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Abstract— Current performance prediction analytical
models try to characterize the performance behavior
of actual machines through a small set of parameters.
Due to different factors, the predicted times suffer sub-
stantial deviations. A natural approach is to associate a
different proportionality constant with each basic block
of computation. In particular, the paper deals with a
skeleton designed for parallel divide and conquer algo-
rithms that provide hypercubical communications among
processes. Our proposal is to introduce different kinds
of components to the analytical model by associating
a performance constant for each conceptual block of a
skeleton. The trace files obtained from the execution of
the resulting code using the programming skeleton are
used by lineal regression techniques giving us, among
other information, the values of the parameters of those
blocks. The accuracy of the proposed model is analyzed
by means of two instances of skeleton.

Keywords: Paralellism, Timing Model, Skeleton,
Multivariate Analysis, Divide and Conquer

I. INTRODUCTION

Performance prediction is an important tool for per-
formance analysis of applications. It involves parallel
modeling of the program performance as a function of
the hardware and software characteristics of a system.
In the case of parallel programs, the desing requires
fancy solutions that are not present in sequential
programming. Some parallel models are necessarily
elaborate and include a large number of parameters.
There are other models of complexity like LogP or
BSP , characterizing the performance of distributed
machines through a few architecture parameters but
they incur in a considerable loss of accuracy [1]. Due
to the difficulty for finding a computational model for
current parallel architectures, the best solution until
now has been to find models that predict accurately
the behaviour of a restricted set of problems. There
are specific parallel solutions for specific problems, but
the main objective is to find a general methodology
at least for some types of problems. There is an
alternative model of parallel programming that avoids
communications and restricts the form in which the
parallel computation can be expressed. The essence
of this programming methodology is that all programs
have a parallel component that implements a pattern
or paradigm (provided by the skeletons) and a specific
component of an application (provided by the user).

Since we already know how to implement the essential
computational structure of each technique, it will only
be necessary to introduce problem specific details to
obtain a parallel version. The advantage of using a
skeleton is the availability of a formal framework
for reasoning about programs. In addition, a timing
model can be associated with skeletons, thus enabling
performance considerations.

We consider the timing model in more detail in
the next section. The rest of the paper is organized
as follows. Section 3 describes the divide-and-conquer
skeleton. Section 4 presents the performance pre-
dictability of components of a skeleton. Section 5
describes two model’s instances of hypercube divide-
and-conquer skeleton and their component blocks are
estimated in section 6. The conclusions are presented
in Section 7.

II. TIMING MODEL

We have proposed a timing analysis model [2],
which characterizes the communication time through
architecture parameters and introduces a few novelties.
The model associates a different performance constant
for each specific conceptual block of the skeleton.

The proposed parallel computational model con-
siders a cluster made up by a set of P processing
elements and memories connected through a network.
The computation in the model involves three kinds of
components:

• Common pattern of paradigm: a sequence of local
operations needed to implement the paradigm.

• Communications: the data exchange among two
or more processes in one or more processors.

• User functions of the paradigm: sequence of op-
erations on local data needed to implement the
application.

Some of these components can be dropped in some
type of a skeleton and, therefore, a skeleton model is
characterized by the way in which it implements each
of these three components.

In conclusion, the model is characterized by the
tuple:

(Υsk, Υf1 , ..., Υfn , g, l, P )
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The conceptual block Υsk characterize the operation
set needed to resolve the distribution, synchronization
and mapping of process. Associated with this block
there is a function τsk that corresponds to the time
invested in computation by the skeleton. This time can
be a constant factor or a function of P .

The conceptual blocks Υfi depend on the specific
application and, in this case, they are obtained by
means of a description provided by the designer of
the application. The functions τfi are associated to the
cost of each specific function involved in the particular
skeleton (user functions).

The constants g, l and P are described by cluster-
dependent parameters: g, the time needed to send one
data word into the communication network, and l, the
latency or startup cost. In general these constants play
an important role in cluster communication model and
they must reflect the characteristics of communication
made by skeletons. The function τExc represents the
cost of communication model and in addition to g and
l, it depends on the value of P and the input size of
application.

From model, we conclude the cost Ω of a skeleton
by:

ΩSK,P = F (τsk, τf1 , ..., τfn , τExc)

III. DIVIDE AND CONQUER SKELETON

The divide-and-conquer (DC) approach finds the
solution of a problem x by dividing x into two
subproblems x0 and x1. This procedure is applied
recursively to solve a problem where subproblems
are smaller versions of the original problem. Infinite
recursion is prevented using a predicate trivial, if it
returns TRUE, the function conquer is applied to
solve the problem directly without any further division.
To conclude the procedure, a function combine is used
for merge the subsolutions into a general solution.
In this typical structure, the two subproblems can be
resolved in parallel.

