
Subquery Allocations in Distributed Databases Using Genetic Algorithms

Narasimhaiah Gorla

American University of Sharjah,

PO Box 26666, Sharjah, UAE

and

Suk-Kyu Song

Youngsan University

Pusan, Korea

ABSTRACT

Minimization of query execution time is an

important performance objective in distributed

databases design. While total time is to be

minimized for On Line Transaction Processing

(OLTP) type queries, response time has to be

minimized in Decision Support type queries. Thus

different allocations of subqueries to sites and their

execution plans are optimal based on the query type.

We formulate the subquery allocation problem and

provide analytical cost models for these two

objective functions. Since the problem is NP-hard,

we solve the problem using genetic algorithm (GA).

Our results indicate query execution plans with total

minimization objective are inefficient for response

time objective and vice versa. The GA procedure is

tested with simulation experiments using complex

queries of up to 20 joins. Comparison of results with

exhaustive enumeration indicates that GA produced

optimal solutions in all cases in much less time.

Keywords: Physical Database Design, Genetic

algorithms, Distributed database design, Subquery

allocation, Response time minimization

1. INTRODUCTION

Distributed database systems have become very

important and common in today’s geographically

distributed organizations. The performance problems

relating data distribution and query processing in

distributed databases are known to be critical issues

[10]. Distributed database design and query

optimization have been active research areas

[21][27][13][19][15][5][14]. The design of

distributed query processing can be divided into two

aspects: query execution order and query execution

plan or operation allocation. While query execution

order specifies the order in which subqueries are

executed, operation allocation indicates the sites

from which the operations (subqueries) are executed.

Queries can be classified into OLTP (On-Line

Transaction Processing) and Decision Support [3].

“To inquire about airline seat availability” is an

example of OLTP type query in the travel industry,

which is a highly repetitive transaction that requires

high throughput. A transaction such as “to provide

sales details of specific routes by region and travel

agent” in the travel industry is an example of

decision support, which requires low response time.

Thus, the query execution plans for OLTP and

decision support queries need to be designed with

total time minimization and response time

minimization objectives, respectively. Total time

minimization aims at minimizing the total resource

consumption (I/O, CPU, and Communication) and

maximizing overall throughput of the system, while

the response time minimization aims at minimizing

the time between query origination and result

receipt. While OLTP and decision support queries

are most common in the business world, previous

research paid little attention to design distributed

databases to optimize both these types of queries

together. The optimization of both these types of

transactions will make the database operations

efficient, thus making the working environment of

business decision makers more efficient. The

objective of the paper is to present a methodology

for a distributed database query optimization

strategy that selects between total-time and response

time (elapsed-time) cost functions according to the

target application type. The queries are decomposed

into subqueries and these subqueries are allocated

among the nodes of the network so that the two

objective functions (minimization of total execution

time and minimization of response time) are

optimized in order to meet the processing

requirements of OLTP and Decision Support

transaction types.

While most previous works focused on query

execution order, operation allocation has received

little attention. In today’s geographically distributed

organizations, since more sophisticated data access

is needed by managers in areas such as decision

support and deductively augmented database

systems, answering OLTP and decision support type

queries often requires a large number of joins [20].

If a query references n relations, and each relation

iR has iX copies, ni ≤≤1 , then a

straightforward enumeration algorithm for selecting

one copy of each relation takes time)(
1∏ =

n

i
iXO [20].

The problem of finding the minimum cost allocation

is NP-hard. In order to deal with this hard problem,

we use Genetic Algorithms [11] to arrive at near

optimal solution. Genetic algorithm is a heuristic

solution that has been used to solve intractable

JCS&T Vol. 10 No. 1 April 2010

31

problems in database design [5] [8] [22]. Next, we

present prior research in distributed database design

and query processing. Section 2 has discussion of

cost models. Section 3 has research results based on

genetic algorithm. Section 4 has conclusions.

