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ABSTRACT 
 
Web Information Retrieval is another problem of 
searching elements of a set that are closest to a given 
query under a certain similarity criterion. It is of interest to 
take advantage of metric spaces in order to solve a search 
in an effective and efficient way. In this article, we present 
an extension of the M-Tree index, called XM-Tree, in 
order to improve search results. This index allows 
dynamic insertion of new data, reduces search costs using 
pruning and precalculated distances, and uses a tolerable 
amount of space, which makes this index apt for the 
extensive and dynamic Web. The proposed extension 
indexes Web documents, uses L2 as indexing distance and 
L∞ as similarity criterion to solve queries. We also present 
experiments validating the results. 
 
Keywords: Metric Spaces, Similarity Searching, M-Tree, 
XM-Tree 
 
 

1. INTRODUCTION 

Searching is a fundamental problem in computer science, 
which is present in almost every computer application. 
The search operation has been traditionally applied to 
“structured data”. With the evolution of information and 
communication technologies, unstructured repositories of 
information have emerged, such as the Web. New data 
types such as free text, images, audio and video have to be 
queried, but their structuring is very difficult (either 
manually or computationally) and restricts beforehand the 
types of queries that can be posed later. This scenario 
requires more general search algorithms and models than 
those classically used for simple data. There is a need for 
searching database elements which are similar or closed to 
a given query element. Similarity is model with a distance 
function that satisfies the triangular inequality, and the set 
of objects is called a metric space. In some applications, 
the metric space turns out to be of a particular type called 
vector space. 
A lot of work tries to achieve the goals of reducing the 
number of distances evaluations and the amount of I/O 
performed, in general around the concept of building an 

index, a data structure designed to reduce the amount of 
distance evaluations at query time. [1] presents a unified 
framework that describes and analyzes existing solutions 
to this problem, and there are two main techniques for 
indexing: one is based on pivots and another is based on 
Voronoi partitions. Within these techniques, we propose in 
this work, an extension of M-Tree, to index documents 
and speed up web searches discarding as much irrelevant 
objects as possible.  
The rest of this paper is organized as follows: Section 2 
presents basic concepts of Information Retrieval and 
Metric Spaces. Section 3 presents related work.  Section 4 
proposes the XM-Tree as an extension of M-Tree. Section 
5 presents the experimental results. Finally, conclusions 
are presented. 

 
2. BASIC CONCEPTS 

Information Retrieval  
An Information Retrieval problem is, given a set of 
documents and a query, to determine the subset of relevant 
documents to the query [2]. An approach to solve this 
problem is to use search engines based on traditional 
Information Retrieval techniques. These search engines 
locate information in a set of documents, through two 
steps: indexing and retrieval. The documents are indexed 
by the terms that contains. The process of generation, 
construction and storing document representations is 
called indexing and as a result, we obtain inverted indexes. 
An inverted index allows fast access to the list of 
documents that contains a specific term. For this purpose, 
it maintains a register for each term in the document 
collection, which in its simplest form consists in the term 
name and the list of documents where that term occurs. 
Each term occurrence in the inverted index is called a 
posting, and the list of postings of a term is called a 
posting list. For retrieval, the search engine uses this 
inverted file to look up which documents contain the 
query words, and obtains the posting list for each one. 
These posting lists are then merged. This process depends 
on the engine. For example, a boolean engine requires the 
query be formulated using boolean operators between 
words. Merging is then straightforward as the documents 
sets are combined using the appropriated set operators. 
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The typical indicators to measure the effectiveness in 
information retrieval are called Precision and Recall. 
Precision is the ratio of the number of relevant documents 
retrieved to the total number of documents retrieved. 
Recall is the ratio of the number of relevant documents 
retrieved to the total number of relevant documents in the 
collection. Both are usually expressed as a percentage. An 
engine achieves a good performance when it maximizes 
both values. This is, when it retrieves most relevant 
documents available in the collection along with the least 
amount of irrelevant documents. 
One way to represent documents is the vector space 
model, in which documents are represented with vectors of 
words. The very common terms, articles, and pronouns are 
not considered in these vectors. In addition, verbs, nouns 
and adjectives, are reduced to a canonical form with a 
stemming process. The document is represented as a 
vector in the Euclidean space with the resulting set of 
words. Each canonical term represents an axis in this 
space. The i-th component of vector d is 1 if term ti occurs 
in document d, or 0 otherwise. Queries are represented in 
the same way. The similarity between a query q and a 
document d can be measured by computing the dot 
product of vectors q and d: sim(q, d) = Σ qi×di. This 
process allows us to return a sequence of documents 
ranked by their relevance to the query. 
The problem with this representation is that it does not 
capture the fact that some terms might be more important 
than others in a single document. The solution is to 
represent the weight of the word in the document at each 
component. This weight may be the number of 
occurrences, but this representation gives preference to 
larger documents. This could be solved using the TF 
scheme, or term frequency scheme, which normalizes the 
vectors by dividing each component by the vector length. 
Thus, the value tfi of each component di is the frequency 
of the term ti in document d. The TF scheme does not 
consider the distribution of the term in the whole 
collection. This is solved with the concept of inverse 
document frequency: idfi = log (N / ni), where N is the 
total number of documents in the collection and ni is the 
number of documents in which i-th term occurs. In 
practice, both measures are combined into a schema called 
TF/IDF: wij = tfij x idfi wij, where wij is the value that is 
assigned to i-th component of the document j. 

