
 

ABSTRACT 
MINIX4RT is an extension of the well-known MINIX 

Operating System that adds Hard Real-Time services in a new 

microkernel but keeping backward compatibility with standard 

MINIX versions.  

Semaphores are the primitive synchronization and mutual 

exclusion mechanism in many operating systems, but MINIX 

does not provide those facilities. Semaphores were added to 

MINIX4RT, and since it is a Real-Time Operating System, they 

must meet some processing requirements such as dequeueing 

waiting processes in priority order and avoiding the Priority 

Inversion problem. This article describes the Real-Time 

Semaphores facilities available on MINIX4RT, its design, 

implementation, performance tests and their results. 

Keywords: Minix, Real-Time, Semaphores, Priority 

Inheritance, Priority Inversion. 

1. INTRODUCTION 

Real-Time Operating System (RTOS) services must consume 

limited and guaranteed amounts of time. That deterministic 

timing behavior is the key difference against time sharing 

Operating Systems (OS). 

MINIX4RT (previously named RT-MINIXv2) [1, 2] is a Real-

Time (RT) version of the well known MINIX 2.0.2 [3] 

Operating System designed to teach concepts on RT-

programming, in particular, those related to RT-kernels; but it 

can be used as a serious system on resource-limited computers. 

It is a good tool for experimenting with novel OS policies and 

mechanisms, and for evaluating the impact of architectural 

innovations.  

Design constraints for MINIX4RT were: 

- MINIX Compatibility: All processes that run on MINIX 

must run on MINIX4RT without modifications and 

sensible performance impact. 

- Minimal MINIX source code changes: As MINIX is 

often used in OS design courses, students have deep 

knowledge of its source code. Reducing the source code 

changes keeps students´ experience to learn a MINIX-

based RTOS. Most new codes must be added in 

separated functions with few changes in the original 

MINIX code. This restriction also helps with easier 

system updates for newer MINIX versions. 

- Source Code readability: As MINIX4RT is focused on 

academic uses, its source code must be easily 

understood, perhaps sacrificing performance. 

MINIX uses message passing as its central paradigm because it 

has a Client/Server microkernel based architecture. Messages 

have fixed sizes and a strict copy to value semantics.  In OS 

without Virtual Memory as MINIX, a message transfer implies a 

copy of the message from the sender's process address space to 

the destination's process address space. Since the copy is a time-

consuming operation, it reduces the performance of simple 

synchronization or mutual exclusion primitives. Semaphores 

have a lower performance cost because they do not need that 

copy. Furthermore, as every operation in a hard RTOS, 

MINIX4RT RT-Semaphore primitives need to have 

deterministic execution and blocking times. 

The rest of this work is organized as follows. Section 2 

introduces MINIX4RT. Section 3 presents background 

information about synchronization and mutual exclusion 

primitives on MINIX. Section 4 presents the proposed RT-

Semaphore model. Section 5 provides information about RT-

Semaphores basic data structures. Section 6 describes kernel 

primitives to operate on RT-Semaphores. A performance 

evaluation is provided in Section 7. Finally, Section 8 presents 

conclusions and future works. 

2. OVERVIEW OF MINIX4RT 

MINIX4RT provides the capability of running Real-Time and 

Non Real-Time (NRT) processes on the same machine [1]. RT-

processes are executed when necessary regardless of what 

MINIX is doing.  

The RT-microkernel works by treating the MINIX OS kernel as 

a task being executed under a small RTOS based on software 

emulation of interrupt control hardware. In fact, MINIX is like 

the idle process for the RT-microkernel being executed only 

when there are no RT-processes to run. When MINIX requests 

the hardware to disable interrupts, the RT-microkernel intercepts 

that request, records it, and returns to MINIX. If one of those 

“disabled” interrupts occurs, the RT-microkernel records its 

occurrence and returns without executing the MINIX interrupt 

handler. Later, when MINIX requests the hardware to enable 

interrupts, the RT-microkernel intercepts that request and 

executes all previously "disabled" handlers with recorded 

interrupts. This emulation prevents MINIX from disabling RT-

interrupts imposing long latencies to the execution of RT-

interrupt service routines and RT-processes.  