Previous Research

[15] provides a survey of techniques useful for query

processing in distributed databases. In order to

improve distributed database performance, two types

of problems are important: data allocation (how to

allocate data fragments to sites) and operation

allocation (how to allocate subqueries to sites).

Regarding data allocation problem, [1] developed a

methodology for identification and allocation of

vertical and horizontal fragments based on the user

queries /updates in distributed databases, with the

objective of minimizing total transmission cost. [25]

proposed an integrated methodology to the problems

of data fragmentation, replication, and fragment

allocation in distributed databases. [5] used genetic

algorithms to solve data partitioning problem after

modeling it as a traveling salesman problem. [2]

propose a methodology for distribution design for

Object DBMS, using both vertical and horizontal

partitioning techniques. [18] determine vertical and

horizontal fragments in distributed object-oriented

and object-relational databases.

Regarding operation allocation problem, [20]

conducted simulation experiments to compare four

heuristic algorithms (branch-and-bound, greedy,

local search, and simulated annealing) for

assignment of sub-queries. The objective function is

total query cost comprising of local processing and

communication costs. [9] propose run-time operation

allocation policies for hierarchically structured,

hypercube-based multicomputer system. The site

assignments are not determined a priori, instead,

they are assigned during the execution of a query.

Regarding combined problem, [6] propose an

integrated methodology to determine the optimal

allocation of relations and query operations to sites

to minimize the communication costs. [19] extended

the work of [6] and used the objective function of

total system cost comprising of storage, I/O, CPU,

and communication. The authors did not consider

response time objective function in their analysis.

[14] extend the previous work of [19] by

incorporating network latency time and parallel

processing among the nodes.

[19] state “It is extremely important to recognize the

ability of distributed systems to do parallel

processing, because it is a key component in

achieving fast processing” (p. 315). Furthermore,

OLTP and decision support type of transactions need

to be processed with different objective functions.

We extend previous research by considering both the

total time and response time minimizations in the

objective function, so that OLTP and decision

support queries can be optimized, respectively.

We include the response time cost model to the

operation allocation problem by considering inter-

operation parallelism and recursive cost function.

We incorporate the allocation and parallel

processing of subqueries for handling OLTP and

Decision Support type transactions. Thus, our

contribution in this research considering both types

will be valuable to the industry.

2. DEVELOPMENT OF COST MODELS

Query Processing

The first step of query processing in a distributed

context is to transform a high-level global query into

an efficient execution strategy (the ordering of

operations) on local databases. The set of execution

order of subqueries and their precedence

relationships can then be represented as a query tree.

Each operation in the query tree is viewed as a

separate subquery with one or two input relations

and an output relation. An input relation is either a

relation maintained by the system or the output

relation of another query. The output of a subquery

is an intermediate relation, which is stored at the site

it is referenced and deleted after the query is

answered. We consider the relational algebra

operators: projection, selection and join. Other

operations can be included without altering the

operation allocation algorithm proposed in this

research. Also note that we assume that the structure

of the query, i.e., the query execution order, is fixed

prior to operation allocation. Our assumption is

consistent with those of previous researchers [28] in

distributed databases. [28], in the design of Mermaid

system, assumed some adhoc execution orders for

designing optimization algorithms for distributed

query processing.

There is a site set associated with each node in the

query tree. The members of the site set for a leaf

node are those sites that hold a copy of that relation.

The site set for an operation node contains those

sites that can perform the operation. In general,

selection and projection operations requiring

relations should be executed at only those sites that

hold a copy of relations referenced so that there is no

transmission of a relation required at the site of the

operations, but join operations can be executed at

any site. In the query tree, cost is associated with the

operation nodes representing local processing times,

including estimated CPU time and I/O time for its

execution. The communication cost is associated

with transmitting the output relation from the site of

source node to the site of the receiving node.

Cost Models

The total time is the sum of all cost (time)

components, while the response time is the elapsed

time from the initiation to the completion of the

query, including time to transmit the results back to

JCS&T Vol. 10 No. 1 April 2010

32

the site where the query has originated. We assume

pre-compiled queries in our cost computations.

