
XM-Tree, a new index for Web Information Retrieval

Claudia Deco, Guillermo Pierángeli, Cristina Bender
Departamento de Sistemas e Informática

Facultad de Ciencias Exactas, Ingeniería y Agrimensura
Universidad Nacional de Rosario

(2000) Rosario, Argentina
{deco, bender}@fceia.unr.edu.ar, guillepier@yahoo.com

and

Nora Reyes
Departamento de Informática,

Universidad Nacional de San Luis
(5700) San Luis, Argentina

nreyes@unsl.edu.ar

ABSTRACT

Web Information Retrieval is another problem of
searching elements of a set that are closest to a given
query under a certain similarity criterion. It is of interest to
take advantage of metric spaces in order to solve a search
in an effective and efficient way. In this article, we present
an extension of the M-Tree index, called XM-Tree, in
order to improve search results. This index allows
dynamic insertion of new data, reduces search costs using
pruning and precalculated distances, and uses a tolerable
amount of space, which makes this index apt for the
extensive and dynamic Web. The proposed extension
indexes Web documents, uses L2 as indexing distance and
L∞ as similarity criterion to solve queries. We also present
experiments validating the results.

Keywords: Metric Spaces, Similarity Searching, M-Tree,
XM-Tree

1. INTRODUCTION

Searching is a fundamental problem in computer science,
which is present in almost every computer application.
The search operation has been traditionally applied to
“structured data”. With the evolution of information and
communication technologies, unstructured repositories of
information have emerged, such as the Web. New data
types such as free text, images, audio and video have to be
queried, but their structuring is very difficult (either
manually or computationally) and restricts beforehand the
types of queries that can be posed later. This scenario
requires more general search algorithms and models than
those classically used for simple data. There is a need for
searching database elements which are similar or closed to
a given query element. Similarity is model with a distance
function that satisfies the triangular inequality, and the set
of objects is called a metric space. In some applications,
the metric space turns out to be of a particular type called
vector space.
A lot of work tries to achieve the goals of reducing the
number of distances evaluations and the amount of I/O
performed, in general around the concept of building an

index, a data structure designed to reduce the amount of
distance evaluations at query time. [1] presents a unified
framework that describes and analyzes existing solutions
to this problem, and there are two main techniques for
indexing: one is based on pivots and another is based on
Voronoi partitions. Within these techniques, we propose in
this work, an extension of M-Tree, to index documents
and speed up web searches discarding as much irrelevant
objects as possible.
The rest of this paper is organized as follows: Section 2
presents basic concepts of Information Retrieval and
Metric Spaces. Section 3 presents related work. Section 4
proposes the XM-Tree as an extension of M-Tree. Section
5 presents the experimental results. Finally, conclusions
are presented.

2. BASIC CONCEPTS

Information Retrieval
An Information Retrieval problem is, given a set of
documents and a query, to determine the subset of relevant
documents to the query [2]. An approach to solve this
problem is to use search engines based on traditional
Information Retrieval techniques. These search engines
locate information in a set of documents, through two
steps: indexing and retrieval. The documents are indexed
by the terms that contains. The process of generation,
construction and storing document representations is
called indexing and as a result, we obtain inverted indexes.
An inverted index allows fast access to the list of
documents that contains a specific term. For this purpose,
it maintains a register for each term in the document
collection, which in its simplest form consists in the term
name and the list of documents where that term occurs.
Each term occurrence in the inverted index is called a
posting, and the list of postings of a term is called a
posting list. For retrieval, the search engine uses this
inverted file to look up which documents contain the
query words, and obtains the posting list for each one.
These posting lists are then merged. This process depends
on the engine. For example, a boolean engine requires the
query be formulated using boolean operators between
words. Merging is then straightforward as the documents
sets are combined using the appropriated set operators.