From the experience obtained in the programming
skeletal, especially in the design of different skeletons
[3], [4], we have implemented a versatile parallel DC
skeleton [5] . The skeleton hides from the programmer
difficulties in parallel programs such as data distribu-
tion, communication among processors, and synchro-
nization, thus DC problems.

The prototype for the skeleton DC Call is as fol-
lows:
void DC_Call(typeDC Type, int Weight,

mInteraction IM,
TPF_trivial Itrivial, TPF_conquer Iconquer,
TPF_divide Idivide, TPF_combine Icombine,
TPF_secuencial Isecuencial,
TypeN *In,int SizeBufferIn,
int SizeDataTypeIn,
TypeN *Out, int SizeBufferOut,
int SizeDataTypeOut, MPI_Comm comm)

The number of parameters in the call to the skeleton
DC Call may look a little complex, but this long

parameter list allows substantial flexibility, which will
bring benefits in different domains. The first parameter
(an enumeration type) specifies the type of algorithm
to be used, which will depend of the specific problem
to solve. In this work, we explore hypercube divide-
and-conquer (HDC). This type provides a structure
with hypercubical communications among processes.
It recursively generates a binary tree of groups of
processes whose leaves consist of only one process.
The number of processes in each branch is halved at
each level, and the interactions within a level occur
between pairs of processes which have the same rank
(in distinct groups) at the level below. There are other
types of DC algorithms and they were explained in
detail in [2].

The body of the routines trivial, sequential,
conquer, divide, and combine are described by func-
tions and they will need to be implemented by the
sequential programmer.

IV. MODELLING THE COMPONENT OF HDC
SKELETON

Next, we present and verify an accurate timing
parallel model of computation developed to analyze
and to predict the performance of HDC algorithms
using the skeleton DC Call on a cluster.

In order to achieve an instance model of HDC,
we need to describe the cost functions. As we have
previously seen, a DC problem needs to define five
specific functions, but we do not include costs asso-
ciated with tasks trivial and conquer since they do
not make a significant contribution to execution time
when its input is much bigger than P .

The parallel time of an HDC algorithm with input
size ISIZE can be formulated as a function of five
parameters:

ΩHDC,P (ISIZE) = F (τHDC , τDiv , τComb, τSeq, τExc) (1)

In our case, τHDC is considered zero because
ΥHDC is insignificant compared to other components
affecting the overall cost. The time ΩHDC,P (ISIZE)
taken by P processors using the skeleton DC Call is
recursively defined by the formula:

ΩHDC,P (ISIZE) = max
i=1,...,P

{τDiv,i(ISIZE)}

+ max
i=1,...,P

{ΩHDC,P (
ISIZE

2
)}

+ max
i=1,...,P

{τExc,i(K0, g, l)}
+ max

i=1,...,P
{τComb,i(K0)} (2)

Where τDiv is the cost to divide input vector into
two vectors, τExc is the time invested for to communi-
cate message of size K0 in the work group and τComb

is the cost to merge the subsolutions. The max opera-
tor is associated to zynchronization overhead bound by
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skeleton’s message passing call. ΩHDC can be derived
by successive substitution, from:

ΩHDC,P (
ISIZE

2
) = max

i=1,...,P
{τDiv,i(

ISIZE

2
)}

+ max
i=1,...,P

{ΩHDC,P (
ISIZE

4
)}

+ max
i=1,...,P

{τExc,i(K1, g, l)}
+ max

i=1,...,P
{τComb,i(K1)} (3)

to:

ΩHDC,P (
ISIZE

2(log P )−1
) = max

i=1,...,P
{τDiv,i(

ISIZE

2(log P )−1
)}

+ max
i=1,...,P

{ΩHDC,P (
ISIZE

2log P
)}

+ max
i=1,...,P

{τExc,i(K(log P)−1, g, l)}
+ max

i=1,...,P
{τComb,i(K(log P)−1)}(4)

We describe the communication model of a cluster
of P processors by τExc(K, g, l, P ). This function
gives us a prediction on the amount of time invested in
communications in terms of the number of processors
(P ) in the work group and the lengths of messages
involved (K).