 
Metric Spaces 
The set X denote the universe of valid objects. The 
function d: X × X → R+ denotes a measure of “distance” 
between objects.  
The distance function d has the following properties: 
positiveness (d(x, y) ≥ 0), symmetry (d(x, y) = d(y, x)), 
reflexivity (d(x, x) = 0), strict positiveness (∀x, y ∈ X, x≠y 
⇒ d(x, y) > 0), and triangular inequality (d(x, z) ≤ d(x, y) + 
d(y, z)). Then the pair (X, d) is called a metric space. A 
finite subset U of X, of size n = |U|, is the set of objects 
where we search. U will be called the dictionary or 
database. The types of queries of interest in metric spaces 
are Range query and   k-Nearest neighbours query.  

Range query (q, r)d retrieves all elements which are 
within distance r to q, this is { u ∈ U | d(q, u) ≤ r }. 

k-Nearest neighbours query NNk(q) retrieves the k 
closest elements to q in U. This is, it retrieves a set A ⊆ U 
such that |A| = k and ∀u ∈ U, v ∈ U - A, d(q, u) ≤ d(q, v).  
In this work, we propose to use Strict range query (q, r)d. 
This query retrieves all elements which are at a distance 
less than r to q, this is {u ∈ U | d(q, u) < r}. 

If elements of the metric space (X, d) are indeed tuples of 
real numbers then the pair is called a vector space.  
A k-dimensional vector space is a particular metric space 
where objects are identified with k real-valued coordinates 
(x1,.., xk). There are a number of options for the distance 
function to use, but the most widely used is the family of 
Ls distances, defined as  

Ls((x1, ..., xk), (y1, ..., yk)) = ( Σ |xi – yi |s )1/s 
The L1 distance accounts for the sum of the differences 
along the coordinates, it is also called “block” distance. 
The L2 distance is the “Euclidean” distance, and it 
corresponds to the notion of spatial distance. The other 
most used member of the family is L∞, which corresponds 
to taking the limit of the Ls formula when s goes to 
infinity. The result is that the distance between two objects 
is the maximum difference along a coordinate:   

L∞((x1, ..., xk), (y1, ..., yk)) = max |xi – yi |. 
Indexes for metric spaces allow the effective and efficient 
retrieval of objects. It is effective because the results have 
a high degree of accuracy by properties of space and 
index. It is efficient because the construction of indexes is 
intended to reduce the number of computations. These two 
properties are highly desirable in a search engine. For this, 
the use of metric spaces is an interesting alternative in 
indexing and searching processes. 
A unified model of indexing algorithms for metric spaces 
is presented in [1]. All the indexing algorithms partition 
the set U into subsets. An index is built to determine the 
candidate subsets where relevant elements to the query 
could appear. There are two main types of indexing 
algorithms: pivot based and Voronoi based algorithms (or 
based on compact partitions). Pivot based algorithms 
consider the distances between an element and k 
preselected points, called “pivots”, and maps the metric 
space on Rk using L∞ distance. Voronoi based algorithms 
partition metric space considering the proximity to a set of 
points called centres. Pivot based algorithms need much 
more space to store k classes than Voronoi based 
algorithms using the same number of partitions. If pivot 
based algorithms have the necessary memory and use the 
optimal number of pivots, then their search cost is better 
than Voronoi based algorithms. But this does not occur if 
the intrinsic dimension of the metric space grows, because 
it is more difficult to search in it.  
In this work, we use web pages represented with word 
vectors. These vectors have a very large amount of 
components, so the intrinsic dimension of the metric space 
could be high. Considering this, the Voronoi based 
algorithms seem to be better. In addition, the web is very 
dynamic, so the proposed index should enable to add data 
to the index. Because of this, we propose to extend the M-
Tree index, which improves previous algorithms, allows 
insert and effectively remove elements from a tree. 