JCS&T Vol. 8 No. 2 July 2008

78

The typical indicators to measure the effectiveness in
information retrieval are called Precision and Recall.
Precision is the ratio of the number of relevant documents
retrieved to the total number of documents retrieved.
Recall is the ratio of the number of relevant documents
retrieved to the total number of relevant documents in the
collection. Both are usually expressed as a percentage. An
engine achieves a good performance when it maximizes
both values. This is, when it retrieves most relevant
documents available in the collection along with the least
amount of irrelevant documents.
One way to represent documents is the vector space
model, in which documents are represented with vectors of
words. The very common terms, articles, and pronouns are
not considered in these vectors. In addition, verbs, nouns
and adjectives, are reduced to a canonical form with a
stemming process. The document is represented as a
vector in the Euclidean space with the resulting set of
words. Each canonical term represents an axis in this
space. The i-th component of vector d is 1 if term ti occurs
in document d, or 0 otherwise. Queries are represented in
the same way. The similarity between a query q and a
document d can be measured by computing the dot
product of vectors q and d: sim(q, d) = Σ qi×di. This
process allows us to return a sequence of documents
ranked by their relevance to the query.
The problem with this representation is that it does not
capture the fact that some terms might be more important
than others in a single document. The solution is to
represent the weight of the word in the document at each
component. This weight may be the number of
occurrences, but this representation gives preference to
larger documents. This could be solved using the TF
scheme, or term frequency scheme, which normalizes the
vectors by dividing each component by the vector length.
Thus, the value tfi of each component di is the frequency
of the term ti in document d. The TF scheme does not
consider the distribution of the term in the whole
collection. This is solved with the concept of inverse
document frequency: idfi = log (N / ni), where N is the
total number of documents in the collection and ni is the
number of documents in which i-th term occurs. In
practice, both measures are combined into a schema called
TF/IDF: wij = tfij x idfi wij, where wij is the value that is
assigned to i-th component of the document j.

Metric Spaces
The set X denote the universe of valid objects. The
function d: X × X → R+ denotes a measure of “distance”
between objects.
The distance function d has the following properties:
positiveness (d(x, y) ≥ 0), symmetry (d(x, y) = d(y, x)),
reflexivity (d(x, x) = 0), strict positiveness (∀x, y ∈ X, x≠y
⇒ d(x, y) > 0), and triangular inequality (d(x, z) ≤ d(x, y) +
d(y, z)). Then the pair (X, d) is called a metric space. A
finite subset U of X, of size n = |U|, is the set of objects
where we search. U will be called the dictionary or
database. The types of queries of interest in metric spaces
are Range query and k-Nearest neighbours query.

Range query (q, r)d retrieves all elements which are
within distance r to q, this is { u ∈ U | d(q, u) ≤ r }.

k-Nearest neighbours query NNk(q) retrieves the k
closest elements to q in U. This is, it retrieves a set A ⊆ U
such that |A| = k and ∀u ∈ U, v ∈ U - A, d(q, u) ≤ d(q, v).
In this work, we propose to use Strict range query (q, r)d.
This query retrieves all elements which are at a distance
less than r to q, this is {u ∈ U | d(q, u) < r}.

If elements of the metric space (X, d) are indeed tuples of
real numbers then the pair is called a vector space.
A k-dimensional vector space is a particular metric space
where objects are identified with k real-valued coordinates
(x1,.., xk). There are a number of options for the distance
function to use, but the most widely used is the family of
Ls distances, defined as

Ls((x1, ..., xk), (y1, ..., yk)) = (Σ |xi – yi |s)1/s
The L1 distance accounts for the sum of the differences
along the coordinates, it is also called “block” distance.
The L2 distance is the “Euclidean” distance, and it
corresponds to the notion of spatial distance. The other
most used member of the family is L∞, which corresponds
to taking the limit of the Ls formula when s goes to
infinity. The result is that the distance between two objects
is the maximum difference along a coordinate:

L∞((x1, ..., xk), (y1, ..., yk)) = max |xi – yi |.
Indexes for metric spaces allow the effective and efficient
retrieval of objects. It is effective because the results have
a high degree of accuracy by properties of space and
index. It is efficient because the construction of indexes is
intended to reduce the number of computations. These two
properties are highly desirable in a search engine. For this,
the use of metric spaces is an interesting alternative in
indexing and searching processes.
A unified model of indexing algorithms for metric spaces
is presented in [1]. All the indexing algorithms partition
the set U into subsets. An index is built to determine the
candidate subsets where relevant elements to the query
could appear. There are two main types of indexing
algorithms: pivot based and Voronoi based algorithms (or
based on compact partitions). Pivot based algorithms
consider the distances between an element and k
preselected points, called “pivots”, and maps the metric
space on Rk using L∞ distance. Voronoi based algorithms
partition metric space considering the proximity to a set of
points called centres. Pivot based algorithms need much
more space to store k classes than Voronoi based
algorithms using the same number of partitions. If pivot
based algorithms have the necessary memory and use the
optimal number of pivots, then their search cost is better
than Voronoi based algorithms. But this does not occur if
the intrinsic dimension of the metric space grows, because
it is more difficult to search in it.
In this work, we use web pages represented with word
vectors. These vectors have a very large amount of
components, so the intrinsic dimension of the metric space
could be high. Considering this, the Voronoi based
algorithms seem to be better. In addition, the web is very
dynamic, so the proposed index should enable to add data
to the index. Because of this, we propose to extend the M-
Tree index, which improves previous algorithms, allows
insert and effectively remove elements from a tree.

