
Reduced Computational Cost in the Calculation of
Worst Case Response Time for Real Time Systems

José M. Urriza, Lucas Schorb
Facultad de Ingeniería- Departamento de Informática
Universidad Nacional de la Patagonia San Juan Bosco

Puerto Madryn, Argentina
e-mail: josemurriza@gmail.com

Javier D. Orozco, Ricardo Cayssials
Departamento de Ingeniería Eléctrica y Computadoras

Universidad Nacional del Sur - CONICET
Bahía Blanca, Argentina

e-mail: jadorozco@gmail.com

Abstract— Modern Real Time Operating Systems require
reducing computational costs even though the microprocessors
become more powerful each day. It is usual that Real Time
Operating Systems for embedded systems have advance
features to administrate the resources of the applications that
they support. In order to guarantee either the schedulability of
the system or the schedulability of a new task in a dynamic
Real Time System, it is necessary to know the Worst Case
Response Time of the Real Time tasks during runtime. In this
paper a reduced computational cost algorithm is proposed to
determine the Worst Case Response Time of Real Time tasks.

Keywords- Schedulability; Response Time Analysis; RM; DM

I. INTRODUCTION
Nowadays there exist several Real Time Operating

Systems (RTOS). Among the best known we can name:
ChibiOS/RT, eCos, FreeRTOS, Fusion RTOS, Nucleus
RTOS, OSE, OSEK, QNX, RT-11, RTEMS, RTLinux,
Talon DSP RTOS, Transaction Processing Facility, and
VxWorks, among others.

The most popular, probably, is that developed by Wind
River Systems, VxWorks, for its use in: The Spirit and
Opportunity Mars Exploration Rovers, The Mars
Reconnaissance Orbiter, The Deep Impact space probe,
Stardust (spacecraft), The Boeing 787 airliner, The Boeing
747-8 airliner, The BMW iDrive system, Linksys
WRT54Gxx wireless routers, to name some of the devices
that have the RTOS of this company. Its main features are, its
simplicity and that can guarantee that a hard Real Time
System (RTS) can be scheduled by the discipline of fixed
priorities, Rate Monotonic (RM).

In VxWorks, in order to ensure the schedulability of all
tasks, the RTOS limits the maximum utilization factor
admissible for the system, through an upper bound presented
in 1973 by Liu & Layland in [1]. Its main advantage is to
have a negligible Computational Cost (CC), in exchange for
providing pessimistic results which imply an over-
dimensioning of the system.

The election of this method by Wind River Systems ([2])
is probably due to their low CC, or perhaps because the new

methods, which have been developed, have higher CC in
comparison with the one of Liu & Layland. While this
statement is true, it also shows a fertile field to explore the
discipline in order to obtain the analytical techniques with
low CC, even when they are higher than the bound
established by Liu & Layland. This increase is rewarded by a
better utilization of resources or by a better treatment of
systems with more complex requirements

Below is a brief introduction to the RTS.

A. Introduction to the Real Time Systems
In the classical definition (Stankovic’s [3]): RTS are

those in which results must not be only correct from an
arithmetic-logical point of view but also produced before a
certain instant, called deadline.

Depending on the deadlines of the tasks, the RTS can be
classified into three types. The first one does not allow any
task to lose its deadline, so they’re called hard or critical.
The second allows to miss some deadlines, so they are called
soft. Finally, the further dissemination of RTS has required
typify those that allow only a certain amount of loss under a
specified statistical criterion. These are called firm.

In the hard RTS, to lose the deadline of a task can have
severe consequences for the system integrity and, probably,
for the environment, in the case that the system strongly
interacts with it: avionics, robotics, etc. In order to guarantee
the accomplishment of the tasks before their deadline it is
necessary to make an analysis of the schedulability of the
system. If the test is successful, it is said that the system is
schedulable and ensures the accomplishment of all its
temporal constraints.

In [1], the schedulability of mono-resource and
multitasking systems is considered. A priority discipline
establishes a linear order on the set of tasks, allowing the
scheduler to define at each instant of activation, which task
will use the shared resource.

To formalize the analysis of schedulability, it is
necessary to model the set of tasks based on their temporal
requirements and their interdependencies.

Usually it is considered that the tasks are periodic,
independent and appropriable. A periodic task is one that

JCS&T Vol. 9 No. 2 October 2009

72

after a certain time requests execution. The task is said to be
independent if it doesn’t need the result of the execution of
some other task for its own execution.

Finally, it is said that the task is appropriable when the
scheduler can suspend its execution and withdraw it from the
resource at any time.

