

ABSTRACT
MINIX4RT is an extension of the well-known MINIX

Operating System that adds Hard Real-Time services in a new

microkernel but keeping backward compatibility with standard

MINIX versions.

Semaphores are the primitive synchronization and mutual

exclusion mechanism in many operating systems, but MINIX

does not provide those facilities. Semaphores were added to

MINIX4RT, and since it is a Real-Time Operating System, they

must meet some processing requirements such as dequeueing

waiting processes in priority order and avoiding the Priority

Inversion problem. This article describes the Real-Time

Semaphores facilities available on MINIX4RT, its design,

implementation, performance tests and their results.

Keywords: Minix, Real-Time, Semaphores, Priority

Inheritance, Priority Inversion.

1. INTRODUCTION

Real-Time Operating System (RTOS) services must consume

limited and guaranteed amounts of time. That deterministic

timing behavior is the key difference against time sharing

Operating Systems (OS).

MINIX4RT (previously named RT-MINIXv2) [1, 2] is a Real-

Time (RT) version of the well known MINIX 2.0.2 [3]

Operating System designed to teach concepts on RT-

programming, in particular, those related to RT-kernels; but it

can be used as a serious system on resource-limited computers.

It is a good tool for experimenting with novel OS policies and

mechanisms, and for evaluating the impact of architectural

innovations.

Design constraints for MINIX4RT were:

- MINIX Compatibility: All processes that run on MINIX

must run on MINIX4RT without modifications and

sensible performance impact.

- Minimal MINIX source code changes: As MINIX is

often used in OS design courses, students have deep

knowledge of its source code. Reducing the source code

changes keeps students´ experience to learn a MINIX-

based RTOS. Most new codes must be added in

separated functions with few changes in the original

MINIX code. This restriction also helps with easier

system updates for newer MINIX versions.

- Source Code readability: As MINIX4RT is focused on

academic uses, its source code must be easily

understood, perhaps sacrificing performance.

MINIX uses message passing as its central paradigm because it

has a Client/Server microkernel based architecture. Messages

have fixed sizes and a strict copy to value semantics. In OS

without Virtual Memory as MINIX, a message transfer implies a

copy of the message from the sender's process address space to

the destination's process address space. Since the copy is a time-

consuming operation, it reduces the performance of simple

synchronization or mutual exclusion primitives. Semaphores

have a lower performance cost because they do not need that

copy. Furthermore, as every operation in a hard RTOS,

MINIX4RT RT-Semaphore primitives need to have

deterministic execution and blocking times.

The rest of this work is organized as follows. Section 2

introduces MINIX4RT. Section 3 presents background

information about synchronization and mutual exclusion

primitives on MINIX. Section 4 presents the proposed RT-

Semaphore model. Section 5 provides information about RT-

Semaphores basic data structures. Section 6 describes kernel

primitives to operate on RT-Semaphores. A performance

evaluation is provided in Section 7. Finally, Section 8 presents

conclusions and future works.

2. OVERVIEW OF MINIX4RT

MINIX4RT provides the capability of running Real-Time and

Non Real-Time (NRT) processes on the same machine [1]. RT-

processes are executed when necessary regardless of what

MINIX is doing.

The RT-microkernel works by treating the MINIX OS kernel as

a task being executed under a small RTOS based on software

emulation of interrupt control hardware. In fact, MINIX is like

the idle process for the RT-microkernel being executed only

when there are no RT-processes to run. When MINIX requests

the hardware to disable interrupts, the RT-microkernel intercepts

that request, records it, and returns to MINIX. If one of those

“disabled” interrupts occurs, the RT-microkernel records its

occurrence and returns without executing the MINIX interrupt

handler. Later, when MINIX requests the hardware to enable

interrupts, the RT-microkernel intercepts that request and

executes all previously "disabled" handlers with recorded

interrupts. This emulation prevents MINIX from disabling RT-

interrupts imposing long latencies to the execution of RT-

interrupt service routines and RT-processes.

The major features of MINIX4RT are summarized as follows:

- Layered Architecture: MINIX4RT has a layered

architecture that helps to change a component without

affecting the others [1].