Let T, I, and K be the set of all sites, relations, and

queries, respectively. A query transaction k can be

decomposed into j subqueries (operations).

Following is the list of variables.

(1) jt
k

Y (specifying the site at which each

subquery is executed) is 1 if subquery j of

query k is done at site t, otherwise it is 0. We

also introduce jp[m]t
k

Y where p[m] represents

two previous operations for join operation j,

and m is 1 for the left previous operation and

2 for the right previous operation in the query

tree. So jp[m]t
k

Y is 1 if the left (m = 1) or

right (m = 2) previous operation for join

operation j of query k is done at site t,

otherwise it is 0.

(2) Xit (representing the data allocation) is 1 if

relation i is stored at the site t. otherwise it is

0. ij
k

Z is 1 if input (or intermediate)

relation(s) i is referenced by subquery j of

query k. We also introduce ijp[m]
k

Z where

p[m] represents two previous operations for

join operation j; ijp[m]
k

Z is 1 if input (or

intermediate) relation i is referenced by the

left (m = 1) or right (m = 2) previous

operation for join operation j of query k,

otherwise it is 0.

The operation allocation problem can be expressed

as follows:

Find:
jt

k

Y (operation allocation; site t for subquery

j of query k)

Given:
itX (data allocation; relation i stored at site

t) and
ij

k

Z (relation (or intermediate result) i

referenced by subquery j of query k)

Total Time Model

The total time for each query is the sum of local

processing times and communication times for all

subqueries. Total Time = (LP + COM)j
k

 j
k

j∑ ,

where j
k

LP represents the local processing time of

the subquery j (a node in the query tree) of a query

k. j
k

COM represents the communication time of

transmitting the input relation(s) to the site at which

the subquery j of a query k is being executed.

Local processing time (j
k

LP)

The local processing time of a subquery depends on

an operation type, the size of the input relation(s),

the CPU speed and the I/O speed of the site selected.

We assume that CPU processing is proportional to

the amount of data accessed and that I/O time is

proportional to the number of blocks read or written.

(A) For a selection or projection operation on a

relation, the local processing time for the subquery j

of the query k is defined as:

j
k

LP =

Y (IO Z B CPU Z Bjt

k

t t ij

k

i ij

k

t ij

k

i ij

k

∑ ∑ ∑+) (1)

Where

Bij

k
 is the number of blocks of relation i accessed by

 subquery j of query k,

IO t is the I/O time of site t in msec for transferring

 4k byte page into main memory,

CPUt is the CPU time of site t in msec per 4k

 byte page for selection and/or projection..

 (B) We also assume that the intermediate result of

each unary or join operation is transmitted directly to

the next join site and stored at the next join site

before the execution of the next join operation. As

such, the local processing time for the join j of the

query k is defined as:

j
k

LP = Y IO Z Bjt

k

t mi ijp[m]

k

mt ijp[m]

kρ∑∑∑ + (2a)

Y (IO Z B CPU Z Bjt

k

t t ij

k

i ij

k

t ij

k

i ij

k

∑ ∏ ∏+) (2b)

where ρm represents the selectivity of the two

previous operations (m = 1 or 2), where the

selectivity is the ratio of output relation size and

input relation size, andBijp[m]

k
 is the size of an input

(intermediate) relation where p[m] represents two

previous operations of the join operation j (m is 1

for the left and 2 for the right operation).

Note that ρm can represent selection, projection or

join selectivity. (2a) represents the I/O time to store

the intermediate results of the previous operations to

the site of the current join operation. (2b) represents

the I/O and CPU processing times for the current

join operation. Note that we convert Bijp[m]

k
 (the size

of intermediate results being stored at the join site)

to Bij

k
 (the size of same intermediate results being

retrieved for the current join operation) for

notational convenience so that Bij

k
 will be used for

the next join operation with the join selectivity of the

current join operation.

