
Reduced Computational Cost in the Calculation of 
Worst Case Response Time for Real Time Systems 

 

José M. Urriza, Lucas Schorb 
Facultad de Ingeniería- Departamento de Informática 
Universidad Nacional de la Patagonia San Juan Bosco 

Puerto Madryn, Argentina 
e-mail: josemurriza@gmail.com 

Javier D. Orozco, Ricardo Cayssials 
Departamento de Ingeniería Eléctrica y Computadoras 

Universidad Nacional del Sur - CONICET 
Bahía Blanca, Argentina 

e-mail: jadorozco@gmail.com 
 
 

Abstract— Modern Real Time Operating Systems require 
reducing computational costs even though the microprocessors 
become more powerful each day. It is usual that Real Time 
Operating Systems for embedded systems have advance 
features to administrate the resources of the applications that 
they support. In order to guarantee either the schedulability of 
the system or the schedulability of a new task in a dynamic 
Real Time System, it is necessary to know the Worst Case 
Response Time of the Real Time tasks during runtime. In this 
paper a reduced computational cost algorithm is proposed to 
determine the Worst Case Response Time of Real Time tasks. 

Keywords- Schedulability; Response Time Analysis; RM; DM 

I.  INTRODUCTION 
Nowadays there exist several Real Time Operating 

Systems (RTOS). Among the best known we can name: 
ChibiOS/RT, eCos, FreeRTOS, Fusion RTOS, Nucleus 
RTOS, OSE, OSEK, QNX, RT-11, RTEMS, RTLinux, 
Talon DSP RTOS, Transaction Processing Facility, and 
VxWorks, among others.  

The most popular, probably, is that developed by Wind 
River Systems, VxWorks, for its use in: The Spirit and 
Opportunity Mars Exploration Rovers, The Mars 
Reconnaissance Orbiter, The Deep Impact space probe, 
Stardust (spacecraft), The Boeing 787 airliner, The Boeing 
747-8 airliner, The BMW iDrive system, Linksys 
WRT54Gxx wireless routers, to name some of the devices 
that have the RTOS of this company. Its main features are, its 
simplicity and that can guarantee that a hard Real Time 
System (RTS) can be scheduled by the discipline of fixed 
priorities, Rate Monotonic (RM). 

In VxWorks, in order to ensure the schedulability of all 
tasks, the RTOS limits the maximum utilization factor 
admissible for the system, through an upper bound presented 
in 1973 by Liu & Layland in [1]. Its main advantage is to 
have a negligible Computational Cost (CC), in exchange for 
providing pessimistic results which imply an over-
dimensioning of the system.  

The election of this method by Wind River Systems ([2]) 
is probably due to their low CC, or perhaps because the new 

methods, which have been developed, have higher CC in 
comparison with the one of Liu & Layland. While this 
statement is true, it also shows a fertile field to explore the 
discipline in order to obtain the analytical techniques with 
low CC, even when they are higher than the bound 
established by Liu & Layland. This increase is rewarded by a 
better utilization of resources or by a better treatment of 
systems with more complex requirements 

Below is a brief introduction to the RTS.  

A. Introduction to the Real Time Systems 
In the classical definition (Stankovic’s [3]): RTS are 

those in which results must not be only correct from an 
arithmetic-logical point of view but also produced before a 
certain instant, called deadline. 

Depending on the deadlines of the tasks, the RTS can be 
classified into three types. The first one does not allow any 
task to lose its deadline, so they’re called hard or critical. 
The second allows to miss some deadlines, so they are called 
soft. Finally, the further dissemination of RTS has required 
typify those that allow only a certain amount of loss under a 
specified statistical criterion. These are called firm. 

In the hard RTS, to lose the deadline of a task can have 
severe consequences for the system integrity and, probably, 
for the environment, in the case that the system strongly 
interacts with it: avionics, robotics, etc. In order to guarantee 
the accomplishment of the tasks before their deadline it is 
necessary to make an analysis of the schedulability of the 
system. If the test is successful, it is said that the system is 
schedulable and ensures the accomplishment of all its 
temporal constraints. 