Generally, the parameters of each task, under this
framework, are: its execution time, which is noted as Ci, its
period; noted Ti, and its deadline Di. So a set of n tasks S(n)
is specified by S(n)={(C1, T1, D1), (C2, T2, D2),..., (Cn, Tn,
Dn)}.

In [1] it was proved that the worst generation scheme, for
a mono-resource system, is one in which all the tasks request
to be executed in the same instant and it is called the critical
instant. It was showed also that if this state is schedulable,
the RTS is schedulable for any other state, under the priority
discipline used.

The utilization factor (U) of a set of hard tasks S(n)
determines the level of utilization of the resource.

In [1], the schedulability of the RTS is guaranteed by
calculating an upper bound, whose CC is of the order of the
number of tasks, because it is needed to calculate the U. If
the U is lower than or equal to the level above, it ensures the
schedulability of the RTS.

Numerous schedulability tests have been developed since
1973 with the same technique ([4, 5, 6, 7, 8, 9].). In 1982,
Leung ([10]), defined Deadline Monotonic (DM), but a
schedulability test wasn’t defined. In 1991 Audsley ([11])
presented a solution for this problem. In 1986, Joseph and
Pandya ([12]) presented an iterative method of Fixed Point
(FP) to evaluate a necessary and sufficient condition to
validate the feasibility of an RTS, using a RM scheduler.
Several works have been published with equivalent solutions
in [13, 14, 15, 16]. In 1998, Sjödin ([17]) incorporated an
improvement to Joseph’s test. Which is to begin the iteration
of the task i+1 at the moment where the method of Joseph
found the worst case response time (WCRT) of task i plus
the execution time of task i +1 (0

1
m

i i it t C+ = +).
In 2004, Bini ([18]) proposed a new method called

Hyperplanes Exact Test (HET) to determine the
schedulability of an RTS.

The paper is organized as follows: Section 2 describes
the FP iterative methods used to determine the schedulability
of an RTS. Furthermore it proves theorems to improve the
search of the mentioned FPs. In section 3, an example is
presented. In section 4, the CC of the proposed method with
the CC of the algorithms presented in Real Time literature
are compared. The analysis results are presented in Section
5. In Section 6, the conclusion and further works are
presented

II. FIXED POINT ITERATIVE METHODS
Since 1986, most of the schedulability tests developed for

the disciplines of fixed priorities RM or DM, are based on
applying a FP method for ensuring the necessary and

sufficient condition that guarantee the feasibility of the
system.

By definition, a FP of a function f is a number t, such
that ()t f t= . As in this case the FP equation is a function of
time. A t point and a t instant, are equivalent expressions.

The method of FP for an RTS, was first developed by
Joseph and Pandya ([12]). In this method, it is proved that
there isn’t an analytical construction to resolve such
problems and it is only possible to calculate it by iterative
computations.

Joseph’s method is initialized in the critical instant
where all the tasks are simultaneously invoked. As shown in
[12], the result is the WCRT of task i, of a subset of tasks
S(i). Below is the same equation with only a change in
nomenclature and the addition of a superscript (q) to indicate
in which iteration is:

1

1

1

qi
q

i j
jj

tt C C
T

−
+

=

⎡ ⎤
= + ⎢ ⎥

⎢ ⎥
∑ (1)

The solution, if it exists, is only valid when there is a FP
(1q q

i it t+ =) and if the response time to attend the task i, is
lower than or equal to its deadline (q

iit D≤).

A. Iterative algorithm
Following is the analysis of Joseph’s iterative method, in

order to propose from this analysis, an algorithm to obtain
the FP with a lower CC.

Suppose a schedulable RTS, S(n) = {(C1, T1, D1), (C2, T2,
D2),..., (Cn, Tn, Dn)}.

When applying the method of [12] to a task i, with
 1i i n∈ < ≤ , m +1 iterations will occur before reaching a FP

with 0m ≥ . Below is a generic trace:

Iteration 0:

0 0 0
1

1 2 1
1 2 1

... i i
i

t t tC C C C t
T T T −

−

⎡ ⎤⎡ ⎤ ⎡ ⎤+ + + + =⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

Iteration 1:

1 1 1
2

1 2 1
1 2 1

... i i
i

t t tC C C C t
T T T −

−

⎡ ⎤⎡ ⎤ ⎡ ⎤+ + + + =⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

..