 
M-Tree  
The access method M-Tree [3] is proposed to organize and 
search large data sets. Experimentations demonstrate that 
M-Tree performs reasonably well in high-dimensional 
data spaces and growing data sets. M-Tree is a paged, 
balanced and dynamic tree, and it allows dynamic 
insertion and deletion1 of data, and does not require 
periodical reorganizations after these operations. M-Tree 
nodes are fixed-size and they allow a maximum of m child 
nodes. Leaf nodes of any M-Tree store all indexed 

                                                 
1 Actually, the real deletions can only be made on leaves, 
in case of routing object they are only setting as "deleted". 
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database objects, whereas internal nodes store the so-
called routing objects. A routing object is a database 
object to which a routing role is assigned by a specific 
promotion algorithm. 
Each node N of the M-Tree corresponds to a region of the 
indexed metric space (X, d). The region of node N is  

Reg(N) = { O ∈ X | d(Or, O) ≤ r(Or) } 
where Or  is the routing object of node N and r(Or) is its 
covering radius. All the objects in the sub-tree rooted at N 
are guaranteed to belong to Reg(N), thus their distance 
from Or does not exceed r(Or). Entries in the internal node 
N are: a routing object Or; the covering radius r(Or); an 
associated pointer ptr(T(Or)), which references the root of 
a sub-tree T(Or) called the covering tree of Or; anda 
distance from its parent object P(Or), that is the routing 
object which references the node where the Or entry is 
stored. This distance is not defined for entries in the root 
of the M-Tree. The leaf nodes are quite similar to routing 
objects, but no covering radius is needed, and the pointer 
field stores the object identifier in the database. 
In [3] are presented two algorithms for similarity search: 
range query and k-nearest neighbours query. Their 
objective is to reduce the number of accessed nodes and 
the number of distance computations needed to execute 
queries. For this purpose, all the information concerning 
pre-computed distances stored in the M-Tree nodes, i.e. 
d(Or, P(Or )) and r(Or), are used to effectively apply the 
triangle inequality. Although [3] treats range queries as no 
strict, in this work we propose to use strict range queries 
(Q, r(Q))d, which selects all the database objects such that 
d(Oj, Q) < r(Q). 
Our RangeSearch algorithm retrieves all objects, which 
satisfy the above inequality. For this purpose, 
RangeSearch starts from the root node and recursively 
traverses all the paths, which cannot be excluded, from 
leading to leaf nodes with objects that satisfy the query. 
When the algorithm accesses objects Or in node N, the 
distance between query Q and parent object Op is 
computed only once. The index stores the pre-computed 
distances between Or and Op, so it is possible to prune a 
sub-tree without computing any new distance at all. 

 
3. RELATED WORKS 

The metric index M-Tree was improved in several 
subsequent versions in order to obtain faster indexing and 
retrieval. The Slim-tree [4] is a version that accelerates the 
indexing process with a new split algorithm based on 
minimal spanning tree, and reduces the overlap between 
regions with the Slim-down algorithm, improving the 
query performance. The M+-tree [5] introduces a concept 
called key dimension: splits a subspace into two subspaces, 
called twin nodes, which are not overlapped. In the 
searching process, the key dimension is used to perform 
effective pruning while is not needed to compute distance 
between objects. BM+-tree [6] extends the M+-tree. It uses 
a rotatable binary hyperplane, instead of a key dimension, 
to partition the twin subspaces and to perform filtration 
between them. The Density-Based Metric tree [7], or 
DBM-Tree, minimizes the overlap between high-density 
nodes by relaxing the height balancing of the tree. Thus, 
the height of the tree is larger in denser regions. It 
achieves higher performance in searches because it is 
possible to adjust the tree according to the data 
distributions at different regions of the data space. The 
DBM*-tree [8] extends the previous one: each node has an 
associated matrix, which contains some precomputed 
distances between objects of current node. Making use of 