In [1], the schedulability of mono-resource and 
multitasking systems is considered. A priority discipline 
establishes a linear order on the set of tasks, allowing the 
scheduler to define at each instant of activation, which task 
will use the shared resource. 

To formalize the analysis of schedulability, it is 
necessary to model the set of tasks based on their temporal 
requirements and their interdependencies. 

Usually it is considered that the tasks are periodic, 
independent and appropriable. A periodic task is one that 
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after a certain time requests execution. The task is said to be 
independent if it doesn’t need the result of the execution of 
some other task for its own execution. 

Finally, it is said that the task is appropriable when the 
scheduler can suspend its execution and withdraw it from the 
resource at any time. 

Generally, the parameters of each task, under this 
framework, are: its execution time, which is noted as Ci, its 
period; noted Ti, and its deadline Di. So a set of n tasks S(n) 
is specified by  S(n)={(C1, T1, D1), (C2, T2, D2),..., (Cn, Tn, 
Dn)}. 

In [1] it was proved that the worst generation scheme, for 
a mono-resource system, is one in which all the tasks request 
to be executed in the same instant and it is called the critical 
instant. It was showed also that if this state is schedulable, 
the RTS is schedulable for any other state, under the priority 
discipline used. 

The utilization factor (U) of a set of hard tasks S(n) 
determines the level of utilization of the resource. 

In [1], the schedulability of the RTS is guaranteed by 
calculating an upper bound, whose CC is of the order of the 
number of tasks, because it is needed to calculate the U. If 
the U is lower than or equal to the level above, it ensures the 
schedulability of the RTS. 

Numerous schedulability tests have been developed since 
1973 with the same technique ([4, 5, 6, 7, 8, 9].). In 1982, 
Leung ([10]), defined Deadline Monotonic (DM), but a 
schedulability test wasn’t defined. In 1991 Audsley ([11]) 
presented a solution for this problem. In 1986, Joseph and 
Pandya ([12]) presented an iterative method of Fixed Point 
(FP) to evaluate a necessary and sufficient condition to 
validate the feasibility of an RTS, using a RM scheduler. 
Several works have been published with equivalent solutions 
in [13, 14, 15, 16]. In 1998, Sjödin ([17]) incorporated an 
improvement to Joseph’s test. Which is to begin the iteration 
of the task i+1 at the moment where the method of Joseph 
found the worst case response time  (WCRT) of task i plus 
the execution time of task i +1 ( 0

1
m

i i it t C+ = + ). 
In 2004, Bini ([18]) proposed a new method called 

Hyperplanes Exact Test (HET) to determine the 
schedulability of an RTS.  

The paper is organized as follows: Section 2 describes 
the FP iterative methods used to determine the schedulability 
of an RTS. Furthermore it proves theorems to improve the 
search of the mentioned FPs. In section 3, an example is 
presented. In section 4, the CC of the proposed method with 
the CC of the algorithms presented in Real Time literature 
are compared. The analysis results are presented in Section 
5. In Section 6, the conclusion and further works are 
presented 

II. FIXED POINT ITERATIVE METHODS 
Since 1986, most of the schedulability tests developed for 

the disciplines of fixed priorities RM or DM, are based on 
applying a FP method for ensuring the necessary and 

sufficient condition that guarantee the feasibility of the 
system. 

By definition, a FP of a function f  is a number t, such 
that ( )t f t= . As in this case the FP equation is a function of 
time. A t point and a t instant, are equivalent expressions. 

The method of FP for an RTS, was first developed by 
Joseph and Pandya ([12]). In this method, it is proved that 
there isn’t an analytical construction to resolve such 
problems and it is only possible to calculate it by iterative 
computations. 