Iteration m-1:

1 1 1

1 2 1
1 2 1

...
m m m

m
i i

i

t t tC C C C t
T T T

− − −

−
−

⎡ ⎤⎡ ⎤ ⎡ ⎤+ + + + =⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

JCS&T Vol. 9 No. 2 October 2009

73

Iteration m:

1
1 2 1

1 2 1
...

m m m
m m

i i
i

t t tC C C C t t
T T T

+
−

−

⎡ ⎤⎡ ⎤ ⎡ ⎤+ + + + = =⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

Since it is a FP equation and all FP is an attractor, if the
subsystem S(i) is schedulable, the equation has at least one
FP. The iterative process will evolve to the first FP in the
ascendant chain, as shown by Kleene’s Theorem and in [19].

Reached the FP in mt , the result of the iteration m-1 (mt)
must be equal to the result of the iteration m (1mt +). What
follows is an analysis of the equation j jt T C⎡ ⎤⎢ ⎥ and the
conditions under which the FP method ends.

The calculation of jt T⎡ ⎤⎢ ⎥ determines the number of
instances of task j in the interval [0, t). Then, j jt T C⎡ ⎤⎢ ⎥
indicates the accumulated runtime of all instances of task j to
instant t , also known as the workload of task j (()jW t).
Therefore, under the assumption that the scheduler can’t
leave the resource idle while there are instances of tasks to
execute, the equation will find an FP when the sum of all
execution times of all instances of the tasks is equal to the
time required to execute them.

To obtain the time where there will be an invocation of
the task j, after time t, should be multiplied jt T⎡ ⎤⎢ ⎥ by the
period of the task (Tj). When / j jt T T⎢ ⎥⎣ ⎦ is calculated, the time
when the nearest instance is reached, corresponding to time t
is obtained. Therefore, in the interval [,)j j j jt T T t T T⎢ ⎥ ⎡ ⎤⎣ ⎦ ⎢ ⎥ , the
calculation of the equation j jt T C⎡ ⎤⎢ ⎥ with any t within this
interval has the same value.

Due to the previous analysis, it is desirable to indicate the
workload of task j at instant t of the iteration q as:

 with 0 and 1 1
q

q
jj

j

tA C q m j i
T

⎡ ⎤
= ≤ ≤ ≤ ≤ −⎢ ⎥

⎢ ⎥

When it is replaced in the development of the trace, starting
from a seed value t0, we have:

Iteration 0:

1 0 0 0
1 2 1..... i it A A A C−= + + + +

Iteration 1:

2 1 1 1
1 2 1..... i it A A A C−= + + + +

..

Iteration m-1:

1 1 1
1 2 1.....m m m m

i it A A A C− − −
−= + + + +

Iteration m:

1
1 2 1.....m m m m

i it A A A C+
−= + + + +

Either if the RTS is not feasible to be scheduled by RM or
DM, the algorithm does not converge or it converges in a
time later than the deadline of the analyzed task. Therefore,
the inspection interval of the algorithm is reduced from the
critical instant to the deadline ((0,]iD).

B. Improvements for the Iterative Algorithm
The previous section provides that, if Equation (1) has a

solution (FP) the iterations m-1 and m will have the pairs
1, with 1 1m m

j jA A j i− ≤ ≤ − equal. Therefore, if this condition
is not met, the algorithm will perform at least one more
iteration to find the FP.

In Joseph’s algorithm, in each iteration of Equation (1),
the initialization of the variable t, is done with the value
obtained in the previous iteration. That is why if q

jA is
different to 1q

jA − , the calculation of the 1 1,....,q q
j iA A+ − is not

affected. Basically, in each iteration, the variable t is
initialized with the sum of:

1

11

1

i
q qq q
j j

j
t t A A

−
−+

=

= + −∑ (2)

The Equation (2) is determined by taking the
Equation (1) in two successive iterations, with 0q ≥ :

1 1
11

1 1
0 and 0

i i
q qq q

i ij j
j j

t C A t C A
− −

−+

= =

− − = − − =∑ ∑

Consequently, the method requires successive iterations
so the changes occurring in the current iteration affect the
calculation of the following 1 1,....,q q

j iA A+ − .

Iteration 1:

0 0 0
1 2 11

1 1
1

.... i iA A A CA C
T

−+ + + +⎡ ⎤= ⎢ ⎥⎢ ⎥

0 0 0
1 2 11

2 2
2

.... i iA A A CA C
T

−+ + + +⎡ ⎤= ⎢ ⎥⎢ ⎥

..

