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We study transport properties in a Tomonaga-Luttinger liquid in the presence of two time-
dependent point like weak impurities, taking into account finite-length effects. By employing an-
alytical methods and performing a perturbation theory, we compute the backscattering pumping
current (Ibs) in different regimes which can be established in relation to the oscillatory frequency
of the impurities and to the frequency related to the length and the renormalized velocity (by the
electron-electron interactions) of the charge density modes. We investigate the role played by the
spatial position of the impurity potentials. We also show how the previous infinite length results
for Ibs are modified by the finite size of the system.
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I. INTRODUCTION

In recent years there has been an intense focus on the
analysis of quantum transport and non-equilibrium situ-
ations in the context of electrons in low dimensionality,
such as quantum wires and carbon nanotubes [1–4]. In
particular, the problem of electronic transport through a
time-dependent perturbation has been studied in relation
to the X-ray excitation [5] and the possibility of charge
and spin exchange on conductors and semiconductors [6].
The investigation of the role of dynamic sources in highly
correlated electron systems in 1D reveals an interesting
equivalence with quantum evaporation of helium super-
fluids experiments [7]. Possible experimental realizations
are a pump laser applied on a carbon nanotube producing
a periodic deformation in the network structure that can
be understood as an effective time-dependent impurity
[8, 9] or a Hall bar with a constriction [10]. A detailed
knowledge of quantum wires behavior in the presence of
time-dependent perturbations will facilitate the develop-
ment of devices based on quantum computation, single
electron transport and quantum interferometers [11, 12].

In the theoretical study of dynamic impurities in Lut-
tinger liquids, an observable of special interest is the dc
component of the backscattered current Ibs, which mea-
sures the rate of change of the total number of right (or
left) movers in the system due to the backscattering im-
purities [13]. For a point like time-dependent oscillatory
impurity, Ibs has the same sign as the background cur-
rent (proportional to the external voltage) for strong re-
pulsive interaction and as a consequence the conductance
of a one-channel quantum wire grows [14, 15]. When a
local barrier is switched on at finite time, the backscat-
tered current decays with time in a way that crucially
depends on electron-electron interactions [16]. Another
interesting problem is the behavior of the current when
switching processes in the interaction between the wire
and the contacts are taken into account [17].

The presence of several oscillatory impurities produces
another interesting effect in low dimensional systems: a

pumping current, i.e. the persistence of Ibs even in the
absence of external voltage. These systems can be in-
terpreted as rectifiers, since they are characterized by
the induction of a directed current with pure ac driv-
ing [18]. In recent years there have been experimental
observations of the quantum pumping effect, including
the periodic deformation of the walls of quantum dots
[19–22] and the induction of currents by applying surface
acoustic waves in carbon nanotubes [23]. The pump-
ing current was studied in one-dimensional systems of
non-interacting electrons with different geometries like
wires or rings [24–28], quantum dots [29–31] and in a
quasi one-dimensional graphene ribbon [32, 33]. In the
context of Luttinger liquids, the pumping current was
computed for infinite length at zero and finite temper-
ature [34, 35], where a power (exponential)-law depen-
dence with the frequency, the spatial separation between
the impurities and the temperature was found in differ-
ent energy regimes with exponents which are functions
of the electron-electron interactions. We emphasize that
all these results were obtained taking as irrelevant the
energy scale associated with the size of the wire. A com-
putation of the pumping current in Luttinger liquids tak-
ing into account finite length does not seem to have been
made before. It is then very important, in order to make
more-realistic predictions, to understand the role that
length plays in the pumping current. This is the main
purpose of this article. It is worth mentioning that the
effects of finite length on a quantum wire transport prop-
erties were previously investigated for the cases of a static
impurity [36, 37] and a single dynamic impurity [38, 39].

In this work, we study the pumping current in a
Tomonoga-Luttinger liquid with finite length. By per-
forming a perturbative expansion in the backscattering
amplitude and using a real time formalism [40], we ob-
tain an analytical expression for Ibs. We will restrict our
analysis to the zero temperature limit. The paper is or-
ganized as follows. In Section II we present the model
and recall the results obtained for an infinite wire. Sec-
tion III contains the original contributions of this paper.
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FIG. 1: : The figure shows a quantum wire of length L
and Luttinger parameter K coupled adiabatically to two elec-
trodes (Fermi systems with velocity vF ) with the same chem-
ical potentials. In the wire there are two backscattering os-
cillating impurities whit the same frequency.