 Communication time (j
k

COM)

When either of the relation(s) to be joined is not

produced at the site at which the join operation is

performed, communication for join operations is

needed, and is expressed as follows:

j
k

COM = Y Y C (Z Bjp[m]t

k

ptm jp

k

tp ijp[m]

k

i ijp[m]

k

∑∑∑ ∑)

where C tp is the communication cost between site p

and site t in msec per 4k byte page.

Note that if a previous operation and the join

operation are executed at the same site (t=p), then

Ctp =0. Communication for sending the final result is

also needed if the final operation is not performed at

JCS&T Vol. 10 No. 1 April 2010

33

the query originating site. Since there is only one

previous operation for the final operation, we

assume that Zijp[2]

k
 for all i is 0 (also Bijp[2]

k
 = 0). It

should be noted that we consider communication

cost to include data transmission cost. However, in

real world, communication cost may also include

time to synchronize the two CPUs -- we ignore this

synchronization time, since this is usually a fixed

overhead cost and it is not variable like data transfer

cost.

Response Time Model

In a distributed database system, it is possible to

decompose a query into subqueries, which can be

processed in parallel and also their intermediate

relations can be transmitted to the required site in

parallel. Two types of parallel execution are

possible: (1) intra-operation parallelism, and (2)

inter-operation parallelism. A typical example of

intra-operation parallelism is pipelining of a single

join operation, by which two sites work in parallel;

that is, the site that requests remote data will begin

its join processing as soon as the first tuple or packet

of data has arrived, whereas in sequential

processing, the site receiving data will not begin its

join processing until all of the required data has

arrived. With inter-operation parallelism, several

subqueries in a single query can be executed in

parallel. In calculating response time, however, we

limit the possible parallelism to the only immediate

child nodes of join operation and not among the

child nodes of different join operations.

Response time is calculated by taking into

consideration the possibility of performing local

processing and data transmission in parallel under

the condition that the operations are performed at

different sites as mentioned in the previous section.

The response time of query k is: RT
k

j =

COM (p[1])j

k
 + LP

k

j (p[1]) + RT
k

j (p[1])

where RT
k

j (p[1]) is the recursive function for the

response time.

The first term COM (p[1])j

k
 is the communication

time sending the results to the query originating site

(ijp[2]
k

Z for all i is 0 and Bijp[2]

k
 = 0) and the

LP
k

j (p[1]) refers to the local processing time of the

final operation. For the recursive function

RT
k

j (p[1]) (but we will use RT
k

j for convenience),

we calculate the cost as follows. Four scenarios exist

depending upon sites at which the join operation j

and the two preceding operations p[1] and p[2] are

executed. Figure 1 shows the four scenarios with

three sites for operation allocation; in each scenario,

the bottom two sites are used for preceding

operations and the top site is used for join operation.

Scenario – 1:

The join operation j and the two preceding operators

p[1] and p[2] are executed at the same site; that is,

0 CYY tp

k

jp[2]t

k

jp[1]t = , 0 CYY tp

k

jt

k

jp[1]t = and

0 CYY tp

k

jp[2]t

k

jt = then RT
k

j can be calculated by

using the equation. LP
k

j + ∑m

k

j (p[m]LP +

(p[m])RTk

j). Here, LP
k

j is the local processing

time for sub query j, (p[m])LPk

j is the local

processing time for the preceding left (m=1) or right

(m=2) operation (i.e. subsub query). These local

processing times are calculated using the equations

introduced in the previous section. (p[m])RTk

j is

the (response) time when a preceding operator is

available for local processing.

Scenario –2:

The join operation j and the two preceding operators

p[1] and p[2] are performed at three different sites.

In this case the three operators can be run in parallel.