- Real-Time Sub-kernel: An RT-microkernel that deals

with interrupts, Interprocess Communications (IPC),

time management and scheduling is installed below

MINIX kernel. The advantages of using a microkernel

for RTOS are a better preemptability, a smaller kernel

size, and an easier addition/removal of services [1].

- Timer/Event Driven Interrupt Management: Device

Driver writers can choice between two strategies of RT-

Interrupt management [1].

- Fixed Priority Hardware Interrupt Processing: A

priority can be assigned to each hardware interrupt that

let them be serviced in priority order [1].

- Two Stages Interrupt Handling: Interrupt can be

serviced in two stages. The hardware interrupt handler

(inside interrupt time) performs the first part of the

needed work and a software Interrupt handler (outside

interrupt time) does the remaining work [1].

- Fixed Priority Real-Time Scheduling: Each process has

an assigned priority. The RT-kernel schedules them in

priority order with preemption [2].

- Periodic and Non-Periodic RT-processing: A period can

be specified for a periodic process; the RT-microkernel

schedules it on period expiration [2].

MINIX4RT: Real-Time Semaphores

Pablo A. Pessolani

Departamento de Sistemas - Facultad Regional Santa Fe- Universidad Tecnológica Nacional

Santa Fe – CP 3000 - Argentina

ppessolani@frsf.utn.edu.ar

JCS&T Vol. 8 No. 3 October 2008

139

- Process and Interrupt Handlers Deadline Expiration

Watchdogs: The use of watchdog processes is a common

use strategy to deal with malfunctioning RT-processes.

When a process does not perform its regular function in

a specified time (deadline) another process (watchdog)

is signaled to take corrective actions [2].

- Timer Resolution Management Detached from MINIX

Timer: A Timer interrupt of 50 Hz is emulated for the

MINIX kernel even though the hardware Timer interrupt

has a higher frequency [4].

- Software Timers: There are system facilities named

Virtual Timers (VT) used for time-related purposes as

alarms, timeouts, periodic processing, etc. One particular

feature of MINIX4RT is that it handles software timer

actions in priority order [4].

- Real-Time Interprocess Communications: MINIX4RT

IPC uses unidirectional communication channels called

Message Queues that handle messages in priority order

and guarantee message delivery in a timely fashion and

avoid the Priority Inversion problem [5].

- Statistics and Real-Time Metrics: There are several

facilities to gather information about the system status

and performance.

Only NRT-processes can be created and terminated under

MINIX4RT. The RT-kernel does not add new System Calls to

create RT-processes. On the other hand, a NRT-process is

converted into a RT-process using the mrt_set2rt() System Call.

Therefore a RT-process is managed by the RT-kernel and

blocked for the MINIX kernel; and a NRT-process is managed

by the MINIX kernel and blocked for the RT-kernel. Before

converting a process, several parameters (such as priority,

period, watchdog process, etc.) must be passed to the RT-kernel

using the mrt_setpattr() System Call.

3. SYNCHRONIZATION AND MUTUAL EXCLUSION ON

MINIX

Rendezvous Message Transfer is the basic mechanism that

MINIX uses to communicate, synchronize and make mutual

exclusion among Tasks, Servers and Users’ processes and to

notify hardware interrupt occurrence.

Those primitives are implemented as the following kernel

functions[3]:

- mini_send(caller, destination, msg): If the destination

process is blocked waiting for that message from the

caller, the message is copied from the caller’s message

buffer pointed by msg to the destination’s message

buffer, otherwise the caller process is blocked.

- mini_rec(caller, sender, msg): If the sender process is

blocked trying to send a message to the caller process,

the message is copied from the sender’s buffer to the

buffer pointed by msg, and the sender process is

unblocked, otherwise the caller process is blocked.

4. MINIX4RT SEMAPHORE MODEL

A semaphore is a kernel object that one or more processes can

acquire or release for synchronization or mutual exclusion

purposes. They constitute the classic method for restricting

access to shared resources in a multiprogramming environment.

In a RT-environment, semaphore operations need to have

deterministic execution and blocking times.