We present an analytical computation of the backscat-
tered pumping current taking into account the effect of
the finite length L. Then, we examine the results in dif-
ferent regimes which can be established as function of
the quotient of the frequencies associated to the oscilla-
tory impurities and the length. We also study the role
of the position of the barriers. Finally, in Section IV, we
summarize our results and conclusions.

II. THE MODEL AND REVIEW OF RESULTS
AT INFINITE LENGTH

We consider a system of interacting electrons in a one
dimensional space, composed by a clean quantum wire
of length L adiabatically coupled to two noninteracting
electrodes at its end points x = ±L/2. We restrict our
study to the case of spinless electrons and zero tempera-
ture. We will describe this system using the Tomonaga-
Luttinger model, which represents fermions with a lin-
earized dispersion relation and with a local forward-
scattering interaction between them. The Hamiltonian
then reads

H =

∫ ∞
−∞

dx

{
− i~vF

[
ψ†R∂xψR − ψ

†
L∂xψL

]
+g(x)

[
ψ†RψR + ψ†LψL

]2
+µ(x)

[
ψ†RψR + ψ†LψL

]}
+Himp,

(1)

where ψR and ψL are the fermionic field operators of the
right- and left-moving electrons (we have omitted for the
sake of simplicity their spatial-temporal dependence) and
vF is the Fermi velocity. The function g(x) describes the
electron-electron interaction and its value is a constant
g in the bulk of the wire and zero in the bulk of the
reservoirs; it is considered to change smoothly from 0
to g at the contacts within a length of scale d � Λ,
where Λ is a short-distance cutoff associated to the Fermi
wavelength (Λ ∼ ~/kF ). We also assume that L� d, i.e.
the wire has a well defined length L.

The additional term

Himp = gB
∑
±

∫ ∞
−∞

dx δ(x− x±) cos[Ωt+ δ±]

×
{
ψ†RψL exp[−2ikFx

~
] + ψ†LψR exp[

2ikFx

~
]

}
, (2)

represents the interaction of spinless electrons with two
dynamical impurities located at points x+ and x− in the
wire (i.e |x±| < L/2), with initial phases δ+ and δ− and
oscillating both with frequency Ω and coupling ampli-
tude gB . In expression (2) we only take into account
backscattering between electrons and impurities because
forward scattering does not change the transport prop-
erties here studied, at least not the lowest-order term of
a perturbative expansion in the couplings.

The left and right electrodes are considered noninter-
acting electron reservoirs of semi-infinite length. The
function µ(x), which describes the chemical potential
in the systems, is taken to be µ(|x| > L/2) = µ and
µ(|x| < L/2) = 0, i.e. both electrodes have the same
chemical potential so that the external voltage applied
to the quantum wire (defined as the difference between
the chemical potentials in the leads) is zero.

The assumption that the variation of g(x) is smooth
in the contacts [36, 37] and that the electrodes are held
at the same temperature and their fermionic distribu-
tions are in equilibrium [41] allows us to apply standard
bosonization techniques [42, 43]: the fermionic operators
are expressed in terms of the bosonic field Φ via the equa-

tion ψ†R(L)ψL(R) ' (2πΛ)−1 exp[+(−)2i(kF x~ +
√
πvFΦ],

while Φ is related to the charge density by the expres-

sion ψ†RψR + ψ†LψL = (2πvF )1/2∂xΦ. Under the condi-
tions described above, the Hamiltonian H −Himp in the
bosonized language is quadratic in the field Φ. After a
shift to reabsorb the linear term in Φ associated to the
chemical potential, we obtain the following effective La-
grangian density:

L =
1

2
v(x)2 (∂xΦ(x, t))

2 − 1

2
(∂tΦ(x, t))

2
+ Limp , (3)

that describes a spinless Tomonaga-Luttinger liquid with
renormalized velocity v(x) = v = vF /K when |x| <
L/2 and v(x) = vF when |x| > L/2. Here K =

1/
√

1 + 2g/π~vF measures the strength of the electron-
electron interactions; for repulsive interactions K < 1,
and for noninteracting electrons K = 1. The way v(x)
varies near the contacts from vF /K to vF is not physi-
cally relevant to our purposes because we take d � L.
Therefore, we adopt for simplicity the steplike func-
tion plotted in Figure 1. Limp contains the impurities
backscattering contribution in the wire:

Limp = − gB
π~Λ

∑
±
δ(x− x±) cos[Ωt+ δ±]

× cos[2kFx/~ + 2
√
πvFΦ(x, t)] . (4)
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Since there is no external voltage, in the absence
of impurities the background current is zero. On the
other hand, in the presence of impurities a backscattered
pumping current Ibs appears and the total current (in the
direction from the left electrode to the right electrode) is
I = −Ibs. The operator associated with the backscat-
tered current, which measures the rate of change of the
total number of left or right movers in the wire due to
the backscattering impurities is defined as [14, 34, 43]

Îbs(t) = e
dNL
dt

= ie[Himp, NL]/~ = −edNR
dt

, (5)

where

NL(R) =

∫ L/2

−L/2
dxψ†L(R)ψL(R) (6)

represents the total number of left- (right-) moving elec-
trons in the wire. In terms of the bosonic field Φ, the
backscattered operator is given by the equation

Îbs(t) =
gBe

π~Λ

∑
±

cos[Ωt+ δ±]

× sin[2kFx±/~ + 2
√
πvF Φ̂(x±, t)] . (7)

Notice that Îbs(t) is, by definition, independent of the
position on the wire x. Indeed, since it is connected
with the time evolution of the total number of left or
right moving particles, it involves an integral of the cor-
responding density over the x-variable. Of course, it does
depend on the positions x± of the impurities in the wire.
The backscattered current at any time t is given by

Ibs(t) = 〈0|S(−∞; t)Îbs(t)S(t;−∞)|0〉 , (8)

where 〈0| denote the initial state and S is the scattering
matrix, which to the lowest order in the coupling gB is
given by

S(t;−∞) = 1− i
∫ ∞
−∞

dx

∫ t

−∞
Limp(t

′)dt′ . (9)

When one inserts (9) into (8) one finds several terms
of the form

Aα,β = 〈0| exp[2iα
√
πvF Φ̂(x′, t′)] exp[−2iβ

√
πvF Φ̂(x, t)]|0〉,

(10)
with α, β = ±1. This kind of vacuum expectation values
(v.e.v.) of vertex operators has been computed many
times in the literature. It is well-known that Aα,−α = 0
and thus the building block of our computation is A1,1 =
A−1,−1. Using Baker-Campbell-Hausdorff formula and
the Debye-Waller general relation[2], A1,1 can be written
as the exponential of a v.e.v.:

A1,1 = exp
[
4πvF 〈0|Φ̂(x′, t′)Φ̂(x, t)− Φ̂2(x′, t′) + Φ̂2(x, t)

2
|0〉
]
.

(11)

Now, we review the result for the pumping current in
the case of L =∞ [34]. In order to explicitly evaluate the
previous expressions we need Keldysh [40] lesser function
G< at infinite length and zero temperature given by

〈0|Φ̂(x′, t′) Φ̂(x, t)|0〉 = iG<(x, t;x′, t′)

=
1

2π

∫
dp dω eip(x−x

′)−iω(t−t′) θ(−ω) δ(ω2 − v2p2).

(12)

Joining these last two equations we obtain

A1,1 =
Λ2K(

(x− x′)2 − (v(t− t′) + iΛ)2
)K . (13)

Then, using (13) in the computation of (8), we find the
following expression for Ibs:

Ibs =
g2
BeΛ

2K−2 sin[ 2kF a
~ ] sin[φ]

4π2~2

∫ ∞
−∞

exp[iΩt′] dt′(
a2 − (Λ + ivt′)2

)K .
(14)

In this equation a = x+ − x− represents the spatial sep-
aration between the two impurities and φ = δ+ − δ−
is their phase difference. We observe that (14) is time-
independent, this is due to the absence of external volt-
age. In general, when an external voltage V is applied
to the wire, the backscattered current at second order in
gB has two parts: one independent of time (which we
can identify with the dc current), and another varying
harmonically with time, with frequency 2Ω (which we
can identify with the ac current that does not contribute
to any charge transfer and whose average over the period
2π/Ω is zero) [34, 35]. For the pure pumping case studied
here (V = 0), the calculation of (8) gives automatically
a vanishing ac current.