Then the response time of the entire group is

computed as the maximum of resource consumption

of individual operators and the usage of all the

shared resources (such as communication times)

(Kossman, 2000). Then
k

jRT is given by

Max { ,LPk

j (3a)

 (p[1])LPk

j + (p[1])RTk

j , (3b)

 (p[2])LPk

j + (p[2])RTk

j , (3c)

 COM (p[1])j

k
+ COM (p[2])j

k
} (3d)

where

COM (p[1])j

k
=)BZ(CYY k

ijp[1]i

k

ijp[1]tp

k

jp

k

jp[1]t ∑

COM (p[2])j

k
 =)BZ(CYY k

ijp[2]i

k

ijp[2]tp

k

jp

k

jp[2]t ∑

In the above, (3d) represents shared resource

consumption, which is the communication time. (3a)

is the local processing time for subquery j and (3b)

and (3c) are the processing times for the two

preceding operations of subquery j. The

communication costs will be additive, since those

S1

S1S1

S1

S2S2

S1

S2S1

S1

S3S2

Scenario-1 Scenario-2 Scenario-3 Scenario-4

Figure 1 Four Joining Scenarios

JCS&T Vol. 10 No. 1 April 2010

34

are the overheads on the receiving node, as

represented by (3d).

Scenario –3:

The sites at which two preceding operations of

subquery j are performed are different and the join

subquery j uses one of these sites. There is no

communication cost between one of the preceding

operators, say p[1], and the operator j. That is,

0 CYY tt

k

jt

k

jp[1]t = , 0 CYY tp

k

jt

k

jp[2]p ≠ and

0 CYY tp

k

jp[2]p

k

jp[1]t ≠ , then
k

jRT is given by:

Max {
k

jLP + (p[1])LPk

j + (p[1])RTk

j , (4a)

(p[2])LPk

j + (p[2])RTk

j , (4b)

COM (p[2])j

k
 } (4c)

where

COM (p[2])j

k
=)BZ(CYY k

ijp[2]i

k

ijp[2]tp

k

jt

k

jp[2]p ∑

Since sub query j and the left previous operation

p[1] are executed at the same site, the local

processing times of the two sites need to be added

(4a). Since right previous operation p[2] is executed

at a different site, its local processing time (included

in (4b)) can be executed in parallel. In addition, the

communication time (4c) can be implemented in

parallel as well.

Scenario – 4:

In secenario-4, the two preceding operations of

subquery j, p[1] and p[2], are executed at the same

site, while the subquery j is executed at a different

site. There is communication time involved in

shipping data from both the preceding operations

p[1] and p[2] to the site of subquery j. That is,

0 CYY tp

k

jt

k

jp[1]p ≠ , 0 CYY tp

k

jt

k

jp[2]p ≠ and

0 CYY pp

k

jp[2]p

k

jp[1]p = . Also, there will be no

parallelism between the operations p[1] and p[2].

Then
k

jRT is given by

Max {
k

jLP , (5a)

(p[1])LPk

j + (p[2])LPk

j + (p[1])RTk

j +

(p[2])RTk

j , (5b)

COM (p[2])j

k
+ COM (p[2])j

k
} (5c)

where

(p[1])COMk

j =)BZ(CYY k

ijp[1]i

k

ijp[1]tp

k

jt

k

jp[1]p ∑

COM (p[2])j

k
 =)BZ(CYY k

ijp[2]i

k

ijp[2]tp

k

jt

k

jp[2]p ∑

In the above, since subquery j is executed at a

different site than the preceding operators, its local

processing of subquery j (5a) can be done in parallel

to the communication time (5c) and the processing

times of p[1] and p[2] . Since the preceding

operators are executed at the same site, their local

processing times are additive (5b). Also, the

communication costs will be additive, since those

are the overheads on the receiving node. Above

equations hold whether previous operations are

joins, selections, or projections, or other relational

algebra operators.

The stopping condition of the recursive function RT

is as follows. We define: if p[m] in ijp[m]
k

Z is equal

to zero in the response time recursive function,

where zero for p[m] means that the previous

operation for this operation j (subquery) is original

relation. In scenarios 2 and 3, parallelism between

the preceding operations p[1] and p[2] is implied. It

is assumed there is no clash in data access between

the two preceding operations, i.e.

i

k

ij

k

ij 0 (p[2]) Z* (p[1])Z ∀= , otherwise local

processing times can be additive in the worst case.