M-Tree
The access method M-Tree [3] is proposed to organize and
search large data sets. Experimentations demonstrate that
M-Tree performs reasonably well in high-dimensional
data spaces and growing data sets. M-Tree is a paged,
balanced and dynamic tree, and it allows dynamic
insertion and deletion1 of data, and does not require
periodical reorganizations after these operations. M-Tree
nodes are fixed-size and they allow a maximum of m child
nodes. Leaf nodes of any M-Tree store all indexed

1 Actually, the real deletions can only be made on leaves,
in case of routing object they are only setting as "deleted".

JCS&T Vol. 8 No. 2 July 2008

79

database objects, whereas internal nodes store the so-
called routing objects. A routing object is a database
object to which a routing role is assigned by a specific
promotion algorithm.
Each node N of the M-Tree corresponds to a region of the
indexed metric space (X, d). The region of node N is

Reg(N) = { O ∈ X | d(Or, O) ≤ r(Or) }
where Or is the routing object of node N and r(Or) is its
covering radius. All the objects in the sub-tree rooted at N
are guaranteed to belong to Reg(N), thus their distance
from Or does not exceed r(Or). Entries in the internal node
N are: a routing object Or; the covering radius r(Or); an
associated pointer ptr(T(Or)), which references the root of
a sub-tree T(Or) called the covering tree of Or; anda
distance from its parent object P(Or), that is the routing
object which references the node where the Or entry is
stored. This distance is not defined for entries in the root
of the M-Tree. The leaf nodes are quite similar to routing
objects, but no covering radius is needed, and the pointer
field stores the object identifier in the database.
In [3] are presented two algorithms for similarity search:
range query and k-nearest neighbours query. Their
objective is to reduce the number of accessed nodes and
the number of distance computations needed to execute
queries. For this purpose, all the information concerning
pre-computed distances stored in the M-Tree nodes, i.e.
d(Or, P(Or)) and r(Or), are used to effectively apply the
triangle inequality. Although [3] treats range queries as no
strict, in this work we propose to use strict range queries
(Q, r(Q))d, which selects all the database objects such that
d(Oj, Q) < r(Q).
Our RangeSearch algorithm retrieves all objects, which
satisfy the above inequality. For this purpose,
RangeSearch starts from the root node and recursively
traverses all the paths, which cannot be excluded, from
leading to leaf nodes with objects that satisfy the query.
When the algorithm accesses objects Or in node N, the
distance between query Q and parent object Op is
computed only once. The index stores the pre-computed
distances between Or and Op, so it is possible to prune a
sub-tree without computing any new distance at all.

3. RELATED WORKS

The metric index M-Tree was improved in several
subsequent versions in order to obtain faster indexing and
retrieval. The Slim-tree [4] is a version that accelerates the
indexing process with a new split algorithm based on
minimal spanning tree, and reduces the overlap between
regions with the Slim-down algorithm, improving the
query performance. The M+-tree [5] introduces a concept
called key dimension: splits a subspace into two subspaces,
called twin nodes, which are not overlapped. In the
searching process, the key dimension is used to perform
effective pruning while is not needed to compute distance
between objects. BM+-tree [6] extends the M+-tree. It uses
a rotatable binary hyperplane, instead of a key dimension,
to partition the twin subspaces and to perform filtration
between them. The Density-Based Metric tree [7], or
DBM-Tree, minimizes the overlap between high-density
nodes by relaxing the height balancing of the tree. Thus,
the height of the tree is larger in denser regions. It
achieves higher performance in searches because it is
possible to adjust the tree according to the data
distributions at different regions of the data space. The
DBM*-tree [8] extends the previous one: each node has an
associated matrix, which contains some precomputed
distances between objects of current node. Making use of

pre-calculated distances, construction and query costs are
reduced because it increments the pruning of irrelevant
elements. In [9] basic principles and experimentation
results of a paged and balanced index structure, called M2-
tree, are presented. The proposed approach combines
within single index structure information from multiple
metric spaces. This allows efficiently support queries on
arbitrary combinations of indexed attributes. The XM-Tree
proposed in this work is a very particular case of M2-tree,
because it extends an M-Tree on vector spaces, adapting
its algorithms for the Web search.
With regard to web search engines, the continuously
growth of the web is a great challenge to the creation of
fast indexes. One solution is the use of inverted indexes,
employed by search engines, such as Google [10].
However, these indexes have a disadvantage: they index
by single word. When the query contains several words,
the inverted index retrieves all documents, which contain
at least one submitted word. Then, these documents are
filtered in a union or intersection process. In order to
improve response time, these engines return not only
documents that satisfy the search strategy, but also they
return those documents, which contain any of the query
terms. The indexing process of XM-Tree proposed in this
work improves these results.