MINIX4RT RT-Semaphores are implemented inside the RT-

microkernel and do not use any MINIX IPC primitives because:

- mini_send() and mini_rec() kernel functions could

change the caller’s RT-process to a READY state for the

MINIX kernel. It would be therefore selected to be

executed by its NRT-scheduler ignoring all its RT-

execution attributes.

- If an RT-process makes a request to a NRT-process

using mini_send(), the RT-process must wait for the

reply from the NRT-process running at NRT-priority.

This behavior could produce/cause an Unbounded

Priority Inversion (explained in Section 6).

In the same way, RT-processes are inhibited from making any

MINIX System Calls (except exit()) due to the use of MINIX

IPC primitives. For this reason, MINIX4RT offers two sets of

facilities:

- System Calls: To be used by NRT-processes to set the

RT-environment or to get RT-statistics. These System

Calls use MINIX primitives and do not have timing

constraints.

- Kernel Calls: To be used by RT-processes to provide

RT-services. These Kernel Calls do not use MINIX

primitives and do have timing constraints.

MINIX4RT Semaphores have the following features:

- Configurable dequeueing policy (Priority order or FIFO

order).

- Basic Priority Inheritance Protocol (BPIP) support to

avoid Unbounded Priority Inversion [6].

- Statistical counters of ups (also known as signal) and

downs (also known as wait) operations on the

semaphore.

- Timeout support.

To eliminate the allocation delay, the RT-kernel reserves a

memory space (called the System Semaphore Pool) where

semaphore objects are stored.

5. RT-SEMAPHORE DATA STRUCTURES

MINIX4RT defines new data structures to operate with RT-

Semaphores. It defines RT-kernel data structures and User-space

data structures as described in the following sections.

RT-Semaphore Kernel Data Structure

The RT-microkernel defines an RT-Semaphore Descriptor data

structure that has the following fields and data type definition:
struct MRT_sem_s {
 int index; /* semaphore ID */
 int value; /* semaphore Value */
 priority_t priority;

 /* Ceiling priority */
 unsigned int flags;

 /* semaphore policy flags */
 int owner; /* semaphore owner */
 long ups; /* # of sem up() calls */
 long downs; /* # of sem down() calls */
 MRT_proc_t *carrier;

 /* the process that has */
 /* locked a mutex semaphore */

 link_t alloclk; /* Allocated list link */
 link_t locklk; /* Locked list link */
 char name[MAXPNAME]; /* semaphore name */
 plist_t plist;

 /* Priority List of waiting */
 /* processes */

 };
typedef struct MRT_sem_s MRT_sem_t;

• index: Identifies the Semaphore Descriptor into the System

Semaphore Pool.

• value: The semaphore value that can be set by the

mrt_semalloc() System Call. It is increased by one for each

mrt_semup() System Call or MRT_semup() RT-Kernel Call. It is

decreased by one for each mrt_semdown() System Call or

MRT_semdown() RT-Kernel Call.

• priority: The ceiling priority used by the Priority Ceiling

Protocol and the Semaphore Inheritance Protocol not

implemented in the current version.

• flags: RT-Semaphore policy flags. It is an OR of the following

bits:

- SEM_PRTYORDER: If it is set, the waiting RT-processes

will be woken up in priority order, otherwise they will be

woken up in First Come First Served (FCFS) order.

JCS&T Vol. 8 No. 3 October 2008

140

- SEM_MUTEX: If it is set, the RT-Semaphore will be used

as a mutex, otherwise it will be a counting RT-semaphore.

- SEM_PRTYINHERIT: If it is set, the RT-kernel applies

the Basic Priority Inheritance Protocol to RT-Semaphore

operations. This option is valid only if the

SEM_PRTYORDER and the SEM_MUTEX bits are set.

• owner: The process which makes the mrt_semalloc() System

Call.

• ups and downs: Statistical counters of MRT_semup() and

MRT_semdown() RT-kernel calls since the RT-Semaphore

allocation.

• carrier: The process that has locked the mutex RT-

Semaphore.

• alloclk: A data structure to build a linked list of allocated RT-

Semaphores. It is also used to insert/remove a RT-Semaphore

into/from the Free list of the System Semaphore Pool.