Joseph’s method is initialized in the critical instant 
where all the tasks are simultaneously invoked. As shown in 
[12], the result is the WCRT of task i, of a subset of tasks 
S(i). Below is the same equation with only a change in 
nomenclature and the addition of a superscript (q) to indicate 
in which iteration is: 

 
1

1

1

qi
q

i j
jj

tt C C
T

−
+

=

⎡ ⎤
= + ⎢ ⎥

⎢ ⎥
∑  (1) 

The solution, if it exists, is only valid when there is a FP 
( 1q q

i it t+ = ) and if the response time to attend the task i, is 
lower than or equal to its deadline ( q

iit D≤ ). 

A. Iterative algorithm 
Following is the analysis of Joseph’s iterative method, in 

order to propose from this analysis, an algorithm to obtain 
the FP with a lower CC.  

Suppose a schedulable RTS, S(n) = {(C1, T1, D1), (C2, T2, 
D2),..., (Cn, Tn, Dn)}. 

When applying the method of [12] to a task i, with 
  1i i n∈ < ≤ , m +1 iterations will occur before reaching a FP 

with 0m ≥ . Below is a generic trace: 
 
Iteration 0: 

0 0 0
1

1 2 1
1 2 1

... i i
i

t t tC C C C t
T T T −

−

⎡ ⎤⎡ ⎤ ⎡ ⎤+ + + + =⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
 

Iteration 1:  

1 1 1
2

1 2 1
1 2 1

... i i
i

t t tC C C C t
T T T −

−

⎡ ⎤⎡ ⎤ ⎡ ⎤+ + + + =⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
 

.......................................... 

Iteration m-1:  

1 1 1

1 2 1
1 2 1

...
m m m

m
i i

i

t t tC C C C t
T T T

− − −

−
−

⎡ ⎤⎡ ⎤ ⎡ ⎤+ + + + =⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
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Iteration m:  

1
1 2 1

1 2 1
...

m m m
m m

i i
i

t t tC C C C t t
T T T

+
−

−

⎡ ⎤⎡ ⎤ ⎡ ⎤+ + + + = =⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
 

Since it is a FP equation and all FP is an attractor, if the 
subsystem S(i) is schedulable, the equation has at least one 
FP. The iterative process will evolve to the first FP in the 
ascendant chain, as shown by Kleene’s Theorem and in [19].  

Reached the FP in mt , the result of the iteration m-1 ( mt ) 
must be equal to the result of the iteration m ( 1mt + ). What 
follows is an analysis of the equation j jt T C⎡ ⎤⎢ ⎥  and the 
conditions under which the FP method ends.  

The calculation of jt T⎡ ⎤⎢ ⎥  determines the number of 
instances of task j in the interval [0, t ). Then, j jt T C⎡ ⎤⎢ ⎥  
indicates the accumulated runtime of all instances of task j to 
instant t , also known as the workload of task j ( ( )jW t ). 
Therefore, under the assumption that the scheduler can’t 
leave the resource idle while there are instances of tasks to 
execute, the equation will find an FP when the sum of all 
execution times of all instances of the tasks is equal to the 
time required to execute them. 

To obtain the time where there will be an invocation of 
the task j, after time t, should be multiplied jt T⎡ ⎤⎢ ⎥  by the 
period of the task (Tj ). When / j jt T T⎢ ⎥⎣ ⎦ is calculated, the time 
when the nearest instance is reached, corresponding to time t 
is obtained. Therefore, in the interval [ , )j j j jt T T t T T⎢ ⎥ ⎡ ⎤⎣ ⎦ ⎢ ⎥ , the 
calculation of the equation j jt T C⎡ ⎤⎢ ⎥  with any t  within this 
interval has the same value. 

Due to the previous analysis, it is desirable to indicate the 
workload of task j at instant t of the iteration q as: 

  with  0   and  1 1
q

q
jj

j

tA C q m j i
T

⎡ ⎤
= ≤ ≤ ≤ ≤ −⎢ ⎥

⎢ ⎥
 

When it is replaced in the development of the trace, starting 
from a seed value t0, we have: 

 
Iteration 0:  

1 0 0 0
1 2 1..... i it A A A C−= + + + +  

Iteration 1:  

2 1 1 1
1 2 1..... i it A A A C−= + + + +  

.......................................... 