The major features of MINIX4RT are summarized as follows: 

- Layered Architecture: MINIX4RT has a layered 

architecture that helps to change a component without 

affecting the others [1].  

- Real-Time Sub-kernel: An RT-microkernel that deals 

with interrupts, Interprocess Communications (IPC), 

time management and scheduling is installed below 

MINIX kernel. The advantages of using a microkernel 

for RTOS are a better preemptability, a smaller kernel 

size, and an easier addition/removal of services [1]. 

- Timer/Event Driven Interrupt Management: Device 

Driver writers can choice between two strategies of RT-

Interrupt management [1].   

- Fixed Priority Hardware Interrupt Processing: A 

priority can be assigned to each hardware interrupt that 

let them be serviced in priority order [1]. 

- Two Stages Interrupt Handling: Interrupt can be 

serviced in two stages. The hardware interrupt handler 

(inside interrupt time) performs the first part of the 

needed work and a software Interrupt handler (outside 

interrupt time) does the remaining work [1].  

- Fixed Priority Real-Time Scheduling: Each process has 

an assigned priority. The RT-kernel schedules them in 

priority order with preemption [2]. 

- Periodic and Non-Periodic RT-processing: A period can 

be specified for a periodic process; the RT-microkernel 

schedules it on period expiration [2]. 
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- Process and Interrupt Handlers Deadline Expiration 

Watchdogs: The use of watchdog processes is a common 

use strategy to deal with malfunctioning RT-processes. 

When a process does not perform its regular function in 

a specified time (deadline) another process (watchdog) 

is signaled to take corrective actions [2]. 

- Timer Resolution Management Detached from MINIX 

Timer: A Timer interrupt of 50 Hz is emulated for the 

MINIX kernel even though the hardware Timer interrupt 

has a higher frequency [4]. 

- Software Timers: There are system facilities named 

Virtual Timers (VT) used for time-related purposes as 

alarms, timeouts, periodic processing, etc. One particular 

feature of MINIX4RT is that it handles software timer 

actions in priority order [4]. 

- Real-Time Interprocess Communications: MINIX4RT 

IPC uses unidirectional communication channels called 

Message Queues that handle messages in priority order 

and guarantee message delivery in a timely fashion and 

avoid the Priority Inversion problem [5]. 

- Statistics and Real-Time Metrics: There are several 

facilities to gather information about the system status 

and performance. 

Only NRT-processes can be created and terminated under 

MINIX4RT. The RT-kernel does not add new System Calls to 

create RT-processes. On the other hand, a NRT-process is 

converted into a RT-process using the mrt_set2rt() System Call. 

Therefore a RT-process is managed by the RT-kernel and 

blocked for the MINIX kernel; and a NRT-process is managed 

by the MINIX kernel and blocked for the RT-kernel. Before 

converting a process, several parameters (such as priority, 

period, watchdog process, etc.) must be passed to the RT-kernel 

using the mrt_setpattr() System Call. 

 

3. SYNCHRONIZATION AND MUTUAL EXCLUSION ON 

MINIX  

Rendezvous Message Transfer is the basic mechanism that 

MINIX uses to communicate, synchronize and make mutual 

exclusion among Tasks, Servers and Users’ processes and to 

notify hardware interrupt occurrence.   

Those primitives are implemented as the following kernel 

functions[3]: 

- mini_send(caller, destination, msg): If the destination 

process is blocked waiting for that message from the 

caller, the message is copied from the caller’s message 

buffer pointed by msg to the destination’s message 

buffer, otherwise the caller process is blocked. 