0 0 0
1 2 11

1 1
1

.... i i
i i

i

A A A CA C
T

−
− −

−

+ + + +⎡ ⎤= ⎢ ⎥⎢ ⎥

JCS&T Vol. 9 No. 2 October 2009

74

Iteration 2:

1 1 1
1 2 12

1 1
1

.... i iA A A CA C
T

−+ + + +⎡ ⎤= ⎢ ⎥⎢ ⎥

1 1 1
1 2 12

2 2
2

.... i iA A A CA C
T

−+ + + +⎡ ⎤= ⎢ ⎥⎢ ⎥

..

1 1 1
1 2 12

1 1
1

.... i i
i i

i

A A A CA C
T

−
− −

−

+ + + +⎡ ⎤= ⎢ ⎥⎢ ⎥

..

Iteration p-1:

2 2 2
1 2 11

11
1

....p p p
iip A A A CA C

T

− − −
−− ⎡ ⎤+ + + +

= ⎢ ⎥
⎢ ⎥

2 2 2
1 2 11

22
2

.....p p p
iip A A A CA C

T

− − −
−− ⎡ ⎤+ + + +

= ⎢ ⎥
⎢ ⎥

..

2 2 2
1 2 11

11
1

....p p p
iip

ii
i

A A A CA C
T

− − −
−−

−−
−

⎡ ⎤+ + + +
= ⎢ ⎥

⎢ ⎥

Iteration p:

1 1 1
1 2 1

11
1

....p p p
iip A A A CA C

T

− − −
−⎡ ⎤+ + + +

= ⎢ ⎥
⎢ ⎥

1 1 1
1 2 1

22
2

....p p p
iip A A A CA C

T

− − −
−⎡ ⎤+ + + +

= ⎢ ⎥
⎢ ⎥

..

1 1 1
1 2 1

11
1

....p p p
iip

ii
i

A A A CA C
T

− − −
−

−−
−

⎡ ⎤+ + + +
= ⎢ ⎥

⎢ ⎥

Illustrated in the equations showing the trace (Iteration
1), the calculation of 1

1A is not used in the calculation of 1
2A

and so on. All the 1
jA of the first iteration are used to

calculate all the 2
jA of the second iteration. The question

arises: Is it possible to use the 1 ,...,q q
jA A with 1j i< − already

calculated to estimate the following 1 1,...,q q
j iA A+ − belonging to

the same iteration? The answer is yes.
The improvement that is proposed to Joseph’s algorithm

to reduce its CC, is to initialize the variable t, in the same
iteration, with a new value. Each time that 1q q

j jA A −> , it is
known that in the iteration q the FP that satisfies the
Equation (1) will not be found, and, consequently the
algorithm will not stop. Therefore, as shown in Theorem 1,
when it meets that 1q q

j jA A −> , it is valid to increase t with the
difference 1q q

j jA A −− . The new value (qt +) is used to
calculate the following 1

q
jA + , and so on. Therefore, t is

initialized with:

 1q qq q
j jt t A A −+ = + − (3)

This way, it is possible to calculate the following
1 1,...,q q

j iA A+ − of the iteration q, with the calculation of the first

1 ,...,q q
jA A of the same iteration and not of the previous one.

This improvement of the algorithm allows that p iterations
will only be needed to reach the same FP with p m≤ .

Below is a trace of how it develops after iteration 0, in
which the algorithm is initialized by taking a seed for the
variable 0t , and calculating consequently 0 0

1 1,..., iA A − , and
storing it in an array of dimension n-1 . To highlight the
previously established is used.

Iteration 1:

0 0 0
1 2 11

1 1
1

.... i iA A A CA C
T

−+ + + +⎡ ⎤= ⎢ ⎥⎢ ⎥

1 0 0
1 2 11

2 2
2

.... i iA A A C
A C

T
−⎡ ⎤+ + + +

= ⎢ ⎥
⎢ ⎥⎢ ⎥

..

1 1 0
1 2 11

1 1
1

.... i i
i i

i

A A A C
A C

T
−

− −
−

⎡ ⎤+ + + +
= ⎢ ⎥

⎢ ⎥⎢ ⎥

JCS&T Vol. 9 No. 2 October 2009

75

Iteration 2:

1 1 1
1 2 12

1 1
1

.... i iA A A CA C
T

−+ + + +⎡ ⎤= ⎢ ⎥⎢ ⎥

2 1 1
1 2 12

2 2
2

.... i iA A A C
A C

T
−⎡ ⎤+ + + +

= ⎢ ⎥
⎢ ⎥⎢ ⎥

..