3. OPTIMIZATION WITH GA

We use the heuristic procedure based on GA to solve

due to intractability of the allocation problem. GA

has been used by several researchers [5] [8] [12]

[14] [24] to solve computationally complex

optimization problems in database design. When

compared to other heuristic algorithms [16], GA

provides global ‘optima’ with less time.

The Genetic Algorithm Procedure

The GA starts with an initial population which is

usually chosen at random and contains a wide

variety of members. Each member in a population

represents a possible solution to the problem at hand

and is commonly called a chromosome. In a typical

GA [11], each solution (chromosome) is evaluated

according to an evaluation (fitness) function. The

population evolves from one generation to the next

through the application of genetic operators:

selection, crossover, and mutation. During selection

operation, members of the population (parents) are

selected in pairs to produce new possible solutions.

The fitter a member of the population, the more

likely it is to produce offspring. Crossover operator

is then used to result in offspring inheriting

properties from both parents. The offspring is

evaluated and placed in the next population, possibly

replacing weaker members of the last generation.

Crossover operator is applied with a certain

probability (crossover rate). Mutation operator is

used to allow further variation of offspring. Mutation

operator is also applied with a certain probability

(mutation rate).

We use integers as the genetic representation of a

solution of operation allocation. The length of

chromosome is equal to the number of operations in

the query tree. Each integer at the particular position

in chromosome represents the site selected for a

particular operation. The initial population is

JCS&T Vol. 10 No. 1 April 2010

35

generated by using a random number between one

and the number of sites from the uniform

distribution. The fitness of each individual member

in the population is the query execution cost

calculated using the equations presented in section 2.

For the selection process, we adopt a technique

termed "stochastic remainder without replacement"

[11]. We also incorporate "elitism", in which the GA

keeps track of the best fitness chromosome in the

population. If the best fitness chromosome is not in

the new population, it is put into the new population

by removing the worst fitness chromosome. The

effect of elitism is that the GA always finds a better

solution than the one in the previous generation

unless all solutions in the new generation are worse

the best one from the previous generation.

[23] identified values for population size, crossover

rate (0.95) and mutation rate (0.005) that produce

good GA performance. However, we found that

when setting crossover rate at 0.7 and mutation rate

0.2, the genetic algorithm performed better than

using the rates suggested by [11]. The population

size is set at 50, and the stopping condition is when

the number of iterations reached 50 or there is no

more improvement in the best solution.

Performance of GA

In order to compare the results from GA with

optimal, we ran two types of experiments: one

keeping the cost coefficients constant and the other

varying cost coefficients. In case 1, I/O, CPU, and

communication cost coefficients are fixed. We

assumed network to consist of 5 sites. Using a three-

join query, we solved two problems, one with

objective function of total time and the other with

response time. We assume that each relation is

allocated two sites. The solution obtained by GA

matched the optimal solution obtained by exhaustive

enumeration. The exhaustive enumeration has a

solution space of about 2000 and it took about 2

minutes to evaluate. The run time for GA is less than

half of that required for exhaustive enumeration. We

solved two additional problems, using the four-join

query. The size of solution space by exhaustive

enumeration was about 5,000 and it took 20 minutes

to solve, while GA took about 1 minute.

Furthermore, the GA found the optimal solutions for

both the problems.

In case 2, we varied the cost coefficients for I/O,

CPU, and communication and solved four more

problems, with 3-join and 4-join queries and with

both the objective functions. The GA found the

optimal solutions for all the problems.

In order to investigate the run-time efficiency of the

operation allocation, we conducted two experiments,

one by varying the number of joins from 3 to 20

using 5 database sites and the other by varying the

number of sites from 3 to 12 using ten-join query.

Figure 2 shows run time performance of GA varying

number of joins. Exhaustive enumeration could be

performed for only two cases (3-&4-joins). For 3-

join case, exhaustive enumeration took 110 seconds,

while GA took 10 seconds. For 4-join case, they

were 1200 and 19 seconds, for exhaustive

enumeration and genetic algorithm, respectively.

