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ABSTRACT 

Minimization of query execution time is an 

important performance objective in distributed 

databases design. While total time is to be 

minimized for On Line Transaction Processing 

(OLTP) type queries, response time has to be 

minimized in Decision Support type queries. Thus 

different allocations of subqueries to sites and their 

execution plans are optimal based on the query type. 

We formulate the subquery allocation problem and 

provide analytical cost models for these two 

objective functions. Since the problem is NP-hard, 

we solve the problem using genetic algorithm (GA). 

Our results indicate query execution plans with total 

minimization objective are inefficient for response 

time objective and vice versa. The GA procedure is 

tested with simulation experiments using complex 

queries of up to 20 joins. Comparison of results with 

exhaustive enumeration indicates that GA produced 

optimal solutions in all cases in much less time.   

Keywords: Physical Database Design, Genetic 

algorithms, Distributed database design, Subquery 

allocation, Response time minimization 

 
1.  INTRODUCTION 

Distributed database systems have become very 

important and common in today’s geographically 

distributed organizations. The performance problems 

relating data distribution and query processing in 

distributed databases are known to be critical issues 

[10]. Distributed database design and query 

optimization have been active research areas 

[21][27][13][19][15][5][14]. The design of 

distributed query processing can be divided into two 

aspects: query execution order and query execution 

plan or operation allocation. While query execution 

order specifies the order in which subqueries are 

executed, operation allocation indicates the sites 

from which the operations (subqueries) are executed.  

Queries can be classified into OLTP (On-Line 

Transaction Processing) and Decision Support [3]. 

“To inquire about airline seat availability” is an 

example of OLTP type query in the travel industry, 

which is a highly repetitive transaction that requires 

high throughput. A transaction such as “to provide 

sales details of specific routes by region and travel 

agent” in the travel industry is an example of 

decision support, which requires low response time.   

Thus, the query execution plans for OLTP and 

decision support queries need to be designed with 

total time minimization and response time 

minimization objectives, respectively. Total time 

minimization aims at minimizing the total resource 

consumption (I/O, CPU, and Communication) and 

maximizing overall throughput of the system, while 

the response time minimization aims at minimizing 

the time between query origination and result 

receipt. While OLTP and decision support queries 

are most common in the business world, previous 

research paid little attention to design distributed 

databases to optimize both these types of queries 

together. The optimization of both these types of 

transactions will make the database operations 

efficient, thus making the working environment of 

business decision makers more efficient. The 

objective of the paper is to present a methodology 

for a distributed database query optimization 

strategy that selects between total-time and response 

time (elapsed-time) cost functions according to the 

target application type. The queries are decomposed 

into subqueries and these subqueries are allocated 

among the nodes of the network so that the two 

objective functions (minimization of total execution 

time and minimization of response time) are 

optimized in order to meet the processing 

requirements of OLTP and Decision Support 

transaction types.   

While most previous works focused on query 

execution order, operation allocation has received 

little attention. In today’s geographically distributed 

organizations, since more sophisticated data access 

is needed by managers in areas such as decision 

support and deductively augmented database 

systems, answering OLTP and decision support type 

queries often requires a large number of joins [20]. 

If a query references n relations, and each relation 

iR  has iX  copies, ni ≤≤1 , then a 

straightforward enumeration algorithm for selecting 

one copy of each relation takes time )(
1∏ =

n

i
iXO  [20]. 

The problem of finding the minimum cost allocation 

is NP-hard. In order to deal with this hard problem, 

we use Genetic Algorithms [11] to arrive at near 

optimal solution. Genetic algorithm is a heuristic 

solution that has been used to solve intractable 
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problems in database design [5] [8] [22].  Next, we 

present prior research in distributed database design 

and query processing. Section 2 has discussion of 

cost models. Section 3 has research results based on 

genetic algorithm. Section 4 has conclusions.  