2 2 1
1 2 12

1 1
1

.... i i
i i

i

A A A C
A C

T
−

− −
−

⎡ ⎤+ + + +
= ⎢ ⎥

⎢ ⎥⎢ ⎥

..

Iteration p-1:

2 2 2
1 2 11

11
1

....p p p
iip A A A CA C

T

− − −
−− ⎡ ⎤+ + + +

= ⎢ ⎥
⎢ ⎥

1 2 2
1 2 11

22
2

.....p p p
iip A A A C

A C
T

− − −
−−

⎡ ⎤+ + + +
⎢ ⎥=
⎢ ⎥⎢ ⎥

..

1 1 2
1 2 11

11
1

....p p p
iip

ii
i

A A A C
A C

T

− − −
−−

−−
−

⎡ ⎤+ + + +
⎢ ⎥=
⎢ ⎥⎢ ⎥

Iteration p:

1 1 1
1 2 1

11
1

....p p p
iip A A A CA C

T

− − −
−⎡ ⎤+ + + +

= ⎢ ⎥
⎢ ⎥

1 1
1 2 1

22
2

....p p p
iip A A A C

A C
T

− −
−

⎡ ⎤+ + + +
⎢ ⎥=
⎢ ⎥⎢ ⎥

..

1
1 2 1

11
1

....p p p
iip

ii
i

A A A C
A C

T

−
−

−−
−

⎡ ⎤+ + + +
⎢ ⎥=
⎢ ⎥⎢ ⎥

Note in the trace that in iteration 1, the 1 1 1
1 2 2, ,..., iA A A − are

used to calculate 1
1iA − .

Theorem 1:
Given a feasible RTS, the proposed method
converges to the same FP as Joseph’s method.

Proof:
Let PFt the time when the first FP happens. Then
for a seed 0t , with 0

PFt t≤ , Joseph’s method
converges to the lowest FP (Kleene’s theorem
proved in [12]). A new algorithm that does not
meet the same FP, can only be possible if the basin
of attraction of PFt is jumped. For this to happen
with a monotonic increasing and deterministic
function, it must be obtained with the algorithm a

PFt t> and end in the basin of attraction of other
FP, or not converge. But the increment in the
variable t, within the iteration, is obtained with the
same function ()q

j jt T C⎡ ⎤⎢ ⎥ and is used by Joseph’s
method in the following iteration (Equation (2)).
Since the new algorithm proposes that with each

1q q
j jA A −> will be incremented qt with 1q q

j jA A −− ,
the calculation of q

jA is done with qt . So if every
time that a pair 1q q

j jA A −> is found, qt is increased
making 1q qq q

j jt t A A −+ = + − , and it is bounded by an
upper and lower limit of Joseph’s function,
calculated in qt and in qt + .

1 1

1 1

q qi i
q

i j i j
j jj j

t tC C t C C
T T

+− −
+

= =

⎡ ⎤ ⎡ ⎤
+ ≤ ≤ +⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥
∑ ∑

With 1q qq q
j jt t A A −+ = + − and 1 1j i≤ ≤ −

As this calculation is bounded by the function of
Joseph, that can be iterated from point qt + and the
minor FP be found, it’s not possible that the
presented algorithm obtains a time that skips the
minor FP. □

Theorem 2:
Given a feasible RTS, the proposed method
converges at a faster or equal speed that the
method of Joseph.

JCS&T Vol. 9 No. 2 October 2009

76

Proof:
In an iteration q with qt different to a FP, there
exists at least one 1 with 1 1q q

j jA A j i− ≠ ≤ ≤ − . This
increment produces, in the algorithm of Joseph, an
increment in qt that will be computed in the
following iteration (Equation (2)). May be that, if
for the value of 1qt + there is an 1q q

y yA A +≠ with
 1j y i< ≤ − , two iterations to approach the FP in

12 1() ()q qq q q q
y yj jt t A A A A−+ += + − + − will be computed.

In the proposed algorithm this occurs in the same
iteration, due that the calculation of q

yA is done
with 1q qq q

j jt t A A −+ = + − , then resulting
11 1q qq q q q q q q

y y y yj jt t A A t A A A A−++ + − −= + − = + − + − . □

C. The Proposed Algorithm
The proposed algorithm requires two arrays for storing

the WCRT and q
jA . These arrays are called WCRTi and Aj.