After log P division steps, the algorithm resolves
each subproblem in a sequential form:

ΩHDC,P (
ISIZE

2log P
) = max

i=1,...,P
{τSeq,i(

ISIZE

2log P
)} (5)

The cost of an algorithm of type HDC is simply
the sum of the costs of its components:

ΩHDC,P (ISIZE) =

(log P )−1∑

j=0

max
i=1,...,P

{τDiv,i(
ISIZE

2j
)}

+

(log P)−1∑

j=0

max
i=1,...,P

{τComb,i(Kj)}

+

(log P)−1∑

j=0

max
i=1,...,P

{τExc,i(Kj, g, l)}

+ max
i=1,...,P

{τSeq,i(
ISIZE

2log P
)} (6)

The communication model takes into account the
impact of the homogeneity of processors, and it as-
sumes a linear by pieces behaviour in the message
size. However, this behaviour can be non-linear in the
number P of processors (i.e. broadcast usually have
a logarithmic factor in P ). In skeletons like HDC
where many sources are continuously sending data to
many processors, we use an average full throughput
of data gfull and a latency l, that both dependent
on P . In this case the communication bottleneck is
the transfer capacity of the network. In the skeleton
DC Call, τExc(K, g(full,P ), lP ) represents the data-
exchange phase, and it can be formuled by means of
the following equation:

τExc(K, g(full,P ), lP ) = tsend(K, g(full,P ), lP )

+trecv(K, g(full,P ), lP ) (7)

where tsend and trecv respectively denote the time
to send and receive a block containing K contiguous
data units. Our communication model is linear, repre-
sentanting the communication time by a linear function
of the message size:

tsend(K, g(full,P ), lP ) = (lP + K ∗ g(full,P ))

trecv(K, g(full,P ), lP ) = (lP + K ∗ g(full,P )) (8)

The communication time can be summarized as
follows:

τExc(K, g(full,P ), lP ) = 2 ∗ ((lP + K ∗ g(full,P ))) (9)

The parameters needed to design the model are not
only architecture dependent (P, l, g), but also it must
be reflect skeletal characteristics (Υsk). The depen-
dence of the architecture allowed in the cost functions
is in the coefficients defining each particular function.
Thus, once the analysis for a given architecture has
been completed, the predictions for a new architecture
can be obtained by replacing in the formulas the
function coefficients.

V. CASES STUDY

To exemplify the combined use of the skeleton and
the model to predict the time spent by HDC programs
we have chosen two algorithm: the Connected Compo-
nent (CnCm) and the Parallel Quicksort (PQ). The
problem of determining the connected component of a
graph is usually considered one of the most elementary
graph problems. The goal is to find all connected
components of an undirected graph G = (V, E) of
|V | = N nodes and |E| = M edges. The CnCm
of G are node subsets such that the nodes included in
the same component are mutually connected (reachable
by some path), and no two nodes in different sets are
connected. Quicksort is one of the fastest and simplest
sorting algorithms. It works recursively by a divide-
and-conquer strategy explanation. First, the sequence
to be sorted is partitioned into two parts, such that all
elements of the first part are less than or equal to all
elements of the second part. Then the two parts are
sorted separately by recursive application of the same
procedure. Recombination of the two parts yields the
sorted sequence.

VI. EXPERIMENTS FOR PERFORMANCE

PREDICTION

In this section we give running times for user
functions, calculate the parameters g and l and present
the results on the total running time of the skeleton
HDC on a cluster.
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A. User Functions

To predict the time of HDC algorithms is necessary
to estimate the execution time of each function imple-
mented by the user (divide, combine and sequential)
on the architecture.

Multivariate statistics refers to a group of inferential
techniques that have been developed to handle situa-
tions where sets of variables are involved as predictors
of performance. We make use of statistical analysis for
determining model coefficients.

The CnCm algorithm takes as input two param-
eters: the number of nodes (N ) and edges (M ).
Each parameter affects the specific function in some
way. In the function divide, the number of edges
of the graph plays a fundamental role to estimate
the cost. On the other hand, the number of nodes
determines the behavior for function combine. The
function sequential is affected by both variables. A
model relating the experimental execution time of the
function divide to a set of independent variables is:
TDiv = Div0 + Div1 ∗ M where 1 and M are
the basis functions of the model and Divi will be
estimated by the parameter estimation algorithm. The
function sequential has a cost of O(2N + M). It
requires M operations to build an adjacency list, then
it makes a DFS (Depth-First Search) algorithm to
find the connected components. From our algorithm,
DFS with adjacency list requires time proportional to
O(N + M). We can see it is linear in the size of the
structure. The values of Seq0, Seq1 and Seq2 will be
obtained from regression techniques and they conform
the coefficients of TSeq = Seq0+Seq1∗N +Seq2∗M

The PQ takes only one input: the number of integers
to be ordened (N ). A model relating the experimental
execution time of function divide to a set of indepen-
dent variables is: TDiv = Div0+Div1∗N where 1 and
N are the basis functions of the model and Divi will
be estimated by the parameter estimation algorithm. A
model relating the experimental execution time of the
function sequential to a set of independent variables
is: TSeq = Seq0 + Seq1 ∗ N

In both cases, linear least-squares models (LSQ)
estimate the coefficients Divi and Seqi to minimize the
squared sum of errors between predicted and experi-
mental values of functions divide and sequential. The
execution time model of function combine is obtained
in a similar way: TComb = Comb0+Comb1∗N , where
Comb0 and Comb1 are their unknown coefficients.