 

Previous Research 

[15] provides a survey of techniques useful for query 

processing in distributed databases. In order to 

improve distributed database performance, two types 

of problems are important: data allocation (how to 

allocate data fragments to sites) and operation 

allocation (how to allocate subqueries to sites).  

Regarding data allocation problem, [1] developed a 

methodology for identification and allocation of 

vertical and horizontal fragments based on the user 

queries /updates in distributed databases, with the 

objective of minimizing total transmission cost. [25] 

proposed an integrated methodology to the problems 

of data fragmentation, replication, and fragment 

allocation in distributed databases. [5] used genetic 

algorithms to solve data partitioning problem after 

modeling it as a traveling salesman problem. [2] 

propose a methodology for distribution design for 

Object DBMS, using both vertical and horizontal 

partitioning techniques. [18] determine vertical and 

horizontal fragments in distributed object-oriented 

and object-relational databases.    

Regarding operation allocation problem, [20] 

conducted simulation experiments to compare four 

heuristic algorithms (branch-and-bound, greedy, 

local search, and simulated annealing) for 

assignment of sub-queries. The objective function is 

total query cost comprising of local processing and 

communication costs. [9] propose run-time operation 

allocation policies for hierarchically structured, 

hypercube-based multicomputer system. The site 

assignments are not determined a priori, instead, 

they are assigned during the execution of a query.  

Regarding combined problem, [6] propose an 

integrated methodology to determine the optimal 

allocation of relations and query operations to sites 

to minimize the communication costs. [19] extended 

the work of [6] and used the objective function of 

total system cost comprising of storage, I/O, CPU, 

and communication. The authors did not consider 

response time objective function in their analysis. 

[14] extend the previous work of [19] by 

incorporating network latency time and parallel 

processing among the nodes. 

[19] state “It is extremely important to recognize the 

ability of distributed systems to do parallel 

processing, because it is a key component in 

achieving fast processing” (p. 315). Furthermore, 

OLTP and decision support type of transactions need 

to be processed with different objective functions. 

We extend previous research by considering both the 

total time and response time minimizations in the 

objective function, so that OLTP and decision 

support queries can be optimized, respectively.    

We include the response time cost model to the 

operation allocation problem by considering inter-

operation parallelism and recursive cost function. 

We incorporate the allocation and parallel 

processing of subqueries for handling OLTP and 

Decision Support type transactions.  Thus, our 

contribution in this research considering both types 

will be valuable to the industry.  

 

2. DEVELOPMENT OF COST MODELS 

Query Processing 

The first step of query processing in a distributed 

context is to transform a high-level global query into 

an efficient execution strategy (the ordering of 

operations) on local databases. The set of execution 

order of subqueries and their precedence 

relationships can then be represented as a query tree. 

Each operation in the query tree is viewed as a 

separate subquery with one or two input relations 

and an output relation. An input relation is either a 

relation maintained by the system or the output 

relation of another query. The output of a subquery 

is an intermediate relation, which is stored at the site 

it is referenced and deleted after the query is 

answered. We consider the relational algebra 

operators: projection, selection and join. Other 

operations can be included without altering the 

operation allocation algorithm proposed in this 

research. Also note that we assume that the structure 

of the query, i.e., the query execution order, is fixed 

prior to operation allocation. Our assumption is 

consistent with those of previous researchers [28] in 

distributed databases. [28], in the design of Mermaid 

system, assumed some adhoc execution orders for 

designing optimization algorithms for distributed 

query processing. 

There is a site set associated with each node in the 

query tree. The members of the site set for a leaf 

node are those sites that hold a copy of that relation. 

The site set for an operation node contains those 

sites that can perform the operation. In general, 

selection and projection operations requiring 

relations should be executed at only those sites that 

hold a copy of relations referenced so that there is no 

transmission of a relation required at the site of the 

operations, but join operations can be executed at 

any site. In the query tree, cost is associated with the 

operation nodes representing local processing times, 

including estimated CPU time and I/O time for its 

execution. The communication cost is associated 

with transmitting the output relation from the site of 

source node to the site of the receiving node.   