• locklk: A data structure to build a linked list of RT-

Semaphores locked by a RT-process.

• name: A name assigned to the RT-Semaphore.

• plist: A data structure to build a priority list of waiting RT-

processes.

RT-Semaphore Userspace Data Structure

MINIX4RT defines several Userspace Data Structures to

operate on RT-Semaphores as described in the following

sections.

RT-Semaphore Attributes Data Structure: The

fields of RT-Semaphore Attributes data structure have the same

meanings of the RT-Semaphore Descriptor data structure. It is

used by the mrt_semalloc() and the mrt_semattr() system calls.
struct mrt_semattr_s {
 int value; /* semaphore Value */
 unsigned int flags;
 /* semaphore policy/status flags */
 priority_t priority;
 /* Ceiling priority */
 /* for future uses */
 char name[MAXPNAME]; /* semaphore name */
 };
typedef struct mrt_semattr_s mrt_semattr_t;

RT-Semaphore Statistics Data Structure: This

data structure is used to get RT-Semaphore statistics. It is used

by the mrt_semstat() system call.
struct mrt_semstat_s {

long ups; /* # of sem up() calls */
 long downs; /* # of sem down() calls */
 int maxinQ;

 /* maximum # of enqueued processes */
 };
typedef struct mrt_semstat_s mrt_semstat_t;

• ups and downs: Statistical counters of mrt_semup() and

mrt_semdown() system calls since the RT-Semaphore allocation.

• maxinQ: The maximum number of waiting RT-processes

enqueued into the RT-Semaphore list.

RT-Semaphore Internal Data Structure: This data

structure is used to get the internal status of a RT-Semaphore. It

is used by the mrt_semint() system call.
struct mrt_semint_s {
 int index; /* semaphore ID */
 int owner; /* semaphore owner */
 int inQ; /* # of process enqueued */
 };
typedef struct mrt_semint_s mrt_semint_t;

• index: It identifies the Semaphore Descriptor into the System

Semaphore Pool.

• owner: The process which makes the mrt_semalloc() System

Call.

RT-Semaphore Down Data Structure: This data

structure is used by the mrt_semdown() Kernel Call.
struct mrt_down_s {
 int index; /* semaphore ID */
 lcounter_t timeout; /* timeout in ticks */
 };
typedef struct mrt_down_s mrt_down_t;

• index: The identification of the RT-Semaphore.

• timeout: A timeout in Timer ticks can be specified to wait for

the request RT-Semaphore.

RT-Semaphore Waiting RT-Processes Priority List

To manage the waiting RT-Processes on a RT-Semaphore, the

RT-kernel uses a Priority List Data Structure (see Figure 1):

On insertion operations, the priority-th bit in the bitmap is set

and the Process Descriptor is appended to the Priority List in

accordance with its priority field.

Thus, finding the highest priority RT-process in the priority list

is just a matter of finding the most significant bit set in the

bitmap. Since the number of priorities is fixed, the time to

complete a search is constant and unaffected by the number of

RT-processes in the Priority List.

Figure 1: RT-Semaphore Waiting RT-Processes Priority List

6. RT-SEMAPHORES KERNEL CALLS

In many RT-applications, there are resources that must be

shared among processes so as to prevent more than one process

from using the resource at the same time (mutual exclusion).

The Unbounded Priority Inversion problem is an undesired

situation where a higher priority process waits for a semaphore

locked by a lower priority process and a medium priority

process preempts it delaying the semaphore release and

therefore the high priority process execution.

Many mechanisms have been developed to avoid it. Sha,

Rajkumar and Lehosky [7] suggest two protocols to avoid the

Unbounded Priority Inversion problem. They are the Basic

Priority Inheritance Protocol (BPIP) and the Priority Ceiling

Protocol (PCP).