Figure 3 shows the run time efficiency of GA with a

10-join query, varying the number of sites. With two

copies each for a relation, exhaustive enumeration

results in a large solution space, so we assumed one

copy per relation. This results in a solution space of

59,049 for 3-site problem and 1,048,576 for 4-site

problem. The run time of GA for 3-site case is 30

seconds and for exhaustive enumeration it is 2.5

hours; for a 4-site case, GA took 40 seconds and

exhaustive enumeration took 43 hours. The run time

of GA varied linearly with number of sites, while it

was exponential for exhaustive enumeration.

0

500

1000

1500

3 6 9 12 15 18

Number of Joins

R
u

n
 T

im
e

GA

Enum.

Figure 2: Execution Time (in seconds) of GA vs.

Number of Joins

304045505562738090
110

2.5 hrs

43 hrs

0

50

100

150

3 5 7 9 11

Number of Sites

R
u

n
 T

im
e

GA

Enum.

Figure 3: Execution Time (in seconds) of GA vs.

Number of Sites

4. CONCLUSIONS

The purpose of this research is to solve the problem

of allocating operations (subqueries) of a query to

individual sites of a network, with two objective

functions: total time minimization and response time

minimization. Comprehensive cost models,

including local processing and communication costs,

considering parallelism of subqueries were

developed for both objective functions based on the

query trees that represent a set of operations with

their precedence relationship. Our results show that

the optimal allocations are quite different with the

two objective functions. Response time minimization

could be achieved through a large variety of parallel

JCS&T Vol. 10 No. 1 April 2010

36

execution and parallel transmission, for which

subqueries were allocated to as many sites as

possible. Total time minimization could be achieved

when queries are executed by using a minimum

number of sites. In extreme case, all subqueries

could be executed at the same site if all necessary

fragments reside at one site. Minimization of total

system operating cost usually attempts to minimize

resource consumption (CPUs, I/Os, and

communication channels) -- more transactions can

be processed for a given time period i.e., the system

throughput is increased. On the other hand, a

decrease in response time may be obtained by

having a large number of parallel executions to

different sites, requiring a higher resource

consumption, which means that the system

throughput is reduced. Furthermore, our results

showed that the query execution plans with total

time minimization results in higher response time

compared to plans with response time minimization.

Our results have shown the GA produced optimal

solutions, as compared with the exhaustive

enumeration for the problems that could be tested.

We have also shown the efficiency of the genetic

algorithm in solving complex queries, up to 20-join

query tree. We believe our research provides a better

understanding of the underlying query execution

plans under the objectives of total time minimization

and response time minimization.

6. REFERENCES

1. Apers, P.M.G. 1988. Data allocation in distributed

database systems. ACM Trans. on Database Systems,

13 (3), 263-304.

2. Baiao, F., Mattoso, M. & Zaverucha, G. 2004. A

Distribution Design Methodology for Object DBMS.

Journal of Distributed and Parallel Databases. 16

(1), 45-90.

3. Bergsten, B., Couprie, M. & Valduriez, P. 1993.

Overview of Parallel Architectures for Database. The

Computer Journal, 36, 734-740.

4. Carey, M. J. & Livny, M. 1991. Conflict Detection

Tradeoffs for Replicated Data. ACM Transactions on

Database Systems. 16, 703-746.

5. Cheng, C-H, Lee, W-K, & Wong, K-F. 2002. A

Genetic Algorithm-Based Clustering Approach for

Database Partitioning. IEEE Transactions on

Systems, Man, and Cybernetics, 32(3), 215-230.

6. Cornell, D.W. & Yu, P.S. 1989. On optimal site

assignment for relations in the distributed database

environment. IEEE Transactions on Software

Engineering, 15 (8), 1004-1009.

7. Davis, L. 1991. Handbook of Genetic Algorithms,

Van Nostrand Reinhold, New York, N.Y.