 

Cost Models 

The total time is the sum of all cost (time) 

components, while the response time is the elapsed 

time from the initiation to the completion of the 

query, including time to transmit the results back to 
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the site where the query has originated. We assume 

pre-compiled queries in our cost computations. 

Let T, I, and K be the set of all sites, relations, and 

queries, respectively. A query transaction k can be 

decomposed into j subqueries (operations). 

Following is the list of variables. 

(1) jt
k

Y  (specifying the site at which each 

subquery is executed) is 1 if subquery j of 

query k is done at site t, otherwise it is 0. We 

also introduce jp[m]t
k

Y  where p[m] represents 

two previous operations for join operation j, 

and m is 1 for the left previous operation and 

2 for the right previous operation in the query 

tree. So jp[m]t
k

Y  is 1 if the left (m = 1) or 

right (m = 2) previous operation for join 

operation j of query k is done at site t, 

otherwise it is 0. 

(2) Xit  (representing the data allocation) is 1 if 

relation i is stored at the site t. otherwise it is 

0. ij
k

Z  is 1 if input (or intermediate) 

relation(s) i is referenced by subquery j of 

query k. We also introduce ijp[m]
k

Z  where 

p[m] represents two previous operations for 

join operation j; ijp[m]
k

Z  is 1 if input (or 

intermediate) relation i is referenced by the 

left (m = 1) or right (m = 2) previous 

operation for join operation j of query k, 

otherwise it is 0. 

The operation allocation problem can be expressed 

as follows: 

Find:  
jt

k

Y  (operation allocation; site t for subquery 

j of query k) 

Given: 
itX  (data allocation; relation i stored at site 

t) and 
ij

k

Z   (relation (or intermediate result) i 

referenced by subquery j of query k) 

 

Total Time Model 

The total time for each query is the sum of local 

processing times and communication times for all 

subqueries.  Total Time = (LP +  COM )j
k

 j
k

j∑ , 

where j
k

LP  represents the local processing time of 

the subquery j (a node in the query tree) of a query 

k. j
k

COM  represents the communication time of 

transmitting the input relation(s) to the site at which 

the subquery j of a query k is being executed. 

 

Local processing time ( j
k

LP )  

The local processing time of a subquery depends on 

an operation type, the size of the input relation(s), 

the CPU speed and the I/O speed of the site selected. 

We assume that CPU processing is proportional to 

the amount of data accessed and that I/O time is 

proportional to the number of blocks read or written.  

(A) For a selection or projection operation on a 

relation, the local processing time for the subquery j 

of the query k is defined as:    

j
k

LP = 

Y  (IO   Z B  CPU  Z Bjt

k

t t ij

k

i ij

k

t ij

k

i ij

k

∑ ∑ ∑+ )    (1)                       

Where  

Bij

k
  is the number of blocks of relation i accessed by  

        subquery j of query k, 

IO t  is the I/O time of site t in msec for transferring  

       4k byte page into main memory, 

CPUt  is the CPU time of site t in msec per 4k  

       byte page for selection and/or projection.. 

 

 (B) We also assume that the intermediate result of 

each unary or join operation is transmitted directly to 

the next join site and stored at the next join site 

before the execution of the next join operation. As 

such, the local processing time for the join j of the 

query k is defined as: 

j
k

LP = Y  IO   Z Bjt

k

t mi ijp[m]

k

mt ijp[m]

kρ∑∑∑ + (2a)  

Y  (IO   Z B  CPU  Z Bjt

k

t t ij

k

i ij

k

t ij

k

i ij

k

∑ ∏ ∏+ )  (2b)        

where  ρm  represents the selectivity of the two 

previous operations (m = 1 or 2), where the 

selectivity is the ratio of output relation size and 

input relation size, andBijp[m]

k
 is the size of an input 

(intermediate) relation where p[m] represents two 

previous operations of  the join operation j (m is 1 

for the left and 2 for the right operation). 