Under the BPIP, if a lower priority process blocks a higher

priority process, the lower priority process inherits the priority

of the higher priority process for the duration of its critical

section. The BPIP potentially requires priorities to be modified

when processes try to lock a locked semaphore. The process that

has locked the requested semaphore may inherit the highest

priority among the petitioner’s priorities. To achieve the correct

behavior and to be in compliance with BPIP, priority inheritance

needs to be a transitive operation. Therefore, the RT-kernel must

search across the chain of petitioner processes, applying the

priority inheritance until it finds the process that has no pending

requests. MINIX4RT provides RT-Semaphore primitives that

are in compliance with the BPIP, offering a deterministic timing

behavior.

JCS&T Vol. 8 No. 3 October 2008

141

mrt_semdown() Kernel Call: The mrt_semdown()

Kernel Call decreases the semaphore's count by one. If the

resulting semaphore value drops below zero, the caller process

will be blocked and its descriptor is inserted into the RT-

Semaphore Waiting RT-Processes Priority List.

For RT-Semaphores used as mutexes, the process that has

locked the RT-semaphore increases its priority to the caller’s

priority, if it is higher than its owns. If that RT-process is

blocked waiting for another RT-semaphore, the Priority

Inheritance Protocol is applied to all RT-processes in the chain.

A timeout in Timer ticks can be specified to wait for the RT-

Semaphore release. A special value of MRT_NOWAIT can be

specified to return without waiting if the RT-semaphore is

locked by other RT-process. MRT_FOREVER must be

specified as timeout to wait for the RT-Semaphore release. On

timeout expiration:

• The RT-process descriptor is removed from RT-

Semaphore Waiting RT-Processes Priority List.

• The caller is unblocked returning an

E_MRT_TIMEOUT error code.

For RT-Semaphores used as mutexes, the priority of the RT-

process that had locked the RT-Semaphore is set to the highest

priority waiting process into RT-Semaphore Waiting RT-

Processes Priority List or its base priority specified in the

MRT_setpattr() System Call.

mrt_semup() Kernel Call: If the semaphore value is

lower than zero, its absolute value indicates the number of

waiting RT-processes blocked trying to down the semaphore.

The mrt_semup() Kernel Call increases the semaphore's count

by one, removes the highest priority process (if the

SEM_PRTYORDER bit is set in flags) or the first process into

RT-Semaphore Waiting RT-Processes Priority List and

unblocks it.

For RT-Semaphores used as mutexes, if the BPIP had raised the

caller’s priority when it locked the semaphore, its priority is

returned to its base priority specified in the MRT_setpattr()

System Call.

7. PERFORMANCE EVALUATION

This section describes the tests performed on MINIX4RT

Semaphores and their results. The RT-Semaphore operations

performance was tested with four kinds of system

setups/policies (see Table 1), with and without timeout settings

and with and without applying BPIP. The tests consist of 10000

rounds of the Producer/Consumer algorithm (two down

operations and two up operations per process per round).

Table 1: Setups and Policies of Semaphore Operations

Performance Tests

Test Name With

Timeout

Priority

List/FIFO

Priority

Inheritance

TEST1 No Priority List No BPIP

TEST2 Yes Priority List No BPIP

TEST3 No Priority List BPIP

TEST4 Yes Priority List BPIP

The tests were performed under different kinds of loads on the

tested system (see Figure 2):

1. Without Load (NOLoad): All unneeded processes are

killed before the test.

2. CPU Load (CPULoad): A NRT-script loads the CPU

without any I/O operation.

3. I/O Disk Load (HDLoad): A NRT-process access files

on the hard disk.

4. I/O RS232e Load (RSLoad): A NRT-file transfer over

the serial port at 19200 Kbps.

0,00

10,00

20,00

30,00

40,00

50,00

60,00

TEST1 TEST2 TEST3 TEST4

[m
ic
ro
s
e
c
s
]

NOLoad

CPUload

HDload

RSload

Figure 2: Down-Up pair processing time.

Table 2 presents Down-Up pair processing times.

Table 2: Down-Up Pair Processing Times [µµµµs]

 TEST1 TEST2 TEST3 TEST4

NOLoad 53,42 56,25 53,52 55,75

CPUload 54,02 55,67 53,57 55,67

HDload 54,05 55,65 53,57 55,57

RSload 54,45 56,42 54,32 56,45

All the tests were carried out with the Programmable Interval

Timer set up at 1000[Hz]. This fact implies the execution of the

Timer Interrupt Service Routine 1000 times per second adding a

significant overhead to the measurements, but it presents a more

realistic scenario. Other tests performed on MINIX4RT present

an average Timer Interrupt Service Time of 32[µs].