pre-calculated distances, construction and query costs are 
reduced because it increments the pruning of irrelevant 
elements. In [9] basic principles and experimentation 
results of a paged and balanced index structure, called M2-
tree, are presented. The proposed approach combines 
within single index structure information from multiple 
metric spaces. This allows efficiently support queries on 
arbitrary combinations of indexed attributes. The XM-Tree 
proposed in this work is a very particular case of M2-tree, 
because it extends an M-Tree on vector spaces, adapting 
its algorithms for the Web search. 
With regard to web search engines, the continuously 
growth of the web is a great challenge to the creation of 
fast indexes. One solution is the use of inverted indexes, 
employed by search engines, such as Google [10]. 
However, these indexes have a disadvantage: they index 
by single word. When the query contains several words, 
the inverted index retrieves all documents, which contain 
at least one submitted word. Then, these documents are 
filtered in a union or intersection process. In order to 
improve response time, these engines return not only 
documents that satisfy the search strategy, but also they 
return those documents, which contain any of the query 
terms. The indexing process of XM-Tree proposed in this 
work improves these results. 

 
4. XM-TREE PROPOSAL 

In this work, we propose to use properties of indices on 
metric spaces in order to improve search results. The 
analysis of indexing algorithms of metric spaces shows 
that M-Tree fits for web environment. We decide to 
extend the M-Tree because it chooses the paths by 
comparing the query and information stored in the index. 
Moreover, the M-Tree achieves speed in the search 
process because it excludes sub-trees, which do not 
contain data close to the query. The retrieved results are 
correct because the pruned sub-trees always contain 
irrelevant data, by definition of M-Tree. In order to 
achieve both objectives: speed and quality results, we 
choose an adequate representation of web pages and a 
convenient similarity criterion to enable the use of the M-
Tree. Below, we present the choice made for this proposal. 

Dictionary Generation: The dictionary is a text file 
intended to measure word occurrences in documents. Each 
entry corresponds to a term. The dimension of dictionary 
vector will be called T_DIC.  

Document Representation: The documents are 
represented as points in a vector space, whose dimension 
is also T_DIC. Each axis of this space represents a 
dictionary entry. We use the TF schema in order to 
represent every document2. This schema is effective 
because documents that share very common words 
(contained in the dictionary), are represented by vectors 
that are very close at any Ls distance. In this situation, an 
M-Tree with an Ls distance, groups these documents in 
only one sub-tree. This accelerates queries that contain 
shared terms. 

Indexing: The index used in this work is an M-Tree 
whose indexing distance is L2. L2 distance allows 
grouping similar documents in TF schema successfully. L2 

                                                 
2 We discarded using TF/IDF scheme because it requires 
for the computation of each component, the number of 
word occurrences in the rest of the documents. Thus, when 
a new document is added, all document vectors must be 
recalculated, and the index would not be dynamic. 
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is preferred to L∞ and L1 because it is more accurate in a 
vector space. 

Searching:  A query has one or more word and it is 
represented by a vector q with real values and dimension 
T_DIC. If the term t is in the dictionary, t-th component of 
q has a not null value. In other cases, components are null. 
The main object is to retrieve documents where all query 
words co-occur at the same document.  The M-Tree 
searching algorithm retrieves all documents which 
frequency vectors are closer to q, with the L2 norm, so we 
have to choose adequate values for not null components in 
q.  As the frequency of a t-th component in different 
documents vectors can be quite disproportionate, it is 
impossible to obtain an optimal q because we would have 
to know in advance which documents are intended to 
retrieve. This is a problem too, if we tried to make a query 
by rank: what rank r(Q) must be computed? Given these 
circumstances, it was decided to use a criterion of 
similarity between documents and query more relaxed 
than L2. 
It is possible to obtain documents that contain all query 
terms, checking if components that correspond to those 
terms are not null and ignoring the remaining components. 
The way to solve this is by subtracting 1 to each 
component. If the result is 1, neither the word nor their 
morphological variants are contained in the document. If 
the result is less than 1, then the document contains the 
word. Then, the criterion of similarity is: to allocate 1 into 
elements of q that correspond to dictionary terms, to 
compute the subtraction between vector q and each 
document vector.  
If all components in a resulting vector are less than 1 then 
that document satisfies the query. The rest of the 
components in the query vector, whose terms are not in 
the query, are null. As frequencies by definition vary 
between 0 and 1, and its sum is 1, these differences for 
terms not included in the query, do not reach the value 1 
and would not affect the criterion. 
This new similarity criterion between documents and 
queries can be formulated with the computation of the L∞ 
norm between the document vector and the query vector. 
If the result is less than 1 then the document contains all 
the query terms, otherwise, is discarded. As the M-Tree 
search algorithm uses the same distance for indexing and 
searching, we should use the L∞ as metrics to build the 
tree. This option is not attractive because it determines the 
proximity of two documents, taking into account the 
frequency of a single term, whose frequency difference in 
both documents is maximal. Because of this, with L∞ some 
documents could be considered similar, even though they 
do not share terms. 
The other alternative is to continue using L2 distance for 
indexing, and L∞ for searching. We have chosen this 
option by modifying the search algorithm. This approach 
implies L2 cannot be used for pruning. It is required some 
additional information at the internal node of the root of 
subtree analyzed. This is also included in our proposal. 
 