Now let us go back to equation (14). Performing the
integral and defining the dimensionless frequency ωa =
Ω|a|/v associated with the separation between barriers,
Ibs can be expressed as

Ibs =
eg2
BΛ2K−2Ω2K−1 sin[ 2kF a

~ ] sin[φ]

2K+1/2
√
π~2v2KΓ[K]

ω1/2−K
a JK−1/2[ωa],

(15)
where Γ is the Gamma function and J is the Bessel func-
tion of the first kind. The factors sin[ 2kF a

~ ] and sin[φ] are
characteristic of a pumping current in one-dimensional
systems, and show that the direction of Ibs at zero volt-
age is determined by the spatial separation and phase dif-
ference between impurities. The behavior Ibs ∝ g2

B sin[φ]
was predicted for a two-barrier quantum pump in a linear
setup [29], in an annular setup [24, 25] and also obtained
within Floquet scattering matrix formalism [28]. The
proportionality Ibs ∝ sin[ 2kF a

~ ] exclude the possibility of
pure pumping with a single impurity (a = 0) in a quan-
tum wire. Moreover, since ~/kF ∼ Λ ≈ 1Å, the factor
sin[ 2kF a

~ ] is rapidly oscillating as a function of a.
The dimensionless parameter ωa measures the relation

between the separation of the barriers and the dynamic
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FIG. 2: : Pumping current at finite length (Ibs) divided by
the pumping current at infinite length (I0) as function of u
in the regimes of ωa, ωr � 1. Dotdashed line corresponds to
K = 0.2, dashed line to K = 0.3, dotted line to K = 0.5 and
solid line to K = 0.7.

length scale v/Ω associated to the frequencies of the im-
purities. Large (small) values of ωa correspond to a scale
regime of long (short) separation of the barriers. From
(15), we obtain as a result that in the scale regime of
large separation (ωa � 1), the pumping current goes as
ω−Ka cos[ωa−Kπ/2]. We thus have a damped oscillatory
function of ωa with period 2π and there is a suppression
of Ibs when ωa = π

2 (2n + 1 + K) with n natural. On
the other hand, in the scale regime of short separation
(ωa � 1) the current is independent of ωa.

Note that for K < 1/2, the pumping current becomes
large when Ω decreases. Hence, the perturbative expan-
sion in powers of gB breaks down when Ω → 0. Using
a scaling analysis we can estimate that this expansion is
valid when gB

~v (ΛΩ
v )K−1 � 1. We remark that expression

(15) does not include the case Ω = 0, where the pumping
current is also zero. All these statements imply that the
current must be a nonmonotonic function of Ω. In or-
der to determine this function one has to go beyond the
lowest-order perturbative results.

III. RESULTS AT FINITE LENGTH

In this section we present the main results of this work.
We will compute the backscattered pumping current at
finite length. The effect of the quantum interference orig-
inated by reflections at the ends of the wire (which are
now at finite distances from the barriers) modifies dras-
tically the expression of the backscattered current. The
crucial point is that when the wire has finite length L the
function (11) becomes dependent on L and, since there
is no translational invariance, not only on x− x′ but on
x and x′ separately . In this case, after computing (11)
(see Appendix A and [36]), inserting the result in (8)
and performing the rescaling t→ vt/L, we obtain for the

backscattered current Ibs, the expression

Ibs =
g2
Be sin[ 2kF a

~ ] sin[φ]

(2π)2~2Λ2(v/L)

∫ ∞
−∞

exp

[
i
ΩL

v
t

]
F (t) dt,

(16)
where:

F (t) = exp

{
−K ln

[(
(Λ/L) + it

)2
+ (a/L)2

(Λ/L)2

]

−K
∑

n∈Zeven6=0

γ|n| ln

[(
(Λ/L) + it

)2
+ (n+ a/L)2

n2

]

−K
∑

n∈Zodd

γ|n| ln

[ (
(Λ/L) + it

)2
+ (n+ r/L)2

(n+ a/L+ r/L)(n− a/L+ r/L)

]}
.

(17)

In the last expression γ = (1−K)/(1+K) is the Andreev-
like reflection parameter and r = x+ + x− is the center
of mass of the impurities. Notice from eq. (16) that, as
for the infinite wire, the current vanishes for the special
case of a single impurity (a = 0). This is also a conse-
quence of the fact that, for a single impurity, the current
depends on the position of the impurity only through
the Keldysh lesser function G< (this is straightforward
from eq. (8)) which is invariant under spatial inversion.
However, since the current changes sign under this trans-
formation, i.e. under interchange of left and right, then
it must be zero (this argument holds, of course, in the
absence of an external voltage).

