

7

10

9

8

100 104 108 112 116 120 124 128 132 136 140

11

12

13

14

15

16

17

18

19

20 32

21

22

23

24

25

27

26

28

29

30

31

33

34

35

36

37

38

39

40

41

42

43

44 48 52 56 60 64 68 72 76 80 84 88 92

45 49 53 57 61 65 69 73 77 81 85 89 93

46 50 54 58 62 66 70 74 78 82 86 90 94

47 51 55 59 63 67 71 75 79 83 87 91 95

98

99

180 184

177 181 185 189 193 197 201 205

178 182 186 190 194 198 202 206

179 183 187 191 195 199 203 207

96

97

176

144 148 152 156 160 164 168 172

101 105 113 117 121 125109 129 133 137 141 145 149 153 157 161 165 169 173

102

103

106

107

110

111

114 118 122 126 130 134 138 142

115 119 123 127 131 141 139 143

146 150 154 158 162 166 170 174

147 151 155 159 163 167 171 175

192188 196 200 204 208 212 216 220

210 214 218 222 226 230 234 238 242 246 250 254

209 213 217 221 225 229 233 237

224 228 232 236 240 244 248 252

241 245 249 253

211 215 219 223 227 231 235 239 243 247 251 255

RoundKey
128 192 256

State Key
192 256128

State Key
192 256128

0

1

2

3

4

5

6

7

10

9

8

100 104 108 112 116 120 124 128 132 136 140

11

12

13

14

15

16

17

18

19

20 32

21

22

23

24

25

27

26

28

29

30

31

33

34

35

36

37

38

39

40

41

42

43

44 48 52 56 60 64 68 72 76 80 84 88 92

45 49 53 57 61 65 69 73 77 81 85 89 93

46 50 54 58 62 66 70 74 78 82 86 90 94

47 51 55 59 63 67 71 75 79 83 87 91 95

98

99

180 184

177 181 185 189 193 197 201 205

178 182 186 190 194 198 202 206

179 183 187 191 195 199 203 207

96

97

176

144 148 152 156 160 164 168 172

101 105 113 117 121 125109 129 133 137 141 145 149 153 157 161 165 169 173

102

103

106

107

110

111

114 118 122 126 130 134 138 142

115 119 123 127 131 141 139 143

146 150 154 158 162 166 170 174

147 151 155 159 163 167 171 175

192188 196 200 204 208 212 216 220

210 214 218 222 226 230 234 238 242 246 250 254

209 213 217 221 225 229 233 237

224 228 232 236 240 244 248 252

241 245 249 253

211 215 219 223 227 231 235 239 243 247 251 255

Fig. 4. Multi-Staged controller.

1

Byte
ROM

Col
ROM

Rnd
ROM

Rnd
Reg

Col
Reg

Byte
Reg

+ 1+ 1+ 1

2

10

4-bit
Counter

2-bit
Counter

2-bit
Counter

0

OutCode

RF ADDR[7-4] RF ADDR[3-2] RF ADDR[1-0]

RN

IM

IM
1

2

+1

Byte
ROM

Col
ROM

Rnd
ROM

Rnd
Reg

Col
Reg

Byte
Reg

+ 1+ 1+ 1

2

10

4-bit
Counter

2-bit
Counter

2-bit
Counter

0

OutCode

RF ADDR[7-4] RF ADDR[3-2] RF ADDR[1-0]

RN

IM

IM
1

22

+

JCS&T Vol. 8 No. 1 April 2008

12

In this paper we presented a low-cost AES co-processor
hardware architecture. Tables 2 and 3 show the results for
the FPGA synthesis of the architecture. This is shown for
different Xilinx FPGA families and different sets of
constraints. Table 4 displays a comparison between this
design and others in recent literature from lowest to
highest Throughput/Slice in Megabits/Seconds/Slice. Our
design accomplishes a throughput/slice ratio near the best
in the literature [2]. This is despite maintaining
significantly lower utilization of CLB slices than the work
in [2]. and others. In our analysis, the critical path in the
hardware implementation was determined to be the
Inverse MixColumns function. Several design
modifications have been evaluated: speed of XOR

operation in serial versus 8-bit parallel, modified SubBytes
design, and a reduced MixColumns algorithm. By
focusing on minimization of redundancies within these
functions, cost can be reduced while maintaining a suitable
operating speed.
A possible improvement would be to further minimize the
IM. A great deal of the encryption/decryption process is
repetitious, especially between the 128 and 192-bit modes.
An estimated 60% of the cryptographic processes are
shared between the modes. The remaining 40% could be
more efficiently distributed using if and unrolled for loop
structures. Prototype IMs utilizing such functionality have
been written, however to fully remove any repetition and
maximize reusability would require extrapolating each

Fig. 5. Microinstruction command format.