4. XM-TREE PROPOSAL

In this work, we propose to use properties of indices on
metric spaces in order to improve search results. The
analysis of indexing algorithms of metric spaces shows
that M-Tree fits for web environment. We decide to
extend the M-Tree because it chooses the paths by
comparing the query and information stored in the index.
Moreover, the M-Tree achieves speed in the search
process because it excludes sub-trees, which do not
contain data close to the query. The retrieved results are
correct because the pruned sub-trees always contain
irrelevant data, by definition of M-Tree. In order to
achieve both objectives: speed and quality results, we
choose an adequate representation of web pages and a
convenient similarity criterion to enable the use of the M-
Tree. Below, we present the choice made for this proposal.

Dictionary Generation: The dictionary is a text file
intended to measure word occurrences in documents. Each
entry corresponds to a term. The dimension of dictionary
vector will be called T_DIC.

Document Representation: The documents are
represented as points in a vector space, whose dimension
is also T_DIC. Each axis of this space represents a
dictionary entry. We use the TF schema in order to
represent every document2. This schema is effective
because documents that share very common words
(contained in the dictionary), are represented by vectors
that are very close at any Ls distance. In this situation, an
M-Tree with an Ls distance, groups these documents in
only one sub-tree. This accelerates queries that contain
shared terms.

Indexing: The index used in this work is an M-Tree
whose indexing distance is L2. L2 distance allows
grouping similar documents in TF schema successfully. L2

2 We discarded using TF/IDF scheme because it requires
for the computation of each component, the number of
word occurrences in the rest of the documents. Thus, when
a new document is added, all document vectors must be
recalculated, and the index would not be dynamic.

JCS&T Vol. 8 No. 2 July 2008

80

is preferred to L∞ and L1 because it is more accurate in a
vector space.

Searching: A query has one or more word and it is
represented by a vector q with real values and dimension
T_DIC. If the term t is in the dictionary, t-th component of
q has a not null value. In other cases, components are null.
The main object is to retrieve documents where all query
words co-occur at the same document. The M-Tree
searching algorithm retrieves all documents which
frequency vectors are closer to q, with the L2 norm, so we
have to choose adequate values for not null components in
q. As the frequency of a t-th component in different
documents vectors can be quite disproportionate, it is
impossible to obtain an optimal q because we would have
to know in advance which documents are intended to
retrieve. This is a problem too, if we tried to make a query
by rank: what rank r(Q) must be computed? Given these
circumstances, it was decided to use a criterion of
similarity between documents and query more relaxed
than L2.
It is possible to obtain documents that contain all query
terms, checking if components that correspond to those
terms are not null and ignoring the remaining components.
The way to solve this is by subtracting 1 to each
component. If the result is 1, neither the word nor their
morphological variants are contained in the document. If
the result is less than 1, then the document contains the
word. Then, the criterion of similarity is: to allocate 1 into
elements of q that correspond to dictionary terms, to
compute the subtraction between vector q and each
document vector.
If all components in a resulting vector are less than 1 then
that document satisfies the query. The rest of the
components in the query vector, whose terms are not in
the query, are null. As frequencies by definition vary
between 0 and 1, and its sum is 1, these differences for
terms not included in the query, do not reach the value 1
and would not affect the criterion.
This new similarity criterion between documents and
queries can be formulated with the computation of the L∞
norm between the document vector and the query vector.
If the result is less than 1 then the document contains all
the query terms, otherwise, is discarded. As the M-Tree
search algorithm uses the same distance for indexing and
searching, we should use the L∞ as metrics to build the
tree. This option is not attractive because it determines the
proximity of two documents, taking into account the
frequency of a single term, whose frequency difference in
both documents is maximal. Because of this, with L∞ some
documents could be considered similar, even though they
do not share terms.
The other alternative is to continue using L2 distance for
indexing, and L∞ for searching. We have chosen this
option by modifying the search algorithm. This approach
implies L2 cannot be used for pruning. It is required some
additional information at the internal node of the root of
subtree analyzed. This is also included in our proposal.