8. Du, J, Alhajj, R, & Barker, K. 2006. Genetic

algorithms based approach to database vertical

partitioning. Journal of Intelligent Information

Systems, 26 (2), 167-183

9. Frieder, O. & Baru, C. 1994. Site and Query

Scheduling Policies in Multicomputer Database

Systems. IEEE Transactions on Knowledge and Data

Engineering, 6(4), 609-619.

10. Gog, A. & Grebla, H-A. 2005. Evolutionary Tuning

for Distributed Database Performance. The 4th

International Symposium on Parallel and Distributed

Computing, 275-281.

11. Goldberg, D.E. 1989. Genetic Algorithms in Search,

Optimization, and Machine Learning, Addison-

Wesley Publishing.

12. Gorla, N. 2001. An Object-Oriented Database Design

for Improved Performance. Data and Knowledge

Engineering, 37, 117-138.

13. Graefe, G. 1993. Query Evaluation Techniques for

Large Databases. ACM Comp. Surveys, 25, 73-90.

14. Johansson, J M, March, S T, & Naumann, J D. 2003.

Modeling Network Latency and Parallel Processing

in Distributed Database Design. Decision Sciences,

34 (4), 677-706.

15. Kossmann, D. 2000. The State of the Art in

Distributed Query Processing. ACM Computing

Surveys. 32(4), 422-469.

16. Li, B. & Jiang, W. 2000. A novel stochastic

optimization algorithm. IEEE Trans. on Systems,

Man, and Cybernetics, Part B, 30(1).

17. Lim, S-J & Ng, Y-K. 1997. Vertical Fragmentation

and Allocation in Distributed Deductive Database

Systems. Information Systems, 22(1), 1-24.

18. Ma, H. & Kirchberg, M. 2008, Cost based

fragmentation for distributed complex value

databases. Lecture Notes in Comp. Sci., 4801, 72-86

19. March, S.T. & Rho, S. 1995. Allocating Data and

Operations to Nodes in Distributed Database Design.

IEEE Trans. on Knowledge and Data Engg, 7(2).

20. Martin, T., Lam K. & Russel, J. 1990. An Evaluation

of Site Selection Algorithms for Distributed Query

Processing. The Computer Journal, 33(1), 61-70.

21. Sacco, G. & Yao, S.B. 1982. Query Optimization in

Distributed Data Base Systems. Advances in

Computer, 21, 225-273.

22. Song, S-K & Gorla, N. 2000. A Genetic Algorithm

for Vertical Fragmentation and Access Path

Selection. The Computer Journal, 43(1), 81-93.

23. Schaffer, J. D., Caruana, R. A., Eshlman, L. J., &

Das, R. 1989. A Study of Control Parameters

Affecting Online Performance of Genetic Algorithms

for Function Optimization, In J. D. Schaffer, (ed.),

Proceedings of the Third International Conference

on Genetic Algorithms, 51-60

24. Tam, K.Y. 1992. Genetic algorithms, function

optimization, and facility layout design. European

Journal of Operations Research, 63(2).

25. Tamhankar, A.M. & Ram, S. 1998. Database

Fragmentation and Allocation: An Integrated

Methodology and Case Study. IEEE Trans. on

Systems, Man, and Cybernetics, 28(3), 288-305.

26. Kulkarni, U R, & Jain, H K. 1993. Interaction

Between Concurrent Transactions in the Design of

Distributed Databases. Decision Sciences, 24(2),

253-277

27. Yu, C.T. & Chang, C.C. 1994. Distributed Query

Processing. ACM Computing Surveys, 16, 399-433.

28. Yu, C. T., Chang, C., Templeton, M., Brin, D. &

Lund, E. 1985. Query Processing in a Fragmented

Relational Distributed System: Mermaid. IEEE

Transactions on Software Engineering, 11, 795-809.

JCS&T Vol. 10 No. 1 April 2010

37

	Text1: Received: Nov. 2009. Accepted: Mar. 2010

