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Abstract
The nonalcoholic fatty liver disease (NAFLD) is the 
hepatic manifestation of the metabolic syndrome. 
NAFLD encompasses a wide histological spectrum 
ranging from benign simple steatosis to non-alcoholic 
steatohepatitis (NASH). Sustained inflammation in the 
liver is critical in this process. Hepatic macrophages, 
including liver resident macropaghes (Kupffer cells), 
monocytes infiltrating the injured liver, as well as 
specific lymphocytes subsets play a pivotal role in 
the initiation and perpetuation of the inflammatory 
response, with a major deleterious impact on the 
progression of fatty liver to fibrosis. During the 
last years, Th17 cells have been involved in the 
development of inflammation not only in liver but 
also in other organs, such as adipose tissue or lung. 
Differentiation of a naïve T cell into a Th17 cell 
leads to pro-inflammatory cytokine and chemokine 
production with subsequent myeloid cell recruitment to 
the inflamed tissue. Th17 response can be mitigated 
by T regulatory cells that secrete anti-inflammatory 
cytokines. Both T cell subsets need TGF-β for their 
differentiation and a characteristic plasticity in their 
phenotype may render them new therapeutic targets. 
In this review, we discuss the role of the Th17 pathway 
in NAFLD progression to NASH and to liver fibrosis 
analyzing different animal models of liver injury and 
human studies. 
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Core tip: Interleukin-17 producing cells are important 
in maintaining inflammation since they are a source 
of pro-inflammatory cytokines and chemokines with a 
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critical role in fighting extracellular bacteria. In the last 
years, this lymphocyte subset has been linked to the 
pathogenesis of multiple immune mediated diseases 
and in some cases to the progression to fibrosis. In 
this review, we discuss the role of the Th17 pathway 
in nonalcoholic fatty liver disease progression to non-
alcoholic steatohepatitis and to liver fibrosis analyzing 
previously published data obtained from different 
animal models and human studies of liver injury.
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com/1007-9327/full/v22/i41/9096.htm  DOI: http://dx.doi.
org/10.3748/wjg.v22.i41.9096

INTRODUCTION
Nonalcoholic fatty liver disease (NAFLD) is defined as 
an abnormal accumulation of fat in the liver, evidenced 
by either imaging or histology without any known 
cause of secondary hepatic fat accumulation such 
as alcohol consumption, steatogenic medication or 
hereditary disorders[1]. The histological spectrum of 
NAFLD comprises benign simple steatosis and a more 
severe form with inflammation, hepatocyte injury with 
or without fibrosis called Non-alcoholic steatohepatitis 
(NASH), this last entity can progress to cirrhosis, liver 
failure and hepatocellular carcinoma. The incidence of 
NAFLD and NASH is growing worldwide associated with 
obesity and diabetes, becoming a common cause of 
chronic liver disease and need of liver transplantation. 
The prevalence in the European general population 
is between 20%-30%, reaching 90% among obese 
patients[2]. Sustained inflammation in the liver is critical 
in the progression from benign simple steatosis to 
NASH. Hepatic macrophages, comprising liver resident 
macropaghes (Kupffer cells), monocytes infiltrating the 
injured liver, as well as specific lymphocytes subsets 
play a pivotal role in the initiation and perpetuation of 
the inflammatory response, with a major deleterious 
impact on key steps of fatty liver progression to 
fibrosis[3]. During the last years, a specific subset of 
CD4 T effector cells, Th17 subpopulation has been 
suggested to be involved in this process[4,5]. In this 
review, we discuss the role of the Th17 pathway 
in NAFLD progression to NASH and to liver fibrosis 
analyzing previously published data obtained from 
different animal models and human studies of liver 
injury

LITERATURE SEARCH
For this review, we used Pubmed and Google Scholar 
databases to search for relevant articles using the 
following mesh terms: “Th17 cells”; “NASH”; “NAFLD” 

“liver inflammation”; “liver fibrosis”; “induced liver 
injury” “IL17”; “Tregs”; “CD4 T cells” and “regulatory 
T cells”. Only the articles published between 2006 and 
2016 were included. 

Th17 CELLS
Th17 differentiation
CD4 T helper cells that recognize antigens in the 
context of mayor Histocompatibility Complex type 
II (mHC II) can be polarized into different types 
of effector T cells to coordinate different immuno-
phatological responses[6]. Th17 cells play a role in 
pathogen clearance and tissue inflammation but are 
also implicated in the pathogenesis of autoimmune 
diseases[7,8]. The differentiation of naïve CD4 T cells 
into Th17 cells in humans is triggered by the combined 
action of transforming growth factor (TGF)-β, interleukin 
(IL)-6 and IL-1β, these cytokines induce the expres-
sion of the key lineage defining transcription factor 
orphan nuclear receptor (RORc). RORc is necessary 
and sufficient for the differentiation of Th17 cells 
whereas IL-23 is required only for the pathogenicity 
and expansion of this lineage[9,10]. Th17 pathway is 
suppressed by IFN-γ and IL-4 that promote Th1 or 
Th2 respectively[11]. The major target genes for IL-17 
include pro-inflammatory chemokines, hematopoietic 
cytokines, acute phase response genes and anti-
microbial substances[12]. 