Note that ρm  can represent selection, projection or 

join selectivity. (2a) represents the I/O time to store 

the intermediate results of the previous operations to 

the site of the current join operation. (2b) represents 

the I/O and CPU processing times for the current 

join operation. Note that we convert Bijp[m]

k
 (the size 

of intermediate results being stored at the join site) 

to Bij

k
 (the size of same intermediate results being 

retrieved for the current join operation) for 

notational convenience so that Bij

k
 will be used for 

the next join operation with the join selectivity of the 

current join operation. 

  

 Communication time ( j
k

COM ) 

When either of the relation(s) to be joined is not 

produced at the site at which the join operation is 

performed, communication for join operations is 

needed, and is expressed as follows: 

j
k

COM = Y  Y  C   ( Z Bjp[m]t

k

ptm jp

k

tp ijp[m]

k

i ijp[m]

k

∑∑∑ ∑ ) 

where C tp  is the communication cost between site p 

and site t in msec per 4k byte page. 

Note that if a previous operation and the join 

operation are executed at the same site (t=p), then 

Ctp =0. Communication for sending the final result is 

also needed if the final operation is not performed at 
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the query originating site. Since there is only one 

previous operation for the final operation, we 

assume that Zijp[2]

k
 for all i is 0 (also Bijp[2]

k
 = 0). It 

should be noted that we consider communication 

cost to include data transmission cost. However, in 

real world, communication cost may also include 

time to synchronize the two CPUs -- we ignore this 

synchronization time, since this is usually a fixed 

overhead cost and it is not variable like data transfer 

cost. 

 

Response Time Model 

In a distributed database system, it is possible to 

decompose a query into subqueries, which can be 

processed in parallel and also their intermediate 

relations can be transmitted to the required site in 

parallel. Two types of parallel execution are 

possible: (1) intra-operation parallelism, and (2) 

inter-operation parallelism. A typical example of 

intra-operation parallelism is pipelining of a single 

join operation, by which two sites work in parallel; 

that is, the site that requests remote data will begin 

its join processing as soon as the first tuple or packet 

of data has arrived, whereas in sequential 

processing, the site receiving data will not begin its 

join processing until all of the required data has 

arrived. With inter-operation parallelism, several 

subqueries in a single query can be executed in 

parallel. In calculating response time, however, we 

limit the possible parallelism to the only immediate 

child nodes of join operation and not among the 

child nodes of different join operations.   

Response time is calculated by taking into 

consideration the possibility of performing local 

processing and data transmission in parallel under 

the condition that the operations are performed at 

different sites as mentioned in the previous section. 

The response time of query k is: RT
k

j   =  

COM (p[1])j

k
 + LP

k

j (p[1]) + RT
k

j (p[1])             

where  RT
k

j (p[1]) is the recursive function for the 

response time.  

The first term COM (p[1])j

k
 is the communication 

time sending the results to the query originating site 

( ijp[2]
k

Z  for all i is 0 and Bijp[2]

k
 = 0) and the 

LP
k

j (p[1]) refers to the local processing time of the 

final operation. For the recursive function 

RT
k

j (p[1]) (but we will use RT
k

j for convenience), 

we calculate the cost as follows. Four scenarios exist 

depending upon sites at which the join operation j 

and the two preceding operations p[1] and p[2] are 

executed. Figure 1 shows the four scenarios with 

three sites for operation allocation; in each scenario, 

the bottom two sites are used for preceding 

operations and the top site is used for join operation. 