Proposal of an eXtended M-Tree: XM-Tree  
XM-Tree is an index over vector spaces to search on the 
web. It is an extension of M-Tree. XM-Tree treats 
separately the indexed vectors components. These 
extensions are to include additional information at nodes 
and to make adaptations of build algorithms to maintain 
this information. The added information contains distances 
between indices data components treated separately. This 
information is added to preserve these measures and to use 

it in a possible pruning at search time. Therefore, we have 
an index over web pages by using L2 as indexing distance 
and L∞ as searching distance.  
To do this, a covering radius vector rv(Or) is added to 
internal nodes. If n is data dimension, vectors Or and Oj 
have respectively Ori and Oji components, and we consider 
a f distance over components space, then for each 
component must be rvi(Or): f(Ori,Oji) ≤ rvi(Or) i = 1, 2, .., n 
∀Oj ∈ T(Or). Distance f between components is a Ls norm 
and it has only one dimension. Because of this, for every s, 
its value is the absolute value of the difference. Also, a 
distances vector dv(Or, P(Or)) is added, which have 
distances between routing object components Or and 
parents components P(Or). Each component is: 
dvi(Or,P(Or)) = f(Ori,P(Or)i), i = 1,2, ..., n. 
Therefore, each XM-Tree internal node has the following 
information  
 
Or routing object 
ptr(T(Or)) pointer to the root of T(Or)  
r(Or) covering radius of Or  
rv(Or) covering radius vector of components of 

Or   
d(Or, P(Or)) distance of Or from its parent  
dv(Or, P(Or)) distances vector between Or components 

and his parent  
 
Leaf nodes do not change. They are like in the original M-
Tree. Entries are: Oj database object, oid(Oj): object 
identifier and d(Oj, P(Oj)): distance of Oj from its parent.   
Like in M-Tree, searching algorithm of our extension try 
to reduce the amount of accessed nodes and distance 
computations, using precomputed distances maintained on 
internal nodes in rv(Or) y dv(Or,P(Or)) and using 
triangular inequality.  
XM-Tree works on data of an n-dimensional vector space, 
with an f distance over components space. Given a query      
Q = (Q1, Q2, ..., Qn) and a vector rv(Q) of search radius 
with rvi(Q) components, then the Strict range query 
(Q,rv(Q))f searches for all database objects Oj that verify  
f(Oji, Qi) < rvi(Q), ∀i = 1, 2, ..., n.  
The modified RangeSearch algorithm starts from the root 
node and traverses all not excluded sub-trees towards the 
leaf nodes with objects, which satisfy the query.  
 
RangeSearch(node N,query_object Q,search_radius rv(Q)) 
 