Proposal of an eXtended M-Tree: XM-Tree
XM-Tree is an index over vector spaces to search on the
web. It is an extension of M-Tree. XM-Tree treats
separately the indexed vectors components. These
extensions are to include additional information at nodes
and to make adaptations of build algorithms to maintain
this information. The added information contains distances
between indices data components treated separately. This
information is added to preserve these measures and to use

it in a possible pruning at search time. Therefore, we have
an index over web pages by using L2 as indexing distance
and L∞ as searching distance.
To do this, a covering radius vector rv(Or) is added to
internal nodes. If n is data dimension, vectors Or and Oj
have respectively Ori and Oji components, and we consider
a f distance over components space, then for each
component must be rvi(Or): f(Ori,Oji) ≤ rvi(Or) i = 1, 2, .., n
∀Oj ∈ T(Or). Distance f between components is a Ls norm
and it has only one dimension. Because of this, for every s,
its value is the absolute value of the difference. Also, a
distances vector dv(Or, P(Or)) is added, which have
distances between routing object components Or and
parents components P(Or). Each component is:
dvi(Or,P(Or)) = f(Ori,P(Or)i), i = 1,2, ..., n.
Therefore, each XM-Tree internal node has the following
information

Or routing object
ptr(T(Or)) pointer to the root of T(Or)
r(Or) covering radius of Or
rv(Or) covering radius vector of components of

Or
d(Or, P(Or)) distance of Or from its parent
dv(Or, P(Or)) distances vector between Or components

and his parent

Leaf nodes do not change. They are like in the original M-
Tree. Entries are: Oj database object, oid(Oj): object
identifier and d(Oj, P(Oj)): distance of Oj from its parent.
Like in M-Tree, searching algorithm of our extension try
to reduce the amount of accessed nodes and distance
computations, using precomputed distances maintained on
internal nodes in rv(Or) y dv(Or,P(Or)) and using
triangular inequality.
XM-Tree works on data of an n-dimensional vector space,
with an f distance over components space. Given a query
Q = (Q1, Q2, ..., Qn) and a vector rv(Q) of search radius
with rvi(Q) components, then the Strict range query
(Q,rv(Q))f searches for all database objects Oj that verify
f(Oji, Qi) < rvi(Q), ∀i = 1, 2, ..., n.
The modified RangeSearch algorithm starts from the root
node and traverses all not excluded sub-trees towards the
leaf nodes with objects, which satisfy the query.

RangeSearch(node N,query_object Q,search_radius rv(Q))

1. Let Op be the parent object of node N
2. If N is not a leaf then
3. For each object Or in N do
4. If (|f(Opi, Qi) – dvi(Or, Op)| < rvi(Q) + rvi(Or)

i =1..n) then
5. Compute f(Ori, Qi) i =1..n
6. If (f(Ori, Qi) < rvi(Q) + rvi(Or) i=1..n) then
7. RangeSearch(*ptr(T(Or)), Q, rv(Q))
8. else // N is a leaf
9. For each node child Oj in N do
10. If (|f(Opi, Qi) – dvi(Oj, Op)| < rvi(Q) i=1..n) then
11. Compute f(Oji, Qi) i =1..n
12. If (f(Oj, Qi) < rvi(Q) i =1..n) then add oid(Oj) to

the result set
13. End

At line 3, algorithm accesses Or objects of N node.
Distances between Qi components and Opi parent object
are computed only once for i= 1... n. Distances between
Ori a Opi are precomputed in vector dv(Or, Op). Therefore,

JCS&T Vol. 8 No. 2 July 2008

81

we can prune sub-trees without computing other distances.
The pruning is made at line 6, if the condition f(Ori, Qi) ≥
rvi(Q) + rvi(Or) is true. In this case, to each Oj in T(Or) it is
f(Oji, Q) ≥ rvi(Q). So, T(Or) could be discarded. At line 9,
the algorithm checks leaf nodes against Oj objects.
Distances between Opi y Qi components are computed
only once and dvi(Oj, Op) elements are set in the structure.
In lines 4 and 10, searching in not relevant nodes are
avoided, considering that if data covering radius rvi(Oj)
are null: If |f(Opi, Qii) – dvi(Or, Op)| ≥ rvi(Q) + rvi(Or) then
f(Ori, Qii) ≥ rvi(Q) + rvi(Or). Both conditions are valid
because they are particular cases of lemmas proposed by
[3].
The original M-Tree Insert and Split algorithms were
modified only by adding sentences for maintaining the
new data: rv(Or) y dv(Or, P(Or)). Once web pages are
represented with TF schema vectors, XM-Tree is built
using L2 norm as indexing distance d and Ls, norm as
distance f between components. Searching algorithm is
called with a radius vector of components rvi(Q) of value
1. With this, we can index with L2 and search with L∞. In
the case of searching, we exploit the following
equivalence within proposed search criterion and XM-
Tree Strict range query:

(Q, rv(Q))f: : L∞(Q, O) < 1
↔ max{|Qi – Oi|} < 1
↔ |Qi – Oi| < 1
↔ f(Qi, Oi) < 1
↔ f(Qi, Oi) < rvi(Q) ∀i=1, 2, ..., n.