Tables I and II show the estimated values for approx-
imation functions divide, combine and sequential.
For the CnCm the coefficients of determination ex-
ceed 95% and for the PQ, they exceed 90%.

B. Communication

To obtain the architecture parameters, we used
micro-benchmarks. The source code of the micro-
benchmark programs can be found in MPIedupack

TABLE I

CnCm: NUMERICAL VALUE OF COEFFICIENTS

division Div0 Div1 (R2)
1.94e−08 2.25e−06 99%

combine Comb0 Comb1 (R2)
2.19e−07 2.32e−03 95%

sequential Seq0 Seq1 Seq2 (R2)
0 1.35e−07 4.60e−07 98%

TABLE II

PQ: NUMERICAL VALUE OF COEFFICIENTS

division Div0 Div1 (R2)
5.37e−08 6.64e−03 99%

combine Comb0 Comb1 (R2)
3.65e−08 5.69e−02 95%

sequential Seq0 Seq1 (R2)
2.80e−07 4.39e−01 90%

package [6].
We considered two micro-benchmarks to measure

(1) the worst case l (latency) and (2) the worst case g
(throughput), measured for MPI Alltoallv primitive.

The figure 1 shows the the value of parameters for
the different configurations of the cluster LIDIC. The
cluster consist of 14 networked nodes, each one a
Pentium IV of 3.2 GHz and 1 GB of RAM. The nodes
are connected together by Ethernet segments and a
Switch Linksys srw 2024 of 1 GB. The base software
on cluster include a Debian etch SO and MPICH 2
1.0.6.

In both plots, the y-value corresponds to the time it
takes for a single integer (32-bit word) to be delivered.

C. Running Times

Table III shows the execution time for problem CC
with several problem sizes.

To predict performance of some instances, the
prediction model ΩHDC,P (Size) was resolved using
models and coefficients shown in Section 4. As an
example, we use the model to predict the execution
time to find connected components for a graph G =
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Fig. 1. Latency and Throughput on Cluster LIDIC
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TABLE III

TIMES TO FIND CnCm, USING 8 PROCESSORS

N 1M 1M 1M 2M 2M 2M
M 0.5M 1M 2M 0.5M 1M 2M

TPar 1.72 1.84 2.10 3.00 3.13 3.50
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Fig. 2. CnCm: Measured Time vs Predicted Time

(V, E) with |V | = N = 1024K y |E| = M = 2048K
using 8 processors.

To estimate the time spent in communication, we
instantiate tExc with the number of words (32-bit) to
communicate by each recursion level and the archi-
tecture parameters (l and g). For this problem, each
algorithm recursion level always communicates the
entire root vector, this is 1024K of 32-bits words. The
predicted time to solve the connected components of
a graph G is: ΩHDC,8(1024K, 2048K) = 1.916492.
The error observed was 8, 83% (Predicted = 1.916492
vs. Observed= 2.102299 (Table III).

Table IV shows the execution time to compute PQ
with several problem sizes.

TABLE IV

TIMES TO COMPUTE PQ, USING 8 PROCESSORS

N 1M 2M 4M 8M 16M 32M
TPar 0.31 0.65 1.41 2.93 6.50 13.84

As an example, we use the model to predict the
execution time to sort a sequence of N = 32M
elements. The predicted time to PQ using the skele-
ton, can be estimated by resolving equation 6 as:
ΩHDC,8(32M) = 13.25875. The error observed was
4, 2%. (Predicted = 13.25875 vs. Observed= 13.839541
(Table IV). Errors are basically due to the lack of
accuracy for the communication component.

Figures 2 and 3 show a comparison between pre-
dicted time and the traces obtained for several inputs.
The results were very near to the expectable behaviour.

VII. CONCLUSIONS

This paper described the timing model, which as-
sociates a different performance constant for each
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Fig. 3. QS: Measured Time vs Predicted Time

specific conceptual block of a skeleton. The prediction
model we described here is designed to make use of
statical analysis in determining analytical model coef-
ficients. The parameters needed to design the model
are not only architecture dependent (P, l, g) but also it
must reflect skeletal characteristics. The computation
in the model involves three kinds of components: the
cost of the operations sequence needed to implement
the paradigm, the cost involved in communications and
the cost associated to functions implemented by the
user. Thus, once the analysis for a given architecture
has been completed, the predictions for a new archi-
tecture can be obtained replacing in the formulas the
function coefficients.
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