1.   Let Op be the parent object of node N 
2.   If N is not a leaf then 
3.     For each object Or in N do 
4.        If (|f(Opi, Qi) – dvi(Or, Op)| < rvi(Q) + rvi(Or)        

i =1..n) then 
5.          Compute f(Ori, Qi) i =1..n 
6.          If (f(Ori, Qi) < rvi(Q) + rvi(Or) i=1..n) then  
7.            RangeSearch(*ptr(T(Or)), Q, rv(Q)) 
8.   else   // N is a leaf 
9.     For each node child Oj in N do 
10.      If (|f(Opi, Qi) – dvi(Oj, Op)| < rvi(Q) i=1..n) then 
11.        Compute f(Oji, Qi) i =1..n 
12.        If (f(Oj, Qi) < rvi(Q) i =1..n) then add oid(Oj) to 

the result set 
13.  End 
 
At line 3, algorithm accesses Or objects of N node. 
Distances between Qi components and Opi parent object 
are computed only once for i= 1... n. Distances between 
Ori a Opi are precomputed in vector dv(Or, Op). Therefore, 
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we can prune sub-trees without computing other distances. 
The pruning is made at line 6, if the condition f(Ori, Qi) ≥ 
rvi(Q) + rvi(Or) is true. In this case, to each Oj in T(Or) it is  
f(Oji, Q) ≥ rvi(Q). So, T(Or) could be discarded. At line 9, 
the algorithm checks leaf nodes against Oj objects. 
Distances between Opi y Qi components are computed 
only once and dvi(Oj, Op) elements are set in the structure. 
In lines 4 and 10, searching in not relevant nodes are 
avoided, considering that if data covering radius  rvi(Oj) 
are null: If |f(Opi, Qii) – dvi(Or, Op)| ≥ rvi(Q) + rvi(Or) then 
f(Ori, Qii) ≥ rvi(Q) + rvi(Or). Both conditions are valid 
because they are particular cases of lemmas proposed by 
[3].  
The original M-Tree Insert and Split algorithms were 
modified only by adding sentences for maintaining the 
new data: rv(Or) y dv(Or, P(Or)). Once web pages are 
represented with TF schema vectors, XM-Tree is built 
using L2 norm as indexing distance d and Ls, norm as 
distance f between components. Searching algorithm is 
called with a radius vector of components rvi(Q) of value 
1. With this, we can index with L2 and search with L∞. In 
the case of searching, we exploit the following 
equivalence within proposed search criterion and XM-
Tree Strict range query:  

(Q, rv(Q))f: : L∞(Q, O) < 1  
↔ max{|Qi – Oi|} < 1   
↔ |Qi – Oi| < 1  
↔ f(Qi, Oi) < 1  
↔  f(Qi, Oi) < rvi(Q)    ∀i=1, 2, ..., n.  

Achieving this equivalence justifies the decision to 
employ strict range query, since the original range query 
would not be useful because it would achieve the radius 
value rvi(Q). 

 
5. EXPERIMENTATION  

Prototype description  
The system proposed in this work was implemented in C++ 
using DJGPP [11]. We built a dictionary with 1000 
entries, considering morphological variants of each word. 
TF vectors of web pages are computed by using only 
visible text. For each web page, there is a file with: 
identifier, frequency vector, title, URL, and backup 
allocation. Also, Insert, Split and Search algorithms were 
implemented. When the algorithm starts, it reads the data 
file, it builds dynamically the tree and it asks for the 
query. Tree arity m is a fixed parameter, and users can use 
logical operators. AND is the default logical operator.  
For Split algorithm, m_RAD and Generalized Hyperplane 
policies were chosen to model promote and partition 
algorithms. In m_RAD, “minimum sum of radii” 
algorithm promotes objects which it covering radius sum 
r(Op1) + r(Op2) is minimal. Generalized Hyperplane 
assigns each Oj ∈ S to the closest promoted object. The 
strategy is not balanced. We use only these two policies. A 
future work, is to analyze others policies.  
Once the query is processed, the prototype shows data 
from three types of searches: searching the XM-Tree, an 
exhaustive search with the original query on all indexed 
pages, and a search that emulates an inverted index search. 
The interface provides information on the structure of the 
built XM-Tree: amount of internal nodes, amount of leaf 
nodes and data indexed. To analyze the search efficiency 
in the tree, it shows: amount and percentage of routed 
nodes and pruned nodes. To verify the search 
effectiveness in the XM-Tree, the interface shows the 
amount of results, and Precision and Recall indicators. 