Iteration m-1: 

1 1 1
1 2 1.....m m m m

i it A A A C− − −
−= + + + +  

Iteration m: 

1
1 2 1.....m m m m

i it A A A C+
−= + + + +  

Either if the RTS is not feasible to be scheduled by RM or 
DM, the algorithm does not converge or it converges in a 
time later than the deadline of the analyzed task. Therefore, 
the inspection interval of the algorithm is reduced from the 
critical instant to the deadline ( (0, ]iD ). 

B. Improvements for the Iterative Algorithm 
The previous section provides that, if Equation (1) has a 

solution (FP) the iterations m-1 and m will have the pairs 
1,   with  1 1m m

j jA A j i− ≤ ≤ −  equal. Therefore, if this condition 
is not met, the algorithm will perform at least one more 
iteration to find the FP. 

In Joseph’s algorithm, in each iteration of Equation (1), 
the initialization of the variable t, is done with the value 
obtained in the previous iteration. That is why if q

jA  is 
different to 1q

jA − , the calculation of the 1 1,....,q q
j iA A+ − is not 

affected. Basically, in each iteration, the variable t is 
initialized with the sum of: 

 
1

11

1

i
q qq q
j j

j
t t A A

−
−+

=

= + −∑  (2) 

The Equation (2) is determined by taking the 
Equation (1) in two successive iterations, with 0q ≥ : 

1 1
11

1 1
0    and    0

i i
q qq q

i ij j
j j

t C A t C A
− −

−+

= =

− − = − − =∑ ∑  

Consequently, the method requires successive iterations 
so the changes occurring in the current iteration affect the 
calculation of the following 1 1,....,q q

j iA A+ − . 
 
Iteration 1: 

0 0 0
1 2 11

1 1
1

.... i iA A A CA C
T

−+ + + +⎡ ⎤= ⎢ ⎥⎢ ⎥
 

0 0 0
1 2 11

2 2
2

.... i iA A A CA C
T

−+ + + +⎡ ⎤= ⎢ ⎥⎢ ⎥
 

.......................................... 

0 0 0
1 2 11

1 1
1

.... i i
i i

i

A A A CA C
T

−
− −

−

+ + + +⎡ ⎤= ⎢ ⎥⎢ ⎥
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Iteration 2: 

1 1 1
1 2 12

1 1
1

.... i iA A A CA C
T

−+ + + +⎡ ⎤= ⎢ ⎥⎢ ⎥
 

1 1 1
1 2 12

2 2
2

.... i iA A A CA C
T

−+ + + +⎡ ⎤= ⎢ ⎥⎢ ⎥
 

.......................................... 

1 1 1
1 2 12

1 1
1

.... i i
i i

i

A A A CA C
T

−
− −

−

+ + + +⎡ ⎤= ⎢ ⎥⎢ ⎥
 

.......................................... 

Iteration p-1: 

2 2 2
1 2 11

11
1

....p p p
iip A A A CA C

T

− − −
−− ⎡ ⎤+ + + +

= ⎢ ⎥
⎢ ⎥

 

2 2 2
1 2 11

22
2

.....p p p
iip A A A CA C

T

− − −
−− ⎡ ⎤+ + + +

= ⎢ ⎥
⎢ ⎥

 

.......................................... 

2 2 2
1 2 11

11
1

....p p p
iip

ii
i

A A A CA C
T

− − −
−−

−−
−

⎡ ⎤+ + + +
= ⎢ ⎥

⎢ ⎥
 

Iteration p: 

1 1 1
1 2 1

11
1

....p p p
iip A A A CA C

T

− − −
−⎡ ⎤+ + + +

= ⎢ ⎥
⎢ ⎥

 

1 1 1
1 2 1

22
2

....p p p
iip A A A CA C

T

− − −
−⎡ ⎤+ + + +

= ⎢ ⎥
⎢ ⎥

 

.......................................... 