For u = ΩL
v � 1, i.e. when the frequency Ω of the

barriers is much bigger than the ballistic frequency v/L
related to the length of the quantum wire, we have the
regime of long wires. In realistic systems the renormal-
ized velocity is in the range of 106m/s, so that the wire
length scale corresponds to a value of L subject to the
condition L � (106m/s)/Ω. For example, for frequen-
cies of order 1012Hz and 109Hz, the corresponding wire
lengths satisfy L � 10−6m and L � 10−3m, respec-
tively. For carbon nanotube experiments a typical length
is in the range that runs from 1 µm to a few cm; hence,
values of u > 1 should be observable in the high range
of frequencies. In this regime it is possible to obtain an
analytic expression for (16) along the lines explained in
Ref. [44].

In order to compute the integral in (16), it is important
to notice that the logarithms in (17) must be defined with
their branch cuts in the negative real semi-axis. As a
consequence, in the complex t-plane the function F (t) has
an infinite number of vertical branch cuts that go from
(n±x/L+ iΛ/L) to (n±x/L+ i∞) for each integer n (x
refers to a or r depending on whether n is even or odd,
respectively). Therefore, the integral in (16) amounts
to infinitely many integrals in the complex t-plane along
curves that enclose each of these vertical branch cuts. At
this point, the rescaling t → t/u allows us to identify
the leading contribution to Ibs for large u. The integrals
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around the cuts can be explicitly solved to leading order in u and give the following result for Ibs:

Ibs =
eg2
BΛ2K−2Ω2K−1 sin[ 2kF a

~ ] sin[φ]

2K+1/2
√
π~2v2K

{
D0 ω

1/2−K
a JK−1/2[ωa]

−
∑

n∈Zeven6=0

De
n ω

1/2−Kγ|n|
a u2K(γ|n|−1)

(
cos[|n|u+ πγ|n|] JKγ|n|−1/2[ωa]− sgn[na] sin[|n|u+ πγ|n|]NKγ|n|−1/2[ωa]

)
−

∑
n∈Zodd

Do
n ω

1/2−Kγ|n|
r u2K(γ|n|−1)

(
cos[|n|u+ πγ|n|] JKγ|n|−1/2[ωr]− sgn[nr] sin[|n|u+ πγ|n|]NKγ|n|−1/2[ωr]

)}
(18)

where ωr = Ω|r|/v , sgn is the sign function, N is the
Bessel function of second kind and we have defined the
following coefficients that depend on the location of the
impurities and the electron-electron interaction:

D0 =
∏

m∈even6=0

∣∣∣∣m+ 2 aL
m

∣∣∣∣−K γ|m|
1

Γ[K]
, (19)

De
n =
|n(n+ 2 aL )|−K

2−KΓ[Kγ|n|]

∣∣∣∣ n3

8( aL + n)

∣∣∣∣K γ|n|

×
∏

m∈Zeven6=±n,0

∣∣∣∣ m2

m2 − n2 + 2 aL (m− n)

∣∣∣∣Kγ
|m|

×
∏

m∈Zodd

∣∣∣∣ (m+ r
L )2 − ( aL )2

(m+ r
L )2 − (n+ a

L )2

∣∣∣∣Kγ
|m|

(20)

Do
n =
|( aL )2 − ( rL + n)2|−K

2−KΓ[Kγ|n|]

×
∣∣∣∣ (n2 − ( aL + r

L )2)(n2 − ( aL −
r
L )2)

8( rL + n)n

∣∣∣∣K γ|n|

×
∏

m∈Zeven

∣∣∣∣ m2

(m+ a
L )2 − ( rL + n)2

∣∣∣∣K γ|m|

×
∏

m∈Zodd 6=±n

∣∣∣∣ (m+ r
L )2 − ( aL )2

m2 − n2 + 2 rL (m− n)

∣∣∣∣K γ|m|

. (21)