After the filtering process, are shown again the amount of 
results, and Precision and Recall, which would be the final 
values achieved by the system. The search strategy that 
invokes the algorithm is compared with vectors of all 
pages using the L∞ criterion similarity. Those pages that 
verify the criterion and were not returned in the search, or 
those that non-verified the criterion and were returned, are 
shortcoming in the XM-Tree and its amount is shown 
under the title 'mistakes'.  
The exhaustive search checks if query terms appear in the 
text of each page. The aim is to show the effectiveness of 
the following proposals made in this work: scheme TF as a 
mechanism for pages representation, the L∞ similarity 
criterion between page and query, and XM-Tree as an 
indexing method. The amount of different results between 
exhaustive and XM-Tree are showed. The amount of 
results obtained in the exhaustive search is considered the 
total number of relevant documents in the collection and it 
is used to compute Precision and Recall indicators. The 
last search simulates an inverted file index. The difference 
between the retrieved data by the first instance of this 
search and the XM-Tree search is also showed. This 
comparison allows verify the largest efficiency of the XM-
Tree on inverted indexes. Data are sorted according to the 
maximum internal product with q vectors, from highest to 
lowest. 
 
Experimental Results  
Extensive experiments with the prototype are conducted to 
show system performance in a similar environment to 
actual Web environment. The pages that indexes the XM-
Tree in this testing is a very small set compared with the 
total indexed Web, because its objective is only 
experimental. For this reason, we attempt to build it in the 
most representative way as possible. 
In order to simulate the thematic heterogeneity that 
characterizes the Internet in a small sample, we retrieved 
real Web pages with different topics but sharing some 
significant terms. Documents were obtained through 
queries submitted to Google. This corpus contains just 
over 200 pages. It is representative enough because it 
came from the actual site, documents deal with 8 topics of 
interest, and some of these topics may be related to each 
other by sharing significant terms  
A user, who seeks information about lung cancer, could do 
this through the query:  

(cancer OR tumor) AND (lung OR lungs) 
After the search is executed, the information displayed is 
as follows: 

 
=== SEARCH WITH XM-TREE BASED SYSTEM=== 

structure: 8 ints, 47 leaves, 224 data, total 279 
revised  : 7 ints (87.50%) 14 leaves (29.79%) 96 data (42.86%) 
pruned  : 30          mistakes   : 0 
XM-Tree Results: 29       Precision : 1.00      Recall : 1.00 
 
== COMPARATION AGAINST INVERTED INDEX SEARCH ==  

(173 results)  
not retrieved by  XM-Tree          : 144 
not retrieved by  inverted index: 0 
 

== COMPARATION AGAINST EXHAUSTIVE SEARCH == 
(29 results) 

not retrieved by XM-Tree                  : 0 
not retrieved by  exhaustive search: 0 
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Structure reports the amount of internal nodes, leaf nodes 
and data of the constructed tree. Data amount coincides 
(matches) with the total amount of documents indexed, 
224 in this case. Next line shows amount and percentage 
of each type of revised nodes in the search XM-Tree. 
Revision of a node involves computing the f norms of 
XM-Tree. A low percentage of nodes revised indicates a 
good grouping of similar data in the XM-Tree leaves. 
Therefore, search algorithm goes to few leaves and prunes 
many nodes. The amount of pruned nodes corresponds to 
the amount of subtrees discarded by the RangeSearch 
algorithm following pruning criteria. This is to say, 
internal nodes and leaves without relevant data. In this 
case is quite high, 30 prunings on 55 internal nodes and 
leaves. This is because the high specificity of the query. 
The amount of mistakes is zero because the search in the 
tree properly retrieves all the data that verify the L∞ 
similarity criterion. Precision and Recall Indicators of 
XM-Tree retrieval in their optimal settings reflect the high 
effectiveness of the search in that index. It obtains all 
relevant documents and only relevant documents, as it is 
verified in comparison with the exhaustive search. 
Searching emulating an inverted index system gets 173 
data corresponding to posting lists of posted terms. This 
data was subsequently (later) merged and intersected. The 
amount of XM-Tree hits is in this case 29. This much 
smaller value verifies the best performance of XM-Tree 
for this query.  
The file with web pages will be re-sorted randomly, to 
analyze the dependency or not of the XM-Tree 
performance regard to the order of data insertion. To this, 
a program built five data sets with pages in different 
orders. We obtained the same values of Precision and 
Recall, for each of the data sets. Therefore, it is not 
important the order of entry documents. Then, we analyze 
the efficiency of the search in the tree built on each set.  
In Figure 1 each line corresponds to one of the queries and 
shows the percentage of revised data in each set. The data 
sets are numbered from 1 to 5. As can be seen, every 
query does not show steep differences between a set and 
another.  
This shows, in terms of index effectiveness, that the tree 
groups in same way similar pages regardless of the order 
of the set on which they were built. Hence, similar values 
of Precision, Recall and revised data, strongly suggest that 
efficiency and effectiveness of the system is independent 
of the order in which pages are indexed.  
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Figure 1. Percentage of revised data for each data set 
 