- mini_rec(caller, sender, msg): If the sender process is 

blocked trying to send a message to the caller process, 

the message is copied from the sender’s buffer to the 

buffer pointed by msg, and the sender process is 

unblocked, otherwise the caller process is blocked. 

4. MINIX4RT SEMAPHORE MODEL 

A semaphore is a kernel object that one or more processes can 

acquire or release for synchronization or mutual exclusion 

purposes. They constitute the classic method for restricting 

access to shared resources in a multiprogramming environment. 

In a RT-environment, semaphore operations need to have 

deterministic execution and blocking times. 

MINIX4RT RT-Semaphores are implemented inside the RT-

microkernel and do not use any MINIX IPC primitives because: 

- mini_send() and mini_rec() kernel functions could 

change the caller’s RT-process to a READY state for the 

MINIX kernel. It would be therefore selected to be 

executed by its NRT-scheduler ignoring all its RT-

execution attributes. 

- If an RT-process makes a request to a NRT-process 

using mini_send(), the RT-process must wait for the 

reply from the NRT-process running at NRT-priority. 

This behavior could produce/cause an Unbounded 

Priority Inversion (explained in Section 6). 

In the same way, RT-processes are inhibited from making any 

MINIX System Calls (except exit()) due to the use of MINIX 

IPC primitives. For this reason, MINIX4RT offers two sets of 

facilities: 

- System Calls: To be used by NRT-processes to set the 

RT-environment or to get RT-statistics. These System 

Calls use MINIX primitives and do not have timing 

constraints. 

- Kernel Calls: To be used by RT-processes to provide 

RT-services. These Kernel Calls do not use MINIX 

primitives and do have timing constraints. 

MINIX4RT Semaphores have the following features: 

- Configurable dequeueing policy (Priority order or FIFO 

order). 

- Basic Priority Inheritance Protocol (BPIP) support to 

avoid Unbounded Priority Inversion [6]. 

- Statistical counters of ups (also known as signal) and 

downs (also known as wait) operations on the 

semaphore. 

- Timeout support. 

To eliminate the allocation delay, the RT-kernel reserves a 

memory space (called the System Semaphore Pool) where 

semaphore objects are stored. 

5. RT-SEMAPHORE DATA STRUCTURES 

MINIX4RT defines new data structures to operate with RT-

Semaphores. It defines RT-kernel data structures and User-space 

data structures as described in the following sections. 

 

RT-Semaphore Kernel Data Structure 

The RT-microkernel defines an RT-Semaphore Descriptor data 

structure that has the following fields and data type definition: 
struct MRT_sem_s { 
  int index;  /* semaphore ID      */ 
 int value;  /* semaphore Value     */ 
 priority_t  priority;  

             /* Ceiling priority     */ 
 unsigned int flags;   

             /* semaphore policy flags */ 
 int owner;  /* semaphore owner       */ 
 long  ups;  /*  #  of sem up() calls   */ 
 long  downs; /*  #  of sem down() calls  */ 
 MRT_proc_t  *carrier;   

            /* the process that has     */ 
            /* locked a mutex semaphore */  

 link_t  alloclk; /* Allocated list link */ 
 link_t  locklk; /* Locked list link  */ 
 char  name[MAXPNAME]; /* semaphore name */ 
 plist_t plist;  

            /* Priority List of waiting */ 
            /* processes        */ 

 }; 
typedef struct MRT_sem_s MRT_sem_t; 

• index: Identifies the Semaphore Descriptor into the System 

Semaphore Pool. 

• value: The semaphore value that can be set by the 

mrt_semalloc() System Call. It is increased by one for each 

mrt_semup() System Call or MRT_semup() RT-Kernel Call. It is 

decreased by one for each mrt_semdown() System Call or 

MRT_semdown() RT-Kernel Call. 

• priority: The ceiling priority used by the Priority Ceiling 

Protocol and the Semaphore Inheritance Protocol not 

implemented in the current version. 