Function Test
 1t C=
 For i = 2 to n
 : r it t t t C= = + : Flag = 1

 Do Until (or r it t t D= >)

 : 0rt t w= =
 For j=1 to i-1
 j jA t T C⎡ ⎤= ⎢ ⎥

 If Flag = 0 and jA A≠ then

 jt t A A= + −

 If t > Di then Test = False: Exit ‘Not schedulable
 End If
 jA A= : w w A= +

 Next
 t = Max (t, w): Flag = 0
 Loop
 WCRTi = tr: Flag = 1
 Next
 Test =True ‘The system is schedulable
End Function

III. EXTENSION: BLOKING TIME AND RELEASE JITTERS
This section extends the proposed analysis to the case of

shared resources and release jitters.
The analysis presented in [Audsley, 1993 #181] can be

applied to the calculation of schedulability in the RTS
presented in this paper.

 The worst case of blocking by lower priority tasks, that a
task i can receive, when using the ceiling priority protocol
[Sha, 1990 #214], is defined as Bi.

The release jitter time (Ji) is the worst-case time that task
i can spend waiting to be released after its arrival. In the
analysis made in previous sections the release jitter time does
not present any problem to be calculated since it is a
constant.

The equation 1 is as follows:

1
1

1

qi
iq

i i j
jj

t Jt B C C
T

−
+

=

⎡ ⎤+
= + + ⎢ ⎥

⎢ ⎥
∑

IV. AN EXAMPLE
Given an RTS with the following parameters: S(4) =

{(2,4,4), (1,5,5), (2,6,6), (1,12,12) }.
With the method of Sjödin for task 4, the iteration starts

in t = 5.

4 1 1

0 1
4 4

5 5 55 1 .2 .1 .1 7
4 5 6

t t ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= → = + + + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

4 2 2

1 2
4 4

7 7 77 1 .2 .1 .1 9
4 5 6

t t ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= → = + + + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

6 2 2

2 3
4 4

9 9 99 1 .2 .1 .1 11
4 5 6

t t ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= → = + + + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

6 3 2

3 4
4 4

11 11 1111 1 .2 .1 .1 12
4 5 6

t t ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= → = + + + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

6 3 2

5 5
4 4

12 12 1212 1 .2 .1 .1 12
4 5 6

t t ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= → = + + + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

With the proposed method the iterations are:

4 1 1

0 1
4 4

5 5 55 1 .2 .1 .1 7
4 5 6

t t ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= → = + + + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

4 2 2

1 2
4 4

7 7 87 1 .2 .1 .1 9
4 5 6

t t ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= → = + + + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

6 3 2

2 3
4 4

9 11 129 1 .2 .1 .1 12
4 5 6

t t ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= → = + + + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

6 3 2

3 4
4 4

12 12 1212 1 .2 .1 .1 12
4 5 6

t t ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= → = + + + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

This method takes one iteration less for the same task.

JCS&T Vol. 9 No. 2 October 2009

77

V. EXPERIMENTAL RESULTS
The simulations consist in counting how many units q

jA
are required to calculate for the proposed algorithm (RTA2)
and for the method of Sjödin ([17]) denominated RTA
(Response Time Analysis), and for the method of Bini ([18])
denominated HET.

The q
jA is the invariant for the proposed method and for

the method of Sjödin ([17]).
For the method of Bini ([18]) an invariant of one or two

calculations, of the type q
jA , can be counted.

In [18], the way to measure the computational cost is by
counting how many loops are performed to determine if the
system is schedulable.

Unfortunately, the introduced CC is not evaluated by the
invariant of method, and does not take into account that a
recursive method introduces a space charge in the
management of recursions.

Therefore, counting each time that this type of account
happens, the results of the three methods are comparable.

Subsequently the total average of how many units q
jA for

U is calculated.
Experiments were conducted with two groups of tasks. In

the first set, the election of the period and the execution time
of each task were performed in a random way with a uniform
distribution. The selected groups used periods between 25-
10000 and 25-100000 ticks.

The periods of tasks in the second group were divided
into subgroups by order of magnitude. Subgroups were
constructed with 25-100, 101-1000, 1001-10000 ticks and
another with 25-100, 101-1000, 1001-10000 and 10001-
100000.

 For example, for 10 tasks with periods between 25-
10000, the first 3 task periods were randomly chosen
between 25-100, with an exponential distribution centered at
50. The following 3 tasks used periods in the order of 101-
1000 centered on 500, and the remaining 4 with periods in
the order of 1001-10000 centered on 5000. A similar form
was used in [9, 21, 22].