Scenario – 1: 

The join operation j and the two preceding operators 

p[1] and p[2] are executed at the same site; that is, 

0 CYY tp

k

jp[2]t

k

jp[1]t = , 0 CYY tp

k

jt

k

jp[1]t =  and 

0 CYY tp

k

jp[2]t

k

jt = then RT
k

j  can be calculated by 

using the equation. LP
k

j  + ∑m

k

j  (p[m]LP  +  

(p[m])RTk

j ). Here, LP
k

j is the local processing 

time for sub query j, (p[m])LPk

j is the local 

processing time for the preceding left (m=1) or right 

(m=2) operation (i.e. subsub query). These local 

processing times are calculated using the equations 

introduced in the previous section. (p[m])RTk

j is 

the (response) time when a preceding operator is 

available for local processing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scenario –2: 

The join operation j and the two preceding operators 

p[1] and p[2] are performed at three different sites. 

In this case the three operators can be run in parallel. 

Then the response time of the entire group is 

computed as the maximum of resource consumption 

of individual operators and the usage of all the 

shared resources (such as communication times)  

(Kossman, 2000). Then 
k

jRT is given by 

Max { ,LPk

j     (3a) 

           (p[1])LPk

j + (p[1])RTk

j ,               (3b) 

    (p[2])LPk

j + (p[2])RTk

j ,   (3c) 

          COM (p[1])j

k
+  COM (p[2])j

k
} (3d) 

where 

COM (p[1])j

k
= )BZ( CYY k

ijp[1]i

k

ijp[1]tp

k

jp

k

jp[1]t ∑  

COM (p[2])j

k
 = )BZ( CYY k

ijp[2]i

k

ijp[2]tp

k

jp

k

jp[2]t ∑  

In the above, (3d) represents shared resource 

consumption, which is the communication time. (3a) 

is the local processing time for subquery j and (3b) 

and (3c) are the processing times for the two 

preceding operations of subquery j. The 

communication costs will be additive, since those 

S1

S1S1

S1

S2S2

S1

S2S1

S1

S3S2

Scenario-1 Scenario-2 Scenario-3 Scenario-4

Figure 1 Four Joining Scenarios
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are the overheads on the receiving node, as 

represented by (3d). 

 

Scenario –3: 

The sites at which two preceding operations of 

subquery j are performed are different and the join 

subquery j uses one of these sites. There is no 

communication cost between one of the preceding 

operators, say p[1], and the operator j. That is, 

0 CYY tt

k

jt

k

jp[1]t = , 0 CYY tp

k

jt

k

jp[2]p ≠ and 

0 CYY tp

k

jp[2]p

k

jp[1]t ≠ , then 
k

jRT  is given by: 

Max  {
k

jLP  + (p[1])LPk

j + (p[1])RTk

j ,      (4a) 

(p[2])LPk

j + (p[2])RTk

j ,                     (4b) 

COM (p[2])j

k
 }            (4c) 

where 

COM (p[2])j

k
= )BZ( CYY k

ijp[2]i

k

ijp[2]tp

k

jt

k

jp[2]p ∑  

Since sub query j and the left previous operation 

p[1] are executed at the same site, the local 

processing times of the two sites need to be added 

(4a). Since right previous operation p[2] is executed 

at a different site, its local processing time (included 

in (4b)) can be executed in parallel. In addition, the 

communication time (4c) can be implemented in 

parallel as well. 

 

Scenario – 4:    

In secenario-4, the two preceding operations of 

subquery j, p[1] and p[2], are executed at the same 

site, while the  subquery j is executed at a different 

site. There is communication time involved in 

shipping data from both the preceding operations 

p[1] and p[2] to the site of subquery j. That is, 

0 CYY tp

k

jt

k

jp[1]p ≠ , 0 CYY tp

k

jt

k

jp[2]p ≠ and 

0 CYY pp

k

jp[2]p

k

jp[1]p = . Also, there will be no 

parallelism between the operations p[1] and p[2]. 