Result (18) is the generalization to finite length (and con-
sidering L � v/Ω) of the result shown in Section II for
the pumping current. Thus, we have obtained an analyt-
ical expression for Ibs at the lowest-order in the impurity
coupling gB , as a function of the length of the wire, the
frequency and position of the impurities and the strength
of the interaction between electrons. The pumping cur-
rent at finite length is a superposition of infinite damped
oscillatory functions of u with period 2π/|n|, each of them

decaying as u2K(γ|n|−1). The origin of the oscillation of
the pumping current in terms of the length is the interfer-
ence effect of plasmon modes which are reflected by both
the impurities and the wire-reservoir contacts. In addi-
tion to ωa (defined in the previous section), the dimen-
sionless parameter ωr characterizes the relation between
the medium position (|r|) of the impurities with the dy-
namic length scale v/Ω, i.e. it is a measure of the sym-
metry of the impurities distribution in the wire. Large
(small) values of ωr correspond to a scale regime of low
(high) symmetry of the barriers position (with respect to
the center of the wire). Notice that in the case L = ∞,
considered in the previous section, there was no depen-
dence of Ibs with the center of mass of the impurities.
On the contrary, for finite L there appears a dependence
on r due to the breaking of translational invariance.

If we consider the limit r → 0 (a symmetrical arrange-
ment with respect to the center of the wire) and a→ 0 in
equation (18) the pumping current acquires the compact
form

Ibs ≈ I0

{
1− 2

∞∑
n=1

∞∏
m 6=n,m>0

∣∣∣∣ m2

m2 − n2

∣∣∣∣2Kγ
m

× Γ(2K)2−2Kγn

n2K(γn−1) cos[nu+ πγn]

Γ(2Kγn)u2K(1−γn)

}
, (22)

where I0 is the value for the current in the case L =
∞ computed in the previous section. Expression (22)
is a good approximation for the pumping current in the
regimes ωr � 1 and ωa � 1, that is when the center of
mass and the spatial separation are much smaller than
the length scale associated with the frequency v/Ω. It
is worth mentioning that in the case of noninteracting
electrons (K = 1 and γ = 0), denominators in (22) go
to infinity and the pumping current is equal to I0, i.e.,
there is no finite length effect when K = 1.

In Figure 2 we have plotted (22) as a function of u
and for different values of K. The differences between
I0 andIbs are more pronounced for high electron-electron
interactions (K → 0). Accordingly, in this case the effect
of the finite length remains important even for big values
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FIG. 3: (Color online) Pumping current as function of ωa
and ωr for two values of K. The units of Ibs are set equal to
eg2BΛ2K−2Ω2K−1 sin[

2kF a
~ ] sin[φ]

2K+1/2√π~2v2K and we consider a, r > 0.

of u: the damping factor of each oscillatory function that
represents a correction to I0 has the form Cnu

2K(γn−1),
where Cn is a coefficient determined by equation (22).
Given that Cn+1 < Cn for any value of K, then the
most important correction to Ibs goes as L2K(γ−1). For
example, given K = 0.25, the dominant correction to I0
for large u is a term cos[u + 3π/5]u−1/5 that shows the
very slow convergence of the series.

We notice that this behavior is analog to the results
previously obtained for the case of a static impurity in a
finite quantum wire at non zero external voltage V when
the impurity is in the center of the wire [36, 37] if we
replace Ω by the Josephson frequency eV/~ associated
with the external voltage. That is to say, the distortion
in the current with respect to the infinite length case
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FIG. 4: (Color online) Absolute value of the difference be-
tween the pumping current at finite and infinite length as
function of K and the geometry (ωa or ωr). The units of Ibs
is the same as in Fig. 3 and we consider a, r > 0.

corresponding to two oscillatory impurities with different
positions (both close to the center of the wire) and at zero
voltage is similar to the case of one static impurity at non
zero voltage.

In the cases when ωr � 1 or ωa � 1, we have a regime
where the spatial distribution of the impurities with re-
spect to the center of the wire and the spatial separation
between them is greater than v/Ω (large tunneling). Us-
ing the asymptotic expansion for the Bessel function for
large values of their arguments, Nα(x) ∼ sin[x − π

2 (α +

1/2)]x−1/2 and Jα(x) ∼ cos[x − π
2 (α + 1/2)]x−1/2 for

x � 1, we find that in addition to the dependence in u,
expression (18) is a superposition of damped oscillatory
functions in terms of ωr and ωa, each one with period 2π

and a decaying factor of the form ω−Kγ
2n

a and ω−Kγ
2n+1

r

in the region given by ωa,r � u. As an example, in Figure
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3 we show the behavior of Ibs as a function of the posi-
tion of the barriers where this periodicity is manifest. It
is worth noting that the backscattering current for infi-
nite L is suppressed, as shown in the previous section, for
particular values of ωa, namely ωa ≈ π

2 (2n+ 1 +K). On
the contrary, as can be seen from Figure 3, for finite L
the regions on which Ibs vanishes are determined by the
values of ωr as well. Of course one can also notice that
as the interactions decrease (larger K) the dependence
on ωr diminishes and the regions where Ibs = 0 resemble
those of infinite L.