Il-17 family cytokine and Il-17 family receptor 
Though six IL-17 ligands have been described, IL-
17A is the best characterized. IL-17F has 60% 
homology with IL-17A but it has 10 times less 
affinity for their receptors[13] (Table 1). They can 
form homo or heterodimers. Once they bind their 
cognate heterodimeric receptor IL-17RA, propagates a 
cascade of events that lead to neutrophil recruitment, 
inflammation and host defense[14]. Secretion of IL-17 is 
triggered and perpetuated by IL-6 and IL-23 through 
at least two transcription factors. The first one is Janus 
kinase - signal transducer and activator of transcription 
(JAK-STAT) and the second one is phosphoinositide-
3-kinase (PI3k) through the nuclear factor-κB (NF-
κB)[15,16]. STAT3 and/or NF-κB, respectively, translocate 
to the nucleus to promote IL-17 production (Figure 1).
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Table 1  Interleukin-17 family ligands and receptors

IL-17 family ligands Binding receptor Produced mainly by

IL-17 A IL-17 RA, IL-17 RC T cells
IL-17 A/F IL-17 RA, IL-17 RC T cells
IL-17 B IL-17 RB Numerous cells
IL-17 C Unknown Prostate, kidney cells
IL-17 D Unknown Numerous cells
IL-17 E (IL-25) IL-17 RB (IL-25 R) Numerous cells
IL-17 F IL-17 RA, IL-17 RC T cells

IL-17: Interleukin-17.



Regarding IL-17 receptors, there are five different 
heterodimeric receptors for the IL-17 family ligands. 
IL-17 RA is ubiquitously expressed on a wide range 
of tissues (liver, intestine, lung, adipose tissue) and 
cell types (endothelial and immune cells). IL-17RA 
downstream signaling involves activation of NF-κB 
activator 1 (Act1), CCAAT/enhancer binding protein 
beta (C/EBPβ), CCAAT/enhancer binding protein 
delta (C/EBPδ) and mitogen-activated protein kinase 
(MAPK) activation, followed by NF-κB and JNK nuclear 
translocation. Thus, leading to the production of pro-
inflammatory cytokines and chemokines and subsequent 
myeloid cell recruitment to the inflamed tissue[15,17].

Th17 cells diversity and plasticity
Even though Th17 and T regulatory cells (Tregs) have 
different functions, they do share some similarities. 
Depending on the stimulus, both T cells populations 
are capable to change their regulation and function[18]. 
TGF-β for example, is essential for differentiation of 
both cell types, but in the absence of pro-inflammatory 
signals promotes the expansion of inducible Tregs 
(iTregs)[19]. On the other hand, Th17 development 
requires the presence of both TGF-β and IL-6[16,17].

This effect could be explained by a TGF-β concen-
tration-dependent function. TGF-β at low concentrations 
acts synergistically with IL-6 and IL-21 to promote 
IL-23 receptor (IL-23R) expression, favoring Th17 
differentiation[20,21]. On the contrary, at high concentrations, 
TGF-β suppresses IL-23R and Tregs development is 
favored by Foxp3+ expression (which in turn inhibits RORγt 
function)[22,23].

Several studies have established that differentiation 
of Foxp3+ Tregs is not static and that they can 
transdifferentiate into Th17 cells[24,25]. In mice, IL-6 
showed to convert Foxp3+ cells into Th17 cells in the 
absence of TGF-β[25] (Figure 2).

IL-17 has been linked to the pathogenesis of many 
immune mediated diseases like psoriasis, pulmonary 
fibrosis, systemic sclerosis, myocardial fibrosis, 
systemic lupus erythematosus, inflammatory bowel 
disease, rhino sinusitis, encephalomyelitis, multiple 
sclerosis, asthma, and uveitis[7,8,26-37]. Still, the role of 
the Th17 pathway in human liver disease is not fully 
understood.

ROLE OF Th17 CELLS IN THE 
PROGRESSION FROM NAFLD TO NASH
The association between obesity and NAFLD/NASH 
implicates the crosstalk of many cells types and 
organs. Due to the limitation of using human samples, 
the best approach is to study deeply the different cell 
interactions in murine models.