• flags: RT-Semaphore policy flags. It is an OR of the following 

bits:  

- SEM_PRTYORDER: If it is set, the waiting RT-processes 

will be woken up in priority order, otherwise they will be 

woken up in First Come First Served (FCFS) order.  
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- SEM_MUTEX: If it is set, the RT-Semaphore will be used 

as a mutex, otherwise it will be a counting RT-semaphore. 

- SEM_PRTYINHERIT: If it is set, the RT-kernel applies 

the Basic Priority Inheritance Protocol to RT-Semaphore 

operations. This option is valid only if the 

SEM_PRTYORDER and the SEM_MUTEX bits are set.  

• owner: The process which makes the mrt_semalloc() System 

Call. 

• ups and downs: Statistical counters of MRT_semup() and 

MRT_semdown() RT-kernel calls since the RT-Semaphore 

allocation. 

• carrier: The process that has locked the mutex RT-

Semaphore. 

• alloclk:  A data structure to build a linked list of allocated RT-

Semaphores. It is also used to insert/remove a RT-Semaphore 

into/from the Free list of the System Semaphore Pool. 

• locklk: A data structure to build a linked list of RT-

Semaphores locked by a RT-process. 

• name: A name assigned to the RT-Semaphore.  

• plist: A data structure to build a priority list of waiting RT-

processes. 

 

RT-Semaphore Userspace Data Structure 

MINIX4RT defines several Userspace Data Structures to 

operate on RT-Semaphores as described in the following 

sections. 

 

RT-Semaphore Attributes Data Structure: The 

fields of RT-Semaphore Attributes data structure have the same 

meanings of the RT-Semaphore Descriptor data structure. It is 

used by the mrt_semalloc() and the mrt_semattr() system calls. 
struct mrt_semattr_s { 
 int value;  /* semaphore Value      */ 
 unsigned int flags;   
           /* semaphore policy/status flags */ 
 priority_t  priority;   
           /* Ceiling priority        */ 
           /* for future uses        */ 
 char  name[MAXPNAME]; /* semaphore name    */ 
  }; 
typedef struct mrt_semattr_s mrt_semattr_t; 

 
RT-Semaphore Statistics Data Structure: This 

data structure is used to get RT-Semaphore statistics. It is used 

by the mrt_semstat() system call. 
struct mrt_semstat_s { 

long  ups; /* # of sem up() calls      */ 
 long  downs; /* # of sem down() calls    */ 
 int   maxinQ;  

         /* maximum # of enqueued processes */ 
  }; 
typedef struct mrt_semstat_s mrt_semstat_t; 

• ups and downs: Statistical counters of mrt_semup() and 

mrt_semdown() system calls since the RT-Semaphore allocation. 

• maxinQ: The maximum number of waiting RT-processes 

enqueued into the RT-Semaphore list. 

 

RT-Semaphore Internal Data Structure: This data 

structure is used to get the internal status of a RT-Semaphore. It 

is used by the mrt_semint() system call. 
struct mrt_semint_s { 
 int   index;  /* semaphore ID   */ 
 int   owner;  /* semaphore owner   */ 
 int   inQ;    /* # of process enqueued  */ 
  }; 
typedef struct mrt_semint_s mrt_semint_t; 

• index: It identifies the Semaphore Descriptor into the System 

Semaphore Pool. 

• owner: The process which makes the mrt_semalloc() System 

Call. 

 

 

RT-Semaphore Down Data Structure: This data 

structure is used by the mrt_semdown() Kernel Call. 
struct mrt_down_s { 
 int index;      /* semaphore ID   */ 
   lcounter_t  timeout; /* timeout in ticks */ 
  }; 
typedef struct mrt_down_s mrt_down_t; 

• index: The identification of the RT-Semaphore. 

• timeout: A timeout in Timer ticks can be specified to wait for 

the request RT-Semaphore. 