Achieving this equivalence justifies the decision to
employ strict range query, since the original range query
would not be useful because it would achieve the radius
value rvi(Q).

5. EXPERIMENTATION

Prototype description
The system proposed in this work was implemented in C++
using DJGPP [11]. We built a dictionary with 1000
entries, considering morphological variants of each word.
TF vectors of web pages are computed by using only
visible text. For each web page, there is a file with:
identifier, frequency vector, title, URL, and backup
allocation. Also, Insert, Split and Search algorithms were
implemented. When the algorithm starts, it reads the data
file, it builds dynamically the tree and it asks for the
query. Tree arity m is a fixed parameter, and users can use
logical operators. AND is the default logical operator.
For Split algorithm, m_RAD and Generalized Hyperplane
policies were chosen to model promote and partition
algorithms. In m_RAD, “minimum sum of radii”
algorithm promotes objects which it covering radius sum
r(Op1) + r(Op2) is minimal. Generalized Hyperplane
assigns each Oj ∈ S to the closest promoted object. The
strategy is not balanced. We use only these two policies. A
future work, is to analyze others policies.
Once the query is processed, the prototype shows data
from three types of searches: searching the XM-Tree, an
exhaustive search with the original query on all indexed
pages, and a search that emulates an inverted index search.
The interface provides information on the structure of the
built XM-Tree: amount of internal nodes, amount of leaf
nodes and data indexed. To analyze the search efficiency
in the tree, it shows: amount and percentage of routed
nodes and pruned nodes. To verify the search
effectiveness in the XM-Tree, the interface shows the
amount of results, and Precision and Recall indicators.

After the filtering process, are shown again the amount of
results, and Precision and Recall, which would be the final
values achieved by the system. The search strategy that
invokes the algorithm is compared with vectors of all
pages using the L∞ criterion similarity. Those pages that
verify the criterion and were not returned in the search, or
those that non-verified the criterion and were returned, are
shortcoming in the XM-Tree and its amount is shown
under the title 'mistakes'.
The exhaustive search checks if query terms appear in the
text of each page. The aim is to show the effectiveness of
the following proposals made in this work: scheme TF as a
mechanism for pages representation, the L∞ similarity
criterion between page and query, and XM-Tree as an
indexing method. The amount of different results between
exhaustive and XM-Tree are showed. The amount of
results obtained in the exhaustive search is considered the
total number of relevant documents in the collection and it
is used to compute Precision and Recall indicators. The
last search simulates an inverted file index. The difference
between the retrieved data by the first instance of this
search and the XM-Tree search is also showed. This
comparison allows verify the largest efficiency of the XM-
Tree on inverted indexes. Data are sorted according to the
maximum internal product with q vectors, from highest to
lowest.

Experimental Results
Extensive experiments with the prototype are conducted to
show system performance in a similar environment to
actual Web environment. The pages that indexes the XM-
Tree in this testing is a very small set compared with the
total indexed Web, because its objective is only
experimental. For this reason, we attempt to build it in the
most representative way as possible.
In order to simulate the thematic heterogeneity that
characterizes the Internet in a small sample, we retrieved
real Web pages with different topics but sharing some
significant terms. Documents were obtained through
queries submitted to Google. This corpus contains just
over 200 pages. It is representative enough because it
came from the actual site, documents deal with 8 topics of
interest, and some of these topics may be related to each
other by sharing significant terms
A user, who seeks information about lung cancer, could do
this through the query:

(cancer OR tumor) AND (lung OR lungs)
After the search is executed, the information displayed is
as follows:

=== SEARCH WITH XM-TREE BASED SYSTEM===

structure: 8 ints, 47 leaves, 224 data, total 279
revised : 7 ints (87.50%) 14 leaves (29.79%) 96 data (42.86%)
pruned : 30 mistakes : 0
XM-Tree Results: 29 Precision : 1.00 Recall : 1.00