1 1 1
1 2 1

11
1

....p p p
iip

ii
i

A A A CA C
T

− − −
−

−−
−

⎡ ⎤+ + + +
= ⎢ ⎥

⎢ ⎥
 

Illustrated in the equations showing the trace (Iteration 
1), the calculation of 1

1A is not used in the calculation of 1
2A  

and so on. All the 1
jA  of the first iteration are used to 

calculate all the 2
jA  of the second iteration. The question 

arises: Is it possible to use the 1 ,...,q q
jA A  with 1j i< −  already 

calculated to estimate the following 1 1,...,q q
j iA A+ −  belonging to 

the same iteration? The answer is yes. 
The improvement that is proposed to Joseph’s algorithm 

to reduce its CC, is to initialize the variable t, in the same 
iteration, with a new value. Each time that 1q q

j jA A −> , it is 
known that in the iteration q the FP that satisfies the 
Equation (1) will not be found, and, consequently the 
algorithm will not stop. Therefore, as shown in Theorem 1, 
when it meets that 1q q

j jA A −> , it is valid to increase t with the 
difference 1q q

j jA A −− . The new value ( qt + ) is used to 
calculate the following 1

q
jA + , and so on. Therefore, t is 

initialized with: 

 1q qq q
j jt t A A −+ = + −  (3) 

This way, it is possible to calculate the following 
1 1,...,q q

j iA A+ −  of the iteration q, with the calculation of the first 

1 ,...,q q
jA A  of the same iteration and not of the previous one. 

This improvement of the algorithm allows that p iterations 
will only be needed to reach the same FP with p m≤ . 

Below is a trace of how it develops after iteration 0, in 
which the algorithm is initialized by taking a seed for the 
variable 0t , and calculating consequently 0 0

1 1,..., iA A − , and 
storing it in an array of dimension n-1 . To highlight the 
previously established    is used. 

 
Iteration 1: 

0 0 0
1 2 11

1 1
1

.... i iA A A CA C
T

−+ + + +⎡ ⎤= ⎢ ⎥⎢ ⎥
 

1 0 0
1 2 11

2 2
2

.... i iA A A C
A C

T
−⎡ ⎤+ + + +

= ⎢ ⎥
⎢ ⎥⎢ ⎥

 

.......................................... 

1 1 0
1 2 11

1 1
1

.... i i
i i

i

A A A C
A C

T
−

− −
−

⎡ ⎤+ + + +
= ⎢ ⎥

⎢ ⎥⎢ ⎥
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Iteration 2: 

1 1 1
1 2 12

1 1
1

.... i iA A A CA C
T

−+ + + +⎡ ⎤= ⎢ ⎥⎢ ⎥
 

2 1 1
1 2 12

2 2
2

.... i iA A A C
A C

T
−⎡ ⎤+ + + +

= ⎢ ⎥
⎢ ⎥⎢ ⎥

 

.......................................... 

2 2 1
1 2 12

1 1
1

.... i i
i i

i

A A A C
A C

T
−

− −
−

⎡ ⎤+ + + +
= ⎢ ⎥

⎢ ⎥⎢ ⎥
 

.......................................... 

Iteration p-1: 

2 2 2
1 2 11

11
1

....p p p
iip A A A CA C

T

− − −
−− ⎡ ⎤+ + + +

= ⎢ ⎥
⎢ ⎥

 

1 2 2
1 2 11

22
2

.....p p p
iip A A A C

A C
T

− − −
−−

⎡ ⎤+ + + +
⎢ ⎥=
⎢ ⎥⎢ ⎥

 

.......................................... 

1 1 2
1 2 11

11
1

....p p p
iip

ii
i

A A A C
A C

T

− − −
−−

−−
−

⎡ ⎤+ + + +
⎢ ⎥=
⎢ ⎥⎢ ⎥

 

Iteration p: 

1 1 1
1 2 1

11
1

....p p p
iip A A A CA C

T

− − −
−⎡ ⎤+ + + +

= ⎢ ⎥
⎢ ⎥

 

1 1
1 2 1

22
2

....p p p
iip A A A C

A C
T

− −
−

⎡ ⎤+ + + +
⎢ ⎥=
⎢ ⎥⎢ ⎥

 

.......................................... 