The equipment used for those tests was an IBM Model 370C

Notebook, Intel® DX4 75 MHz, AT Bus, Memory 8 MB, and

MINIX4RT (Kernel 12052007). Even though the equipment is

quite old, it allows for performance comparisons against reports

of other systems with similar hardware.

Sacha [8] reports QNX signal times about 40-45[µs] on a

486/66 MHz. His results show the same order of magnitude than

the tests results on MINIX4RT, considering that they include

down time plus up time and the CPU clock difference.

8. CONCLUSIONS AND FUTURE WORKS

MINIX has proved to be a feasible test-bed for OS development

and extensions that could be easily added. In a similar way,

MINIX4RT has an architecture that can be used as a starting

point for adding RT-services. Even though it was designed for

an academic environment, it can be optimized for production

systems even in embedded systems. MINIX4RT combines Hard

Real-Time with the standard MINIX platform, so that time

sensitive control algorithms can operate together with

background processing without worrying about interference.

MINIX4RT algorithms were developed to minimize priority

inversion to meet applications with strict timing constraints. A

sample of this is the use of Priority Lists and the use of the Basic

Priority Inheritance Protocol.

The RT-microkernel has basic features as Interrupt

Management, Process Management, Time Management, RT-IPC

and Statistics gathering, making it a good choice to conduct

coding experiences in Real-Time Operating Systems courses.

Near future works on MINIX4RT are:

− Operating System Profiling: Runtime profiling is a

key technique to prove new concepts, debug

problems, and optimize performance.

− Port Real-time to MINIX3: The current version of

MINIX has a more strict compliance with a

Client/Server microkernel based Operating System.

Those changes bring about the need of rewriting some

components of MINIX4RT code to enable running

under MINIX3.

JCS&T Vol. 8 No. 3 October 2008

142

9. ACKNOWLEDGEMENTS

The author gratefully acknowledges help received from María

Inés Fidalgo for the language revision of this article.

10. REFERENCES

[1] Pessolani, Pablo A, “RT-MINIXv2: Architecture and

Interrupt Handling”, 5th Argentine Symposium on Computing

Technology, 2004.

[2] Pessolani, Pablo A., “RT-MINIXv2: Real-Time Process

Management and Scheduling”, 6th Argentine Symposium on

Computing Technology, 2005.

[3] Tanenbaum Andrew S., Woodhull Albert S., “Sistemas

Operativos: Diseño e Implementación” 2da Edición, ISBN

9701701658, Editorial Prentice-Hall , 1999.

[4] Pessolani, Pablo A., “MINIX4RT: Time Management and

Timer Facilities”, 7th Argentine Symposium on Computing

Technology, 2006.

[5] Pessolani, Pablo A., “MINIX4RT: Real-Time Interprocess

Communications Facilities”, Workshop de Arquitecturas, Redes

y Sistemas Operativos, XII Congreso Argentino de Ciencias de

la Computación, 2006.

[6] Mark W. Borger, Ragunathan Rajkumar. “Implementing

Priority Inheritance Algorithms in an Ada Runtime System”,

Technical Remailbox . CMU/SEI-89-TR-15. ESD-TR-89-23.

Software Engineering Institute Carnegie Mellon University,

1989.

[7] Sha, L., Lehoczky, J.P., and Rajkumar, R. “Priority

Inheritance Protocols: An Approach to Real-Time

Synchronization”. Tech. Rept. CMU-CS-87-181, Carnegie

Mellon University, Computer Science Department, 1987.

[8] Krzysztof M. Sacha, “Measuring the Real-Time Operating

System Performance”, Institute of Control and Computation

Engineering, Warsaw University of Technology, Poland, 1995.

JCS&T Vol. 8 No. 3 October 2008

143

	Text1: Received: Jun. 2008. Accepted: Aug. 2008.