Then 
k

jRT  is given by 

Max  {
k

jLP ,    (5a) 

(p[1])LPk

j + (p[2])LPk

j + (p[1])RTk

j +  

(p[2])RTk

j , (5b) 

COM (p[2])j

k
+ COM (p[2])j

k
}       (5c) 

where 

(p[1])COMk

j = )BZ( CYY k

ijp[1]i

k

ijp[1]tp

k

jt

k

jp[1]p ∑  

COM (p[2])j

k
 = )BZ( CYY k

ijp[2]i

k

ijp[2]tp

k

jt

k

jp[2]p ∑  

In the above, since subquery j is executed at a 

different site than the preceding operators, its local 

processing of subquery j (5a) can be done in parallel 

to the communication time (5c) and the processing 

times of p[1] and p[2] . Since the preceding 

operators are executed at the same site, their local 

processing times are additive (5b). Also, the 

communication costs will be additive, since those 

are the overheads on the receiving node. Above 

equations hold whether previous operations are 

joins, selections, or projections, or other relational 

algebra operators.  

The stopping condition of the recursive function RT 

is as follows. We define: if p[m] in ijp[m]
k

Z  is equal 

to zero in the response time recursive function, 

where zero for p[m] means that the previous 

operation for this operation j (subquery) is original 

relation. In scenarios 2 and 3, parallelism between 

the preceding operations p[1] and p[2] is implied. It 

is assumed there is no clash in data access between 

the two preceding operations, i.e. 

i

k

ij

k

ij   0  (p[2]) Z* (p[1])Z ∀= , otherwise local 

processing times can be additive in the worst case. 

 

3. OPTIMIZATION WITH GA 

We use the heuristic procedure based on GA to solve 

due to intractability of the allocation problem. GA 

has been used by several researchers [5] [8] [12] 

[14] [24] to solve computationally complex 

optimization problems in database design. When 

compared to other heuristic algorithms [16], GA 

provides global ‘optima’ with less time.  

 

The Genetic Algorithm Procedure 

The GA starts with an initial population which is 

usually chosen at random and contains a wide 

variety of members. Each member in a population 

represents a possible solution to the problem at hand 

and is commonly called a chromosome. In a typical 

GA [11], each solution (chromosome) is evaluated 

according to an evaluation (fitness) function. The 

population evolves from one generation to the next 

through the application of genetic operators: 

selection, crossover, and mutation. During selection 

operation, members of the population (parents) are 

selected in pairs to produce new possible solutions. 

The fitter a member of the population, the more 

likely it is to produce offspring. Crossover operator 

is then used to result in offspring inheriting 

properties from both parents. The offspring is 

evaluated and placed in the next population, possibly 

replacing weaker members of the last generation. 

Crossover operator is applied with a certain 

probability (crossover rate). Mutation operator is 

used to allow further variation of offspring. Mutation 

operator is also applied with a certain probability 

(mutation rate).  

We use integers as the genetic representation of a 

solution of operation allocation. The length of 

chromosome is equal to the number of operations in 

the query tree. Each integer at the particular position 

in chromosome represents the site selected for a 

particular operation. The initial population is 
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generated by using a random number between one 

and the number of sites from the uniform 

distribution. The fitness of each individual member 

in the population is the query execution cost 

calculated using the equations presented in section 2. 

For the selection process, we adopt a technique 

termed "stochastic remainder without replacement" 

[11]. We also incorporate "elitism", in which the GA 

keeps track of the best fitness chromosome in the 

population. If the best fitness chromosome is not in 

the new population, it is put into the new population 

by removing the worst fitness chromosome. The 

effect of elitism is that the GA always finds a better 

solution than the one in the previous generation 

unless all solutions in the new generation are worse 

the best one from the previous generation. 

[23] identified values for population size, crossover 

rate (0.95) and mutation rate (0.005) that produce 

good GA performance. However, we found that 

when setting crossover rate at 0.7 and mutation rate 

0.2, the genetic algorithm performed better than 

using the rates suggested by [11]. The population 

size is set at 50, and the stopping condition is when 

the number of iterations reached 50 or there is no 

more improvement in the best solution.  