The utilization factors in these groups are comprehended
between the 70% and the 95%, in jumps of a 5% with a
tolerance of the ±0.5%. Furthermore, for each utilization
factor, at least 10000 systems for each U were evaluated. The
U lower than 70%, were not considered, because under the
≈70% (ln 2*100) the boundary of Liu & Layland ([1])
guarantees the schedulability of the RTS when the number of
tasks is infinite. The number of tasks of the groups was 10,
20 and 50.

Figure 1. Set of 10 tasks with periods of 25-10000.

Figure 2. Set of 20 tasks with periods of 25-10000.

Figure 3. Set of 50 tasks with periods of 25-10000.

Figure 4. Set of 10 tasks with periods of 25-100000.

JCS&T Vol. 9 No. 2 October 2009

78

Figure 5. Set of 20 tasks with periods of 25-100000.

Figure 6. Set of 50 tasks with periods of 25-100000.

Figure 7. Set at U = 90% for periods of 25-10000 and 25-100000.

Figure 8. Set of 10 tasks with periods of 25-10000 (subgroups).

Figure 9. Set of 20 tasks with periods of 25-10000 (subgroups).

Figure 10. Set of 50 tasks with periods of 25-10000 (subgroups).

Figure 11. Set of 10 tasks with periods of 25-100000 (subgroups).

Figure 12. Set of 20 tasks with periods of 25-100000 (subgroups).

JCS&T Vol. 9 No. 2 October 2009

79

Figure 13. Set of 50 tasks with periods of 25-100000 (subgroups).

TABLE I. U = 90%, PERIODS OF 25-10000 AND 25-100000

Subgroups RTA RTA2 HET

10/25-10000 228 179 564
20/25-10000 913 682 6955
50/25-10000 5321 3852 50725

10/25-100000 343 255 896
20/25-100000 1080 819 22486
50/25-100000 6839 4874 297541

Figure 14. Set at U = 90% for period of 25-10000 and 25-100000.

VI. ANALYSIS RESULTS
The presented method and Bini’s method, when

compared with the methods presented by Sjödin (Fig. 7) at
U = 90%, it is possible to obtain average reductions between
the 11% to the 18% of the CC, depending on the type of the
system for a uniform distribution.

For the subgroups simulated with an exponential
distribution, the method presented achieved significant
improvements that hovered between the 21% to the 29% less
CC than the method Sjödin for a U at 90% (Fig. 14). Bini's
method for this type of system presented a significant
increase in CC and is dependent of the period, although
practically constant for the different utilization factors
simulated. This is because this method uses a calculation
method of hyperplanes.

 When there are differences of 2, 3 or 4 orders of
magnitude between the periods of the tasks, the method
should evaluate each hyperplane in which there is a task with
a small period but in conjunction with a task with a period of
several orders of magnitude larger, which generates a very
large search tree to the method. Unfortunately, this increases
exponentially the CC. For this reason, the curves of the
method of Bini weren’t shown in the previous figures, but
the results, are presented in Table I.

 The improvement in the CC of our method is considered
important just if we reason that the cost of obtaining it is
made just by a single array with dimension n-1. However,
the refinement in the algorithm can be used in other kind of
methods as the presented in [23] for the calculation of the
Slack Stealing, or in methods for Testing the schedulability.

VII. CONCLUSION AND FURTHER WORKS
In this paper is presented a reduced computational cost

method to determine the schedulability of a real time system.
The method proposed was compared with the most important
ones proposed in the real time literature. The results show a
reduction in the average computational cost, of between the
11% and 18% for a uniform distribution and a reduction
between the 21% and 29% for an exponential distribution in
subgroups of different order of magnitude. In further works,
the possibility of applying this algorithm to other types of
methods will be investigated. New tests with this
improvement will be developed.

REFERENCES
[1] C. L. Liu and J. W. Layland, "Scheduling Algorithms for

Multiprogramming in a Hard Real-Time Environment," Journal of the
ACM, vol. 20, pp. 46-61, 1973.

[2] M. Barabanov, "Best Practices on Wind River Real-Time Core
Application Development," Wind River Systems2008.

[3] J. A. Stankovic, "Misconceptions About Real-Time Computing: A
Serius Problem for Next-Generations Systems," IEEE Computer, vol.
Octubre, pp. 10-19, 1988.

[4] A. K. Mok and D. Chen, "A Multiframe Model For Real-Time
Tasks," IEEE Trans. Software Eng., vol. 23, pp. 635-645, 1997.

[5] A. Burchard, J. Liebeherr, Y. Oh, and S. H. Son, "New Strategies for
Assigning Real-Time Tasks to Multiprocessor Systems," IEEE Trans.
on Computers, vol. 44, pp. 1429-1442, 1995.