1
1 2 1

11
1

....p p p
iip

ii
i

A A A C
A C

T

−
−

−−
−

⎡ ⎤+ + + +
⎢ ⎥=
⎢ ⎥⎢ ⎥

 

Note in the trace that in iteration 1, the 1 1 1
1 2 2, ,..., iA A A −  are 

used to calculate 1
1iA − . 

Theorem 1: 
Given a feasible RTS, the proposed method 
converges to the same FP as Joseph’s method. 

Proof: 
Let PFt  the time when the first FP happens. Then 
for a seed 0t , with 0

PFt t≤ , Joseph’s method 
converges to the lowest FP (Kleene’s theorem 
proved in [12]). A new algorithm that does not 
meet the same FP, can only be possible if the basin 
of attraction of PFt  is jumped. For this to happen 
with a monotonic increasing and deterministic 
function, it must be obtained with the algorithm a 

PFt t>  and end in the basin of attraction of other 
FP, or not converge. But the increment in the 
variable t, within the iteration, is obtained with the 
same function ( )q

j jt T C⎡ ⎤⎢ ⎥ and is used by Joseph’s 
method in the following iteration (Equation (2)). 
Since the new algorithm proposes that with each 

1q q
j jA A −>  will be incremented qt  with 1q q

j jA A −− , 
the calculation of q

jA  is done with qt . So if every 
time that a pair 1q q

j jA A −>  is found, qt  is increased 
making 1q qq q

j jt t A A −+ = + − , and it is bounded by an 
upper and lower limit of Joseph’s function, 
calculated in qt  and in qt + . 

1 1

1 1
 

q qi i
q

i j i j
j jj j

t tC C t C C
T T

+− −
+

= =

⎡ ⎤ ⎡ ⎤
+ ≤ ≤ +⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥
∑ ∑   

With  1q qq q
j jt t A A −+ = + −  and 1 1j i≤ ≤ −  

As this calculation is bounded by the function of 
Joseph, that can be iterated from point qt +  and the 
minor FP be found, it’s not possible that the 
presented algorithm obtains a time that skips the 
minor FP. □ 

Theorem 2: 
Given a feasible RTS, the proposed method 
converges at a faster or equal speed that the 
method of Joseph. 
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Proof: 
In an iteration q with qt  different to a FP, there 
exists at least one 1   with  1 1q q

j jA A j i− ≠ ≤ ≤ − . This 
increment produces, in the algorithm of Joseph, an 
increment in qt  that will be computed in the 
following iteration (Equation (2)). May be that, if 
for the value of 1qt +  there is an 1q q

y yA A +≠  with 
 1j y i< ≤ − , two iterations to approach the FP in 

12 1( ) ( )q qq q q q
y yj jt t A A A A−+ += + − + −  will be computed. 

In the proposed algorithm this occurs in the same 
iteration, due that the calculation of q

yA  is done 
with 1q qq q

j jt t A A −+ = + − , then resulting 
11 1q qq q q q q q q

y y y yj jt t A A t A A A A−++ + − −= + − = + − + − . □ 

C. The Proposed Algorithm 
The proposed algorithm requires two arrays for storing 

the WCRT and q
jA . These arrays are called WCRTi and Aj.  

 
Function Test 
 1t C=  
 For i = 2 to n 
  :  r it t t t C= = + : Flag = 1 

  Do Until (    or  r it t t D= > ) 

   :  0rt t w= =  
   For j=1 to i-1 
    j jA t T C⎡ ⎤= ⎢ ⎥  

     If Flag = 0 and jA A≠  then  

     jt t A A= + −  

     If t > Di then Test = False: Exit      ‘Not schedulable 
    End If 
    jA A= : w w A= +  

   Next 
   t = Max (t, w): Flag = 0 
  Loop 
  WCRTi = tr: Flag = 1 
 Next 
 Test =True                                                    ‘The system is schedulable 
End Function 

III. EXTENSION: BLOKING TIME AND RELEASE JITTERS 
This section extends the proposed analysis to the case of 

shared resources and release jitters.  
The analysis presented in [Audsley, 1993 #181] can be 

applied to the calculation of schedulability in the RTS 
presented in this paper.  