The second aspect analyzed is the arity m of the tree, this 
is the size of each node. Figure 2 shows percentage of 

revised data on each query for different arities: 5, 10, 15, 
20 and 25.  
Figure 3 shows the total amounts of nodes of different 
trees with the mentioned values of m. We can see how as 
m grows, the tree uses less space but more data are 
revised, because leaves nodes contain a lot of data and the 
searching algorithm checks them completely.  
A loss of efficiency even more important is the slightest 
ability to group data in a XM-Tree with high arity, 
because the grouping of similar data in different sub-trees 
happens after that a node overflows during the insertion of 
a new datum. This situation does not occur often in a tree 
with large nodes.  
Therefore, the choice of m does not affect the quality of 
results. But, we must choose, in principle, an intermediate 
value according to the size of the collection (this is, an 
arity whose tree occupies a reasonable amount of space). 
With the successive introduction of new data into the 
collection and their insertion into the tree, the reasonable 
use of space lows, but the tree does not loss efficiency in 
query resolution. 
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Figure 2. Percentage of revised data for m 
 
We preserved the XM-Tree with arity 10 during the next 
phase of experimentation, because with a lower value the 
waste of space is very evident, as Figure 3 shows with 
m=5. With higher values the percentage of revised data 
tends to increase (Figure 2). 
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Figure 3. Number of nodes for arity m 
 
The last phase of experimentation was to compare the 
performance of our proposed system and an inverted index 
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system. We added ten queries to the initial five queries 
used for the initial experiments. These new queries deal 
the rest of the main topics in the collection and a number 
of them are very specific in their topic.  
In Figure 4 queries are numbered with x = 1, 2, ..., 15, the 
values of y show: the percentage of data retrieved by an 
inverted index system, the percentage of data revised by 
the XM-Tree at the search, the percentage of retrieved data 
by the XM-Tree, and the amount of pruned nodes by the 
XM-Tree. This graphic shows how the amount of revised 
data by the XM-Tree is proportional to the number of 
relevant results for each query. This happens because the 
XM-Tree groups similar documents in its leaves.  
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Figure 4. Percentage of revised data, results, and 
prunings per query  

 
For this reason, the tree revises only the leaves with 
documents closed to the query. This does not happen in 
the inverted index system, where the amount of revised 
data depends directly to the submitted term with more 
occurrences in the collection, because this term contains 
large posting lists. Regarding the revision of data 
collection during a search, our proposed system performs 
a cost proportional to the amount of relevant documents to 
the query. 
 

 
6. CONCLUSIONS 

Fast retrieval and quality of results are two needed 
properties in any information retrieval system. Metric 
spaces have got indices that allow to retrieval objects 
which are closed to a given element in a fast and quite 
accurate way, so they are promising structures in order to 
build search engines. 
This paper proposes the XM-Tree, an index on vector 
spaces. It is an extension of the M-Tree, and like it, XM-
Tree is a paged, balanced and dynamic structure that 
indexes data in a metric space (including a space vector), 
resolves range queries, optimizes the execution of the 
search in a way that reduces the amount of revised data 
and computed distances, and it is apt for high-dimensional 
vector spaces.  
The extension consists in treating components of vectors 
separately, in order to adapt the search algorithm of M-
Tree to a similarity criterion for Web Information 
Retrieval. This structure indexes Web documents 

represented in TF schema uses L2 as indexing distance and 
L∞ as similarity criterion between query and document. 
The XM-Tree achieves high performance in terms of 
quality of results, in a process of Web Information 
Retrieval, reaching good values of Precision and Recall. 
Moreover, the efficiency of searches offers significant 
improvements on vector spaces and inverted indexes. 
Regarding vector spaces, the XM-Tree groups documents 
properly allowing go only to the documents closed to the 
query. Unlike inverted indexes, the XM-Tree revises a 
fraction of the collection proportional to the set of relevant 
documents. The experimental results show the realization 
of the two goals: quality of results and speed in query 
resolving. 
A future extension is to deal with the real deletion of data. 
Currently, the offline pages still present in the index and 
list as accessible from a cache, like M-Tree do it. 
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