There is evidence regarding IL-17 axis playing a 
broad role in multiple models of NAFLD via modulation 
of hepatic inflammation. Among resident hepatic cells, 
hepatic stellate cells (HSC), kupffer cells, hepatocytes 
and endothelial cells express the IL-17RA and are 
known to activate inflammatory pathways which 
exacerbate the disease[38,39]. On the other hand, other 
studies showed that hepatocytes and endothelial cells 
do not transmit IL-17 signals despite IL-17RA expression 
and that they do not produce IL-17[39-41]. As regard the 
production of IL-17 in liver, is not only limited to CD4+ 
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Figure 1  Interleukin-17 signaling cascade and amplification loop. IL-17 
upregulates the production of pro inflammatory cytokines IL-6 and IL-23 through 
a complex intracellular signal involving IL-17 RA downstream Act1, MAPK 
and C/EBP transcription factors and kinases. IL-6 and IL-23 after binding their 
receptors, stimulate IL-17 production by PI3K and JAK/STAT3 that release NF-
κB to translocate to the nucleus. IL-17: Interleukin-17; Act1: Activator 1; JAK/
STAT3: Janus kinase/signal transducer and activator of transcription 3; PI3K: 
Phosphoinositide-3-kinase.
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Figure 2  T cell differentiation and plasticity. A naïve CD4 T cell differentiates 
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Regulatory T cells; TGF-β: Transforming growth factor β; IFN-γ: Interferon-γ.
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Inflammatory cytokines, TGF-β, IL-6, IL-1β , and 
TNF-α were increased after BDL, but when anti-IL-
17mAb treatment or knock out (KO) IL-17RA mice was 
performed, a marked improvement in liver function was 
observed. Suppressed kupffer cells and HSC activation 
(collagen-α1 production through STAT3), macrophages 
infiltration and decreased proinflammatory mediators 
level in serum and injured liver in mice were shown[39,49].

Diet induced models of liver damage have been 
characterized. One of the most used is the methionine 
Choline deficient diet (mCDD) where steatohepatitis 
occurs at day 10 and fibrosis is observed by 8-10 wk 
in mice[50]. The main disadvantage of this model is that 
obesity and insulin resistance are not present. MCDD-
driven NAFLD was related to increased hepatic IL-17RA 
expression and IL-17A/IL-17F production. Moreover, 
was observed an increase of Tregs (peak at 4 wk of 
diet) and Th17 (peak 8 wk of diet or further)[51]. When 
mCDD animals were treated in-vivo with neutralizing 
antibodies against CD25 or IL-17, the liver injury 
(measured by ALT and AST levels) was alleviated or 
worsen respectively. However, no evident histological 
changes were found[51]. On the other hand, when kO 
mice of IL-17RA, IL-17A or IL-17F were challenged 
with the diet, a reduction in proinflammatory cytokine 
and chemokine production, immune cell infiltration and 
hepatocellular damage was observed[52,53]. The anti-
inflammatory and/or immune-regulatory mediators 
normally inhibited by the IL-17 axis were restored, for 
instance when IL-17A or IL-17F were missing Treg cell 
expansion and activation returned to normal. Rolla et 
al[52] described no changes in Treg cells but observed 
the presence of Th22 cells. Interestingly, was shown in 
IL-17 KO mice that Th22 cells seemed to be protective 
in NASH preventing from lipotoxicity[52].

Another widely used diet induced model of liver 
injury in mice is the high fat diet (HFD). Even if it is 
a good model for glucose intolerance and obesity, 
fibrosis is rarely observed and usually additional 
events such as LPS challenge are required to develop 
it. The increased oxidative stress produced in the 
fatty liver causes the apoptosis of Tregs, and increase 
the Th17 cells[54,55]. When IL-17 is neutralized in HFD 
mice the challenge with LPS promotes a decrease in 
serum transaminases levels and a reduced hepatic 
inflammatory cell infiltrate[55]. In in vitro high fat 
models (HepG2 and primary mice hepatocytes) the 
exposure to IL-17 induced a higher IL-6 release in 
the culture medium, higher triglyceride intracellular 
content and interfered insulin-signaling pathway[55] 
(Table 2).

Th17 studies in humans
NAFLD prevalence is higher in morbid obese (mO) 
patients than in the lean population, and these 
patients present a higher risk for developing NASH 
and its complications. In a prospective study that 
included 112 obese patients with NAFLD, the Th17/

and CD8+ T cells. Natural Killer T cells, macrophages, 
neutrophils, γδ T cells and Innate Lymphoid Cells are 
also capable of producing IL-17[39,42,43]. At least for now, 
only Th17 CD4 T cells, macrophages and neutrophils 
are known to be involved in the development of steato-
hepatitis inflammation process.