[6] C. C. Han, "A Better Polynomial-Time Schedulability Test for Real-
Time Multiframe Tasks," in IEEE 19th Real-Time Systems
Symposium, 1998, pp. 104-113.

[7] C.-C. Han and H.-y. Tyan, "A Better Polynomial-Time Schedulability
Test for Real-Time Fixed-Priority Scheduling Algorithms," in IEEE
18th Real-Time Systems Symp., 1997.

[8] T.-W. Kuo, Y.-H. Liu, and K.-J. Lin, "Efficient Online Schedulability
Tests fo Real-Time Systems," IEEE Transactions on Software
Engineering, vol. 29, pp. 734-751, August 2003.

[9] R. Davis and A. Burns, "Response Time Upper Bounds for Fixed
Priority Real-Time Systems," in The 29th IEEE Real-Time Systems

JCS&T Vol. 9 No. 2 October 2009

80

Symposium, IEEE, Ed. Barcelona, Spain: IEEE Computer Society,
2008, pp. 407-418.

[10] J. Y. T. Leung and J. Whitehead, "On the Complexity of Fixed-
Priority Scheduling of Periodic, Real Time Tasks," Perf. Eval.
(Netherlands), vol. 2, pp. 237-250, 1982.

[11] N. C. Audsley, A. Burns, M. F. Richarson, and A. J. Wellings, "Hard
Real-Time Scheduling: The Deadline Monotonic Approach," in
Proceedings 8th IEEE Workshop on Real-Time Operating Systems
and Software, Atlanta, GA, USA 1991.

[12] M. Joseph and P. Pandya, "Finding Response Times in Real-Time
System," The Computer Journal (British Computer Society), vol. 29,
pp. 390-395, 1986.

[13] J. P. Lehoczky, L. Sha, and Y. Ding, "The Rate Monotonic
Scheduling Algorithm: Exact Characterization And Average Case
Behavior," in IEEE Real-Time Systems Symposium, 1989, pp. 166-
171.

[14] J. Santos, M. L. Gastaminza, J. D. Orozco, D. Picardi, and O.
Alimenti, "Priorities and Protocols in Hard Real-Time LANs,"
Computer Communications, vol. 14, pp. 507-514, 1991.

[15] J. Santos and J. D. Orozco, "Rate Monotonic Scheduling in Hard
Real-Time Systems," Information Processing Letters, vol. 48, pp. 39-
45, 1993.

[16] N. C. Audsley, A. Burns, M. F. Richardson, K. Tindell, and A. J.
Wellings, "Applying New Scheduling Theory to Static Priority

Preemptive Scheduling," Software Engineering Journal, vol. 8, pp.
284-292, 1993.

[17] M. Sjödin and H. Hansson, "Improved Response-Time Analysis
Calculations," in IEEE 19th Real-Time Systems Symp., 1998, pp. 399-
409.

[18] E. Bini and C. B. Giorgio, "Schedulability Analysis of Periodic Fixed
Priority Systems," IEEE Trans. on Computers, vol. 53, pp. 1462-
1473, November 2004.

[19] Z. Manna, S. Ness, and J. Vuillemin, "Inductive Methods for Proving
Properties of Programs," Communications of the ACM, vol. 16, pp.
491-502, August 1973.

[20] L. Sha, R. Rajkumar, and J. P. Lehoczky, "Priority Inheritance
Protocols: An Approach to Real-Time Synchronization," IEEE
TRANSACTIONS ON COMPUTERS, vol. 39, pp. 1175-1185, 1990.

[21] R. I. Davis, "Approximate Slack Stealing Algorithms for Fixed
Priority Pre-Emptive Systems," Real-Time Systems Research Group,
University of York, York, England, Internal Report1994.

[22] R. I. Davis, K. W. Tindell, and A. Burns, "Scheduling Slack Time in
Fixed-Priority Preemptive Systems," Proceedings of the Real Time
System Symposium, pp. 222-231, 1993.

[23] J. M. Urriza, J. D. Orozco, and R. Cayssials, "Fast Slack Stealing
methods for Embedded Real Time Systems," in 26th IEEE
International Real-Time Systems Symposium (RTSS 2005) - Work In
Progress Session, Miami, EEUU, 2005, pp. 12-16.

JCS&T Vol. 9 No. 2 October 2009

81

	Text5: Received: Aug. 2009. Accepted: Sep. 2009