 

RT-Semaphore Waiting RT-Processes Priority List 

To manage the waiting RT-Processes on a RT-Semaphore, the 

RT-kernel uses a Priority List Data Structure (see Figure 1): 

On insertion operations, the priority-th bit in the bitmap is set 

and the Process Descriptor is appended to the Priority List in 

accordance with its priority field. 

Thus, finding the highest priority RT-process in the priority list 

is just a matter of finding the most significant bit set in the 

bitmap. Since the number of priorities is fixed, the time to 

complete a search is constant and unaffected by the number of 

RT-processes in the Priority List. 

 

 
Figure 1: RT-Semaphore Waiting RT-Processes Priority List 

6. RT-SEMAPHORES  KERNEL CALLS 

In many RT-applications, there are resources that must be 

shared among processes so as to prevent more than one process 

from using the resource at the same time (mutual exclusion).  

The Unbounded Priority Inversion problem is an undesired 

situation where a higher priority process waits for a semaphore 

locked by a lower priority process and a medium priority 

process preempts it delaying the semaphore release and 

therefore the high priority process execution. 

Many mechanisms have been developed to avoid it. Sha, 

Rajkumar and Lehosky [7] suggest two protocols to avoid the 

Unbounded Priority Inversion problem. They are the Basic 

Priority Inheritance Protocol (BPIP) and the Priority Ceiling 

Protocol (PCP). 

Under the BPIP, if a lower priority process blocks a higher 

priority process, the lower priority process inherits the priority 

of the higher priority process for the duration of its critical 

section. The BPIP potentially requires priorities to be modified 

when processes try to lock a locked semaphore. The process that 

has locked the requested semaphore may inherit the highest 

priority among the petitioner’s priorities. To achieve the correct 

behavior and to be in compliance with BPIP, priority inheritance 

needs to be a transitive operation. Therefore, the RT-kernel must 

search across the chain of petitioner processes, applying the 

priority inheritance until it finds the process that has no pending 

requests. MINIX4RT provides RT-Semaphore primitives that 

are in compliance with the BPIP, offering a deterministic timing 

behavior. 
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mrt_semdown() Kernel Call: The mrt_semdown() 

Kernel Call decreases the semaphore's count by one. If the 

resulting semaphore value drops below zero, the caller process 

will be blocked and its descriptor is inserted into the RT-

Semaphore Waiting RT-Processes Priority List.  

For RT-Semaphores used as mutexes, the process that has 

locked the RT-semaphore increases its priority to the caller’s 

priority, if it is higher than its owns. If that RT-process is 

blocked waiting for another RT-semaphore, the Priority 

Inheritance Protocol is applied to all RT-processes in the chain. 

A timeout in Timer ticks can be specified to wait for the RT-

Semaphore release. A special value of MRT_NOWAIT can be 

specified to return without waiting if the RT-semaphore is 

locked by other RT-process. MRT_FOREVER must be 

specified as timeout to wait for the RT-Semaphore release. On 

timeout expiration: 

• The RT-process descriptor is removed from RT-

Semaphore Waiting RT-Processes Priority List.  

• The caller is unblocked returning an 

E_MRT_TIMEOUT error code. 

For RT-Semaphores used as mutexes, the priority of the RT-

process that had locked the RT-Semaphore is set to the highest 

priority waiting process into RT-Semaphore Waiting RT-

Processes Priority List or its base priority specified in the 

MRT_setpattr() System Call. 

 

mrt_semup() Kernel Call: If the semaphore value is 

lower than zero, its absolute value indicates the number of 

waiting RT-processes blocked trying to down the semaphore. 

The mrt_semup() Kernel Call increases the semaphore's count 

by one, removes the highest priority process (if the 

SEM_PRTYORDER bit is set in flags) or the first process into 

RT-Semaphore Waiting RT-Processes Priority List and 

unblocks it. 

For RT-Semaphores used as mutexes, if the BPIP had raised the 

caller’s priority when it locked the semaphore, its priority is 

returned to its base priority specified in the MRT_setpattr() 

System Call. 