 The worst case of blocking by lower priority tasks, that a 
task i can receive, when using the ceiling priority protocol 
[Sha, 1990 #214], is defined as Bi. 

The release jitter time (Ji) is the worst-case time that task 
i can spend waiting to be released after its arrival. In the 
analysis made in previous sections the release jitter time does 
not present any problem to be calculated since it is a 
constant. 

The equation 1 is as follows: 

1
1

1

qi
iq

i i j
jj

t Jt B C C
T

−
+

=

⎡ ⎤+
= + + ⎢ ⎥

⎢ ⎥
∑

 

IV. AN EXAMPLE 
Given an RTS with the following parameters: S(4) = 

{(2,4,4), (1,5,5), (2,6,6), (1,12,12) }.  
With the method of Sjödin for task 4, the iteration starts 

in t = 5. 

4 1 1

0 1
4 4

5 5 55 1 .2 .1 .1 7
4 5 6

t t ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= → = + + + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
 

4 2 2

1 2
4 4

7 7 77 1 .2 .1 .1 9
4 5 6

t t ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= → = + + + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
 

6 2 2

2 3
4 4

9 9 99 1 .2 .1 .1 11
4 5 6

t t ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= → = + + + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
 

6 3 2

3 4
4 4

11 11 1111 1 .2 .1 .1 12
4 5 6

t t ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= → = + + + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
 

6 3 2

5 5
4 4

12 12 1212 1 .2 .1 .1 12
4 5 6

t t ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= → = + + + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
 

With the proposed method the iterations are: 

4 1 1

0 1
4 4

5 5 55 1 .2 .1 .1 7
4 5 6

t t ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= → = + + + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
 

4 2 2

1 2
4 4

7 7 87 1 .2 .1 .1 9
4 5 6

t t ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= → = + + + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
 

6 3 2

2 3
4 4

9 11 129 1 .2 .1 .1 12
4 5 6

t t ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= → = + + + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
 

6 3 2

3 4
4 4

12 12 1212 1 .2 .1 .1 12
4 5 6

t t ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= → = + + + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
 

This method takes one iteration less for the same task. 
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V. EXPERIMENTAL RESULTS 
The simulations consist in counting how many units q

jA  
are required to calculate for the proposed algorithm (RTA2) 
and for the method of Sjödin ([17]) denominated RTA 
(Response Time Analysis), and for the method of Bini ([18]) 
denominated HET. 

The q
jA  is the invariant for the proposed method and for 

the method of Sjödin ([17]).  
For the method of Bini ([18]) an invariant of one or two 

calculations, of the type q
jA , can be counted.  

In [18], the way to measure the computational cost is by 
counting how many loops are performed to determine if the 
system is schedulable.  

Unfortunately, the introduced CC is not evaluated by the 
invariant of method, and does not take into account that a 
recursive method introduces a space charge in the 
management of recursions.  

Therefore, counting each time that this type of account 
happens, the results of the three methods are comparable. 

Subsequently the total average of how many units q
jA  for 

U is calculated. 
Experiments were conducted with two groups of tasks. In 

the first set, the election of the period and the execution time 
of each task were performed in a random way with a uniform 
distribution. The selected groups used periods between 25-
10000 and 25-100000 ticks.   

The periods of tasks in the second group were divided 
into subgroups by order of magnitude. Subgroups were 
constructed with 25-100, 101-1000, 1001-10000 ticks and 
another with 25-100, 101-1000, 1001-10000 and 10001-
100000. 

 For example, for 10 tasks with periods between 25- 
10000, the first 3 task periods were randomly chosen 
between 25-100, with an exponential distribution centered at 
50. The following 3 tasks used periods in the order of 101-
1000 centered on 500, and the remaining 4 with periods in 
the order of 1001-10000 centered on 5000. A similar form 
was used in [9, 21, 22].  