== COMPARATION AGAINST INVERTED INDEX SEARCH ==

(173 results)
not retrieved by XM-Tree : 144
not retrieved by inverted index: 0

== COMPARATION AGAINST EXHAUSTIVE SEARCH ==
(29 results)

not retrieved by XM-Tree : 0
not retrieved by exhaustive search: 0

JCS&T Vol. 8 No. 2 July 2008

82

Structure reports the amount of internal nodes, leaf nodes
and data of the constructed tree. Data amount coincides
(matches) with the total amount of documents indexed,
224 in this case. Next line shows amount and percentage
of each type of revised nodes in the search XM-Tree.
Revision of a node involves computing the f norms of
XM-Tree. A low percentage of nodes revised indicates a
good grouping of similar data in the XM-Tree leaves.
Therefore, search algorithm goes to few leaves and prunes
many nodes. The amount of pruned nodes corresponds to
the amount of subtrees discarded by the RangeSearch
algorithm following pruning criteria. This is to say,
internal nodes and leaves without relevant data. In this
case is quite high, 30 prunings on 55 internal nodes and
leaves. This is because the high specificity of the query.
The amount of mistakes is zero because the search in the
tree properly retrieves all the data that verify the L∞
similarity criterion. Precision and Recall Indicators of
XM-Tree retrieval in their optimal settings reflect the high
effectiveness of the search in that index. It obtains all
relevant documents and only relevant documents, as it is
verified in comparison with the exhaustive search.
Searching emulating an inverted index system gets 173
data corresponding to posting lists of posted terms. This
data was subsequently (later) merged and intersected. The
amount of XM-Tree hits is in this case 29. This much
smaller value verifies the best performance of XM-Tree
for this query.
The file with web pages will be re-sorted randomly, to
analyze the dependency or not of the XM-Tree
performance regard to the order of data insertion. To this,
a program built five data sets with pages in different
orders. We obtained the same values of Precision and
Recall, for each of the data sets. Therefore, it is not
important the order of entry documents. Then, we analyze
the efficiency of the search in the tree built on each set.
In Figure 1 each line corresponds to one of the queries and
shows the percentage of revised data in each set. The data
sets are numbered from 1 to 5. As can be seen, every
query does not show steep differences between a set and
another.
This shows, in terms of index effectiveness, that the tree
groups in same way similar pages regardless of the order
of the set on which they were built. Hence, similar values
of Precision, Recall and revised data, strongly suggest that
efficiency and effectiveness of the system is independent
of the order in which pages are indexed.

0

20

40

60

80

100

0 1 2 3 4 5 6

c1
c2
c3
c4
c5

Figure 1. Percentage of revised data for each data set

The second aspect analyzed is the arity m of the tree, this
is the size of each node. Figure 2 shows percentage of

revised data on each query for different arities: 5, 10, 15,
20 and 25.
Figure 3 shows the total amounts of nodes of different
trees with the mentioned values of m. We can see how as
m grows, the tree uses less space but more data are
revised, because leaves nodes contain a lot of data and the
searching algorithm checks them completely.
A loss of efficiency even more important is the slightest
ability to group data in a XM-Tree with high arity,
because the grouping of similar data in different sub-trees
happens after that a node overflows during the insertion of
a new datum. This situation does not occur often in a tree
with large nodes.
Therefore, the choice of m does not affect the quality of
results. But, we must choose, in principle, an intermediate
value according to the size of the collection (this is, an
arity whose tree occupies a reasonable amount of space).
With the successive introduction of new data into the
collection and their insertion into the tree, the reasonable
use of space lows, but the tree does not loss efficiency in
query resolution.

0

20

40

60

80

100

0 5 10 15 20 25 30

c1
c2
c3
c4
c5

Figure 2. Percentage of revised data for m

We preserved the XM-Tree with arity 10 during the next
phase of experimentation, because with a lower value the
waste of space is very evident, as Figure 3 shows with
m=5. With higher values the percentage of revised data
tends to increase (Figure 2).

0
50

100
150
200
250
300
350
400
450
500

0 5 10 15 20 25 30

nodos

Figure 3. Number of nodes for arity m

The last phase of experimentation was to compare the
performance of our proposed system and an inverted index

JCS&T Vol. 8 No. 2 July 2008

83

system. We added ten queries to the initial five queries
used for the initial experiments. These new queries deal
the rest of the main topics in the collection and a number
of them are very specific in their topic.
In Figure 4 queries are numbered with x = 1, 2, ..., 15, the
values of y show: the percentage of data retrieved by an
inverted index system, the percentage of data revised by
the XM-Tree at the search, the percentage of retrieved data
by the XM-Tree, and the amount of pruned nodes by the
XM-Tree. This graphic shows how the amount of revised
data by the XM-Tree is proportional to the number of
relevant results for each query. This happens because the
XM-Tree groups similar documents in its leaves.