7. PERFORMANCE EVALUATION  

This section describes the tests performed on MINIX4RT 

Semaphores and their results. The RT-Semaphore operations 

performance was tested with four kinds of system 

setups/policies (see Table 1), with and without timeout settings 

and with and without applying BPIP. The tests consist of 10000 

rounds of the Producer/Consumer algorithm (two down 

operations and two up operations per process per round). 

 

Table 1: Setups and Policies of Semaphore Operations 

Performance Tests 

Test Name With 

Timeout 

Priority 

List/FIFO 

Priority 

Inheritance 

TEST1 No Priority List No BPIP 

TEST2 Yes Priority List No BPIP 

TEST3 No Priority List BPIP 

TEST4 Yes Priority List BPIP 

 

The tests were performed under different kinds of loads on the 

tested system (see Figure 2): 

1. Without Load (NOLoad): All unneeded processes are 

killed before the test. 

2. CPU Load (CPULoad): A NRT-script loads the CPU 

without any I/O operation. 

3. I/O Disk Load (HDLoad): A NRT-process access files 

on the hard disk. 

4. I/O RS232e Load (RSLoad): A NRT-file transfer over 

the serial port at 19200 Kbps. 
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Figure 2: Down-Up pair processing time. 

 

Table 2 presents Down-Up pair processing times. 

 

Table 2: Down-Up Pair Processing Times [µµµµs] 

 TEST1 TEST2 TEST3 TEST4 

NOLoad 53,42 56,25 53,52 55,75 

CPUload 54,02 55,67 53,57 55,67 

HDload 54,05 55,65 53,57 55,57 

RSload 54,45 56,42 54,32 56,45 

 

All the tests were carried out with the Programmable Interval 

Timer set up at 1000[Hz]. This fact implies the execution of the 

Timer Interrupt Service Routine 1000 times per second adding a 

significant overhead to the measurements, but it presents a more 

realistic scenario. Other tests performed on MINIX4RT present 

an average Timer Interrupt Service Time of 32[µs]. 

The equipment used for those tests was an IBM Model 370C 

Notebook, Intel® DX4 75 MHz, AT Bus, Memory 8 MB, and 

MINIX4RT (Kernel 12052007). Even though the equipment is 

quite old, it allows for performance comparisons against reports 

of other systems with similar hardware.  

Sacha [8] reports QNX signal times about 40-45[µs] on a 

486/66 MHz. His results show the same order of magnitude than 

the tests results on MINIX4RT, considering that they include 

down time plus up time and the CPU clock difference. 

8. CONCLUSIONS AND FUTURE WORKS 

MINIX has proved to be a feasible test-bed for OS development 

and extensions that could be easily added. In a similar way, 

MINIX4RT has an architecture that can be used as a starting 

point for adding RT-services. Even though it was designed for 

an academic environment, it can be optimized for production 

systems even in embedded systems. MINIX4RT combines Hard 

Real-Time with the standard MINIX platform, so that time 

sensitive control algorithms can operate together with 

background processing without worrying about interference. 

MINIX4RT algorithms were developed to minimize priority 

inversion to meet applications with strict timing constraints. A 

sample of this is the use of Priority Lists and the use of the Basic 

Priority Inheritance Protocol.    

The RT-microkernel has basic features as Interrupt 

Management, Process Management, Time Management, RT-IPC 

and Statistics gathering, making it a good choice to conduct 

coding experiences in Real-Time Operating Systems courses. 

Near future works on MINIX4RT are: 

− Operating System Profiling: Runtime profiling is a 

key technique to prove new concepts, debug 

problems, and optimize performance. 

− Port Real-time to MINIX3: The current version of 

MINIX has a more strict compliance with a 

Client/Server microkernel based Operating System. 

Those changes bring about the need of rewriting some 

components of MINIX4RT code to enable running 

under MINIX3. 
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