The utilization factors in these groups are comprehended 
between the 70% and the 95%, in jumps of a 5% with a 
tolerance of the ±0.5%. Furthermore, for each utilization 
factor, at least 10000 systems for each U were evaluated. The 
U lower than 70%, were not considered, because under the 
≈70% (ln 2*100) the boundary of Liu & Layland ([1]) 
guarantees the schedulability of the RTS when the number of 
tasks is infinite. The number of tasks of the groups was 10, 
20 and 50. 

 
Figure 1.  Set of 10 tasks with periods of 25-10000. 

 

 
Figure 2.  Set of 20 tasks with periods of 25-10000. 

 

 
Figure 3.  Set of 50 tasks with periods of 25-10000. 

 

 
Figure 4.  Set of 10 tasks with periods of 25-100000. 
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Figure 5.  Set of 20 tasks with periods of 25-100000. 

 

 
Figure 6.  Set of 50 tasks with periods of 25-100000. 

 

 
Figure 7.  Set at U = 90% for periods of 25-10000 and 25-100000. 

 

 
Figure 8.  Set of 10 tasks with periods of 25-10000 (subgroups). 

 

 
Figure 9.  Set of 20 tasks with periods of 25-10000 (subgroups). 

 

 
Figure 10.  Set of 50 tasks with periods of 25-10000 (subgroups). 

 

 
Figure 11.  Set of 10 tasks with periods of 25-100000 (subgroups). 

 

 
Figure 12.  Set of 20 tasks with periods of 25-100000 (subgroups). 
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Figure 13.  Set of 50 tasks with periods of 25-100000 (subgroups). 

TABLE I.  U = 90%,  PERIODS OF 25-10000 AND 25-100000 

Subgroups RTA RTA2 HET 

10/25-10000 228 179 564 
20/25-10000 913 682 6955 
50/25-10000 5321 3852 50725 

10/25-100000 343 255 896 
20/25-100000 1080 819 22486 
50/25-100000 6839 4874 297541 

 

 
Figure 14.  Set at U = 90% for period of 25-10000 and 25-100000. 

VI. ANALYSIS RESULTS  
The presented method and Bini’s method, when 

compared with the methods presented by Sjödin (Fig. 7) at 
U = 90%, it is possible to obtain average reductions between 
the 11% to the 18% of the CC, depending on the type of the 
system for a uniform distribution.  

For the subgroups simulated with an exponential 
distribution, the method presented achieved significant 
improvements that hovered between the 21% to the 29% less 
CC than the method Sjödin for a U at 90% (Fig. 14). Bini's 
method for this type of system presented a significant 
increase in CC and is dependent of the period, although 
practically constant for the different utilization factors 
simulated. This is because this method uses a calculation 
method of hyperplanes.  

 When there are differences of 2, 3 or 4 orders of 
magnitude between the periods of the tasks, the method 
should evaluate each hyperplane in which there is a task with 
a small period but in conjunction with a task with a period of 
several orders of magnitude larger, which generates a very 
large search tree to the method. Unfortunately, this increases 
exponentially the CC. For this reason, the curves of the 
method of Bini weren’t shown in the previous figures, but 
the results, are presented in Table I.  

 The improvement in the CC of our method is considered 
important just if we reason that the cost of obtaining it is 
made just by a single array with dimension n-1. However, 
the refinement in the algorithm can be used in other kind of 
methods as the presented in [23] for the calculation of the 
Slack Stealing, or in methods for Testing the schedulability. 

VII. CONCLUSION AND FURTHER WORKS 
In this paper is presented a reduced computational cost 

method to determine the schedulability of a real time system. 
The method proposed was compared with the most important 
ones proposed in the real time literature. The results show a 
reduction in the average computational cost, of between the 
11% and 18% for a uniform distribution and a reduction 
between the 21% and 29% for an exponential distribution in 
subgroups of different order of magnitude. In further works, 
the possibility of applying this algorithm to other types of 
methods will be investigated. New tests with this 
improvement will be developed.  
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