Col Instruction (Column Control)

Byte Instruction (Byte Control)

Rnd Instruction (Round Control)

IM Functions (Sequencing)

6-bit
RndCode

6-bit
ColCode RndCtl RndCntCtl RndCntIncr RndCntRN RndDone

2-bit 1-bit 1-bit 1-bit 1-bit

5-bit

ByteAddress
8-bit

ColCtl ColCntIncr ColCntRN ColDone
2-bit 1-bit 1-bit 1-bit

OutCode ByteCtl ByteCntIncr ByteCntRN ByteDone
2-bit 1-bit 1-bit 1-bit

Col Instruction (Column Control)

Byte Instruction (Byte Control)

Rnd Instruction (Round Control)

IM Functions (Sequencing)

6-bit
RndCode

6-bit
RndCode

6-bit
ColCode RndCtl RndCntCtl RndCntIncr RndCntRN RndDone

2-bit 1-bit 1-bit 1-bit 1-bit6-bit
ColCode RndCtl RndCntCtl RndCntIncr RndCntRN RndDone

2-bit 1-bit 1-bit 1-bit 1-bit

5-bit

ByteAddress
8-bit

ColCtl ColCntIncr ColCntRN ColDone
2-bit 1-bit 1-bit 1-bit

ByteAddress
8-bit

ColCtl ColCntIncr ColCntRN ColDone
2-bit 1-bit 1-bit 1-bit8-bit

ColCtl ColCntIncr ColCntRN ColDone
2-bit 1-bit 1-bit 1-bit

OutCode ByteCtl ByteCntIncr ByteCntRN ByteDone
2-bit

OutCode ByteCtl ByteCntIncr ByteCntRN ByteDone
2-bit 1-bit 1-bit 1-bit

Fig. 6. Controller instruction set.

JCS&T Vol. 8 No. 1 April 2008

13

cryptographic process for every bit-mode and comparing
them. This is the subject of our continued research.

6. REFERENCES
[1] National Institute of Standards and Technology (US),
Advanced Encryption Standard,
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.
[2] S.-M. Yoo, D. Kotturi, D.W. Pan and J. Blizzard, An
AES crypto chip using a high-speed parallel pipelined
architecture, Microprocessors and Microsystems 29 (2005)
317-326.
[3] X. Zhang, and K. Parhi, High-speed VLSI
architectures for the AES algorithm, IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 12 (2004)
957-967.
[4] C-P. Su, T.-F. Lin, C.-T. Huang and C.-W. Wu, A
high throughput low-cost AES processor, IEEE
Communications 41 (2003) 86-91.
[5] V. Fischer and M. Drutarovsky, Two methods of
Rijndael implementation in reconfigurable hardware, Proc.
CHES, Vol. 2162, France, 2001, pp.81-96.
[6] E. Mang, I. Mang and C. Popescu, AES Candidate
Algorithm Finalists: FPGA implementation and
performance evaluation, Proc. of the IASTED
International Conference, 2003, pp. 147-152.

[7] N. Pramstaller, S. Mangard, S. Dominikus and J.
Wolkerstorfer, Efficient AES implementations on ASICs
and FPGAs, Lecture Notes in Computer Science 3373
(2005) 98-112.
[8] L. Chang-Shu, P. Gen-Peng and W. Xio-Zhuo, Two
methods of AES implementation based on CPLD/FPGA,
Transactions of Tianjin University 10 (2004) 285-290.
[9] A. J. Elbirt, W. Yip, B. Chetwynd and C. Paar, An
FPGA implementation and performance evaluation of the
AES block cipher candidate algorithm finalists, IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems 9 (2001) 545-557.
[10] N. Sklavos and O. Koufopavlou, Architectures and
VLSI implementations of the AES - Proposal Rijndael,
IEEE Transactions on Computers 51 (2002) 1454-1459.
[11] G. Rouvroy, F.-X. Standaert, J.-J. Quisquater and J.-
D. Legat, Compact and efficient encryption/decryption
module for FPGA implementation of the AES Rijndael
very well suited for small embedded applications, Proc. of
the International Conference on Information Technology:
Coding Computing - ITCC, Vol. 2, USA, 2004, pp. 583-
587.
[12] M. McLoone and J. McCanny, Rijndael FPGA
implementations utilizing look-up tables, Journal of VLSI
Signal Processing, 34 (2003) 261-275.

Table 2. Synthesis results – optimized for maximum speed.

 Maximum Speed

 Clock Slices Slice Flip Flops 4 Input LUTs

Spartan 3: 65.984 MHz 1985 1654 3670
Spartan 2E: 32.351 MHz 2121 1665 4011

Spartan 2: 30.323 MHz 2172 1676 4115

Virtex E: 31.382 MHz 2126 1664 4011

Table 3. Synthesis results – optimized for minimum area.

 Min Area

 Clock Slices Slice Flip Flops 4 Input LUTs

Spartan 3: 56.855 MHz 1880 1571 3454
Spartan 2E: 23.715 MHz 1933 1588 3614

Spartan 2: 18.604 MHz 1933 1588 3614

Virtex E: 23.120 MHz 1933 1588 3614

Table 4. Comparison of recent designs.

 Recent Work Comparison

Source CLB Slices Throughput (Megabits/Sec) Throughput/Slice
[6] 5302 300 0.057
[3] 10992 1938 0.176
[7] 1125 215 0.191
[8] 2419/5068 601/1050 0.248/0.207
[9] 2358/17314 259/3650 0.110/0.211
[10] 11022 21560 1.956
[11] 163/146 208/358 1.276/2.452

This work 1880/1985 7277/8446 3.871/4.255
[12] 2457 12000 4.884
[2] 5408 29770 5.505

JCS&T Vol. 8 No. 1 April 2008

14

	Text2: Received: Jan. 2006. Accepted: Oct. 2006.