In Figure 4 we show the dependence of the absolute
value of the difference between the value of Ibs at finite
and infinite length with the Luttinger parameter K and
the relative and medium position of the impurities. Al-
though for weak interactions the effect of the length dis-
appears, for high interactions it becomes relevant and the
distortion with respect to the infinite length case is sensi-
tive to the specific values of the length of the wire (u) and
the position of the barriers. In general, when ωa+ωr → u
(that is, when one impurity is in any extreme of the wire)
the difference with the infinite length case is more pro-
nounced. One can see on the lower graph of Figure 4 that
the same is true for a symmetric configuration (ωr → 0).

We finally consider the regime of small length u =
ΩL
v � 1. The integral in expression (16) is once more

performed along the infinitely many branch cuts of F (t)
in the complex t-plane. The leading contributions to Ibs
for small u are given by

Ibs =
eg2
BΛ2−2KΩ2K−1 sin[ 2kF a

~ ] sin[φ]

2π~2v2K

× F0

( a
L
,
r

L

)
u2−2K

[
1− u2F1

( a
L
,
r

L

)]
, (23)

where we have defined the factors

F0 =
∏

n∈Zeven 6=0

(
n2
)K γ|n| ∏

n∈Zodd

[(
n+

r

L

)2

−
( a
L

)2
]K γ|n|

(24)
and

F1 =
K

3

[ ∑
n∈Zeven

γ|n|
(

1 +Kγ|n|
)(

2n+
a

L

)2

+
∑

n∈Zodd

γ|n|
(

1 +Kγ|n|
)(

2n+
r

L

)2 ]
. (25)

Expression (23) shows that for short wires Ibs goes as
u2−2K , i.e. the current goes to zero when L → 0; this
suppression is more pronounced for stronger interactions
between electrons. When K = 1, we have F0 = 1 and
F1 = 0, i.e. the dependence with L and the positions of
the barriers is dropped and the current is the same to the
case at infinite length with noninteracting electrons. In
terms of the frequency and the length, the pumping cur-
rent goes as Ω and L2−2K respectively. We observe that,
unlike the cases at infinite and large length, the collapse

-0.4 -0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

0.4

a

L

r

L

K=0.3

1.4

1.6

1.8

2.0

2.2

F0

FIG. 5: (Color online) The factor F0 describes the dependence
with the geometry of Ibs in the case of short wires.

at Ω ≈ 0 disappears and then the pumping current goes
to zero when Ω decreases. In this case, the expansion in
the coupling constant gB is valid when gB

~v (Λ
L )K−1 � 1.

Since the influence of the position of the barriers is dom-
inated by the factor F0, in Figure 5 we plot F0 as a
function of r/L and a/L: it has a maximum for a sym-
metrical arrangement (r = 0) and a = 0 and decreases
when |a| or |r| increase.

IV. CONCLUSIONS

To summarize, we have analyzed the characteristics of
time-dependent transport in a Tomonaga-Luttinger liq-
uid subject to a zero bias voltage, when two weak barriers
are oscillating in the wire. We focused our attention on
the backscattered pumping current Ibs.

The novel features of our investigation come from the
consideration of a wire of finite length L. We analyzed
the distortion of the pumping current with respect to
the infinite length case. In order to do so, we defined
a dimensionless parameter u = ΩL/v and presented an
exact and analytical computation of Ibs as a function of
u for long (short) wires, that is, when u � (�)1. For
long wires the pumping current is a superposition of infi-
nite damped oscillatory functions of u with period 2π/n,
with n a positive integer, each of these oscillations has
a decay prefactor of the form u2K(γn−1). The origin of
the oscillation of the pumping current in terms of the
length is the interference effect of plasmon modes which
are reflected by both the impurities and the wire-reservoir
contacts. As expected, for strong electron-electron inter-
actions (K → 0) the distortion with respect to the infi-
nite length case is more drastic and persists even for big
values of u = ΩL/v. On the other hand, for weak inter-
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actions the effect of the length disappears and Ibs tends
to the infinite length value.