 

Performance of GA 

In order to compare the results from GA with 

optimal, we ran two types of experiments: one 

keeping the cost coefficients constant and the other 

varying cost coefficients. In case 1, I/O, CPU, and 

communication cost coefficients are fixed. We 

assumed network to consist of 5 sites. Using a three-

join query, we solved two problems, one with 

objective function of total time and the other with 

response time. We assume that each relation is 

allocated two sites. The solution obtained by GA 

matched the optimal solution obtained by exhaustive 

enumeration. The exhaustive enumeration has a 

solution space of about 2000 and it took about 2 

minutes to evaluate. The run time for GA is less than 

half of that required for exhaustive enumeration. We 

solved two additional problems, using the four-join 

query. The size of solution space by exhaustive 

enumeration was about 5,000 and it took 20 minutes 

to solve, while GA took about 1 minute. 

Furthermore, the GA found the optimal solutions for 

both the problems.  

In case 2, we varied the cost coefficients for I/O, 

CPU, and communication and solved four more 

problems, with 3-join and 4-join queries and with 

both the objective functions. The GA found the 

optimal solutions for all the problems.  

In order to investigate the run-time efficiency of the 

operation allocation, we conducted two experiments, 

one by varying the number of joins from 3 to 20 

using 5 database sites and the other by varying the 

number of sites from 3 to 12 using ten-join query.  

Figure 2 shows run time performance of GA varying 

number of joins. Exhaustive enumeration could be 

performed for only two cases (3-&4-joins). For 3-

join case, exhaustive enumeration took 110 seconds, 

while GA took 10 seconds. For 4-join case, they 

were 1200 and 19 seconds, for exhaustive 

enumeration and genetic algorithm, respectively. 

Figure 3 shows the run time efficiency of GA with a 

10-join query, varying the number of sites. With two 

copies each for a relation, exhaustive enumeration 

results in a large solution space, so we assumed one 

copy per relation. This results in a solution space of 

59,049 for 3-site problem and 1,048,576 for 4-site 

problem. The run time of GA for 3-site case is 30 

seconds and for exhaustive enumeration it is 2.5 

hours; for a 4-site case, GA took 40 seconds and 

exhaustive enumeration took 43 hours. The run time 

of GA varied linearly with number of sites, while it 

was exponential for exhaustive enumeration.  
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4. CONCLUSIONS 

The purpose of this research is to solve the problem 

of allocating operations (subqueries) of a query to 

individual sites of a network, with two objective 

functions: total time minimization and response time 

minimization. Comprehensive cost models, 

including local processing and communication costs, 

considering parallelism of subqueries were 

developed for both objective functions based on the 

query trees that represent a set of operations with 

their precedence relationship. Our results show that 

the optimal allocations are quite different with the 

two objective functions. Response time minimization 

could be achieved through a large variety of parallel 
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execution and parallel transmission, for which 

subqueries were allocated to as many sites as 

possible. Total time minimization could be achieved 

when queries are executed by using a minimum 

number of sites. In extreme case, all subqueries 

could be executed at the same site if all necessary 

fragments reside at one site. Minimization of total 

system operating cost usually attempts to minimize 

resource consumption (CPUs, I/Os, and 

communication channels) -- more transactions can 

be processed for a given time period i.e., the system 

throughput is increased. On the other hand, a 

decrease in response time may be obtained by 

having a large number of parallel executions to 

different sites, requiring a higher resource 

consumption, which means that the system 

throughput is reduced. Furthermore, our results 

showed that the query execution plans with total 

time minimization results in higher response time 

compared to plans with response time minimization. 

Our results have shown the GA produced optimal 

solutions, as compared with the exhaustive 

enumeration for the problems that could be tested. 

We have also shown the efficiency of the genetic 

algorithm in solving complex queries, up to 20-join 

query tree. We believe our research provides a better 

understanding of the underlying query execution 

plans under the objectives of total time minimization 

and response time minimization.  
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