0

20

40

60

80

100

0 5 10 15 20

busq ii
busq x
resul x
podas

Figure 4. Percentage of revised data, results, and
prunings per query

For this reason, the tree revises only the leaves with
documents closed to the query. This does not happen in
the inverted index system, where the amount of revised
data depends directly to the submitted term with more
occurrences in the collection, because this term contains
large posting lists. Regarding the revision of data
collection during a search, our proposed system performs
a cost proportional to the amount of relevant documents to
the query.

6. CONCLUSIONS

Fast retrieval and quality of results are two needed
properties in any information retrieval system. Metric
spaces have got indices that allow to retrieval objects
which are closed to a given element in a fast and quite
accurate way, so they are promising structures in order to
build search engines.
This paper proposes the XM-Tree, an index on vector
spaces. It is an extension of the M-Tree, and like it, XM-
Tree is a paged, balanced and dynamic structure that
indexes data in a metric space (including a space vector),
resolves range queries, optimizes the execution of the
search in a way that reduces the amount of revised data
and computed distances, and it is apt for high-dimensional
vector spaces.
The extension consists in treating components of vectors
separately, in order to adapt the search algorithm of M-
Tree to a similarity criterion for Web Information
Retrieval. This structure indexes Web documents

represented in TF schema uses L2 as indexing distance and
L∞ as similarity criterion between query and document.
The XM-Tree achieves high performance in terms of
quality of results, in a process of Web Information
Retrieval, reaching good values of Precision and Recall.
Moreover, the efficiency of searches offers significant
improvements on vector spaces and inverted indexes.
Regarding vector spaces, the XM-Tree groups documents
properly allowing go only to the documents closed to the
query. Unlike inverted indexes, the XM-Tree revises a
fraction of the collection proportional to the set of relevant
documents. The experimental results show the realization
of the two goals: quality of results and speed in query
resolving.
A future extension is to deal with the real deletion of data.
Currently, the offline pages still present in the index and
list as accessible from a cache, like M-Tree do it.

7. REFERENCES

[1] E. Chávez, G. Navarro, R. Baeza-Yates y J. L.
Marroquín. “Searching in Metric Spaces”, ACM
Computing Surveys, 33(3), 2001; pp 273–321.
[2] R. Baeza-Yates y B. Ribeiro-Neto. (eds.). Modern
Information Retrieval. ACM Press, New York, 1999.
[3] P. Ciaccia, M. Patella y P. Zezula. “M-Tree: An
Efficient Access Method for Similarity Search in Metric
Spaces”, Proc. of the 23rd Conference on Very Large
Databases (VLDB’97), 1997; pp. 426–435.
[4] C. Traina Jr., A. Traina, B. Seeger y C. Faloutsos.
“Slim-trees: High Performance Metric Trees Minimizing
Overlap between Nodes”, Proc. of 7th International
Conference on Extending Database Technology, LNCS,
1777, 2000; pp. 51–68.
[5] X. Zhou, G. Wang, J. Xu Yu y G. Yu. “M+-tree: A
New Dynamical Multidimensional Index for Metric
Spaces”, Proc. of the 14th Australasian Database
Conference, 2003; pp 161 – 168.
[6] X. Zhou, G. Wang, X. Zhou y G. Yu. “BM+-tree: A
Hyperplane-based Index Method for High-Dimensional
Metric Spaces”, Proc. of 10th International Conference
Database Systems for Advanced Applications, LNCS,
3453, 2005; pp 398–409.
[7] M. R. Vieira, C. Traina Jr., F. J. T. Chino y A. J. M.
Traina. “DBM-Tree: Trading Height-Balancing for
Performance in Metric Access Methods”, Journal of the
Brazilian Computer Society, v. 11, n. 3, 2006; pp 20.
[8] A. Ocsa y E. Cuadros-Vargas. “DBM*-Tree: An
Efficient Metric Acces Method”, Proc. of ACM Southeast
Regional Conference, 2007; pp 401–406.
[9] P. Ciaccia y M. Patella. “The M2-tree: Processing
Complex Multi-Feature Queries with just one Index”,
Proceedings of DELOS Workshop: Information Seeking,
Searching and Querying in Digital Libraries, 2000.
[10] S. Brin y L. Page. “The Anatomy of a Large-Scale
Hypertextual Web Search Engine”, Proc of the Seventh
International World Wide Web Conference, vol. 30 of
Computer Networks and ISDN Systems, 1998, pp. 107–
117.
[11] D. J. Delorie. DJGPP. Copyright (c) 2003 URL
http://www.delorie.com/djgpp/

JCS&T Vol. 8 No. 2 July 2008

84