In the regime (u � 1), the current Ibs also depends
on the dimensionless parameters ωa = |a|Ω/v and ωr =
|r|Ω/v, that characterize the role of the geometry, i.e.
the relation between the relative (a) and medium posi-
tion (r) of the impurities with the dynamic length scale
v/Ω. The dependence of Ibs with r, that as expected
was not present in the case of L = ∞, is due to the
breaking of the translational invariance. When ωa,r � 1
the dependence with the position of the impurities in the
relation between the pumping current at finite and infi-
nite length can be dropped. In the opposite limit, when
u � ωa,r � 1, the current becomes a superposition of
damped oscillatory functions of ωr and ωa, both with

period 2π and a decaying factor of the form ω−Kγ
2n

a or

ω−Kγ
2n+1

r .
Concerning the small length regime (u� 1), the whole

structure of damped oscillatory functions disappears and
Ibs is proportional to Ω and L2−2K , showing a more pro-
nounced suppression of the current for strong interac-
tions. In this case the dependence with the geometry
is modulated by a factor which is maximum when |a|/L
and |r|/L tend to zero.
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Appendix A: Computation of exponentials of the
Φ-fields at finite length

In this Appendix we compute the expectation value
in (11) for finite length and zero temperature; this leads
to expression (16) for the backscattered current Ibs. We

begin by considering a scalar field Φ̂(x, t) in a finite one-
dimensional spacelike region of size D; we will impose
periodic boundary conditions at x = ±D/2 and take the
limit D → ∞. The field satisfies the following equation
of motion derived from the Lagrangian density (3)(

∂2

∂t2
− ∂

∂x
v2(x)

∂

∂x

)
Φ̂(x, t) = 0 . (A1)

The solutions of (A1) can be written as

Φ̂(x, t) =
∑
p>0

âp e
−i p vF t φp(x) + â†p e

i p vF t φ∗p(x) , (A2)

where a†p and ap satisfy the algebra of creation and an-
nihilation operators and φp(x) are given by

φ+
p = C+ cos (Kpx) , (A3)

φ−p = C− sin (Kpx) . (A4)
The quantized momenta p are the positive solutions of

the equation

f±(p) = (1−K) sin
{p

2
[(1 +K)L−D]

}
∓ (1 +K) sin

{p
2

[(1−K)L−D]
}

= 0 , (A5)

where the upper (lower) sign corresponds to φ+
p (φ−p ). To

leading order in D the normalization constants C± take
the following values:

C± =
2K√
D

[
1 +K2 ∓ (1−K2) cos (KpL)

]−1/2
. (A6)

From (A2) we can express the v.e.v. in (11) in terms of
an infinite sum over all positive solutions p of (A5). This
sum can be written as an integral in the complex p-plane
along a contour which encloses the quantized momenta p
if we introduce in the integrand the logarithmic derivative
∂p ln f±(p). Afterwards, the contour of integration can be
deformed to the positive real semi-axis. The result, for
large D, reads

〈0|Φ̂(x′, t′)Φ̂(x, t)− Φ̂2(x, t) + Φ̂2(x′, t′)

2
|0〉 =

D

4πvF
×

×
∑
s=±

∫ ∞
0

dp

p
e−Λ p

[
φsp(x)φsp

∗(x′) e−i vF p (t−t′) −

− 1

2
φsp(x)φsp

∗(x)− 1

2
φsp(x

′)φsp
∗(x′)

]
,

(A7)

where Λ is a small length regulator. From (A7) we obtain

A1,1 = exp[−K ln{ (Λ− iv(t− t′))2 + (x− x′)2

Λ2
}

−K
∑

n∈Zeven 6=0

γ|n| ln{
((Λ/L)− iv(t− t′)/L)2 + (n+ x−x′

L )2

n2
}

−K
∑

n∈Zodd

γ|n| ln{
((Λ/L)− iv(t− t′)/L)2 + (n+ x+x′

L )2

(n+ 2x/L)(n+ 2x′/L)
}].

(A8)

We remark that the logarithms in (A8) are defined with
their branch cuts on the negative real semi-axis.
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