Th17 studies in different animal models of NAFlD
As mentioned before, the progression from NAFLD to 
NASH involves a wide spectrum of events such as lipid 
deposition, inflammation, oxidative stress, fibrosis[44]. 
To study the mediators involved in this process, were 
characterized and described several animal models.

One of the oldest model for liver fibrosis is the CCL4 

toxin-based damage. During the development of liver 
fibrosis by this approach, CD4+ and CD8+ T cells 
both exhibited increased IL-17A expression. However 
the major source of this interleukin was represented 
by neutrophils. moreover, HSC were activated and 
responded by increasing IL-6, α-SMA, TNF-α and TGF-β 
mRNA expression[39,45,46]. Therefore, when studied the 
balance of Th17/Treg in the liver, it was favored toward 
Th17, thus promoting inflammation[45]. 

In vivo and in vitro analysis of this model demon-
strated that in HSC, IL-17 increases the expression of 
Collagen-α1 through STAT3 signaling. Stimulation of 
HSCs with IL-17 results in Collagen-α1 up-regulation 
via IL-17RA. Moreover, in a STAT3-deficient mice, HSCs 
do not up-regulate Collagen-α1 in response to IL-17A, 
confirming that this mediator is a required target of 
IL-17 signaling[39,47].

Another model of liver injury is the bile duct 
ligation (BDL) where the bile flow is disrupted, re-
sulting in severe inflammatory cholestatic liver injury 
that induces a strong fibrotic response after 21 to 
28 d[48]. During the inflammatory process CD4+ T 
cells exhibited an increase in IL-17 expression in the 
liver. For the CD8+ T cells controversial results were 
observed, in some studies was reported that IL-17 was 
produced whereas others indicated the opposite[39,49]. 
However, neutrophils keep on representing the major 
source of IL-17 among the infiltrating cells in liver after 
BDL[49].

Table 2  Th17 in mouse models of liver injury

Model Th17 cells Th17/Tregs IL-17 
expression

Ref.

CCL4 ↑ ↑ ↑ Meng et al[39]

Sun et al[45]

BDL ↑ ↑ Meng et al[39]

Zhang et al[49]

MCDD ↑↑ ↑ Rolla et al[52]

Giles et al[53]

Liu et al[51]

HFD ↑↑ ↑ Tang et al[55]

IL-17: Interleukin-17; Th17: IL17 secreting T helper; Treg: Regulatory 
T cells; CCL4: Carbon tetrachloride; BDL: Bile duct ligation; MCDD: 
Methionine choline deficient diet; HFD: High fat diet.
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Tregs ratio correlated positively with NASH progression 
(by histology) and CK-18 expression (one of the 
proposed biomarkers of NAFLD progression) analyzed 
in peripheral blood and in intra hepatic lymphocytes. 
One year after bariatric surgery, there was a decrease 
in the Th17/Tregs ratio that became similar to healthy 
lean controls[4]. In Vonghia et al[56] prospective study, 
a decrease in the IL-10/IL-17A ratio marked an 
accentuated pro-inflammatory state in obese patients 
with NASH in comparison to those without NASH. 

Studies with mO patients evaluated subcutaneous 
adipose tissue CD4 T cells content from lean, meta-
bolically normal obese and metabolically abnormal 
obese subjects. They found that CD4+ gene expression 
was increased progressively and skewed towards 
Th17 phenotype. JNK activation was proposed as 
the mechanism responsible for IL-17 induced insulin 
resistance[57]. 

IL-17 mRNA expression from visceral adipose 
tissue (VAT) and subcutaneous adipose tissue (SAT) 
of mO patients was increased in comparison to normal 
weight women being higher in VAT than in SAT[58]. 
moreover, SAT, VAT and peripheral blood mononuclear 
cells (PBMC) from overweight/moderately obese and 
MO subjects presented a marked increase in the 
Th17 population (VAT higher than SAT and peripheral 
blood)[59]. Positive correlations between IL-17 vs 
IL-6 or Resistin at mRNA levels were found but not 
correlations for the percentages of Th17 cell with 
insulin resistance values have been established[58,59].

Contrarily to what is reported in mice[52], to our 
knowledge the study published by Zapata-Gonzalez 
et al[58] is the only one that reported higher plasmatic 
IL-17 concentration in the normal weight group than in 
mO patients.

Diabetes mellitus type II (T2D) is a common 

disorder among NAFLD patients. In the work of Zeng 
et al[60], CD4 T cells from PBMC were analyzed by flow 
cytometry. A reduction in the absolute number and 
in the percentage of Tregs was shown favoring the 
Th17/Tregs ratio toward Th17 cells[60]. Even though 
functionality of Tregs cells was conserved, their 
number was decreased because of impaired survival 
ability. Interestingly, Th17 cells were higher in patients 
that presented more T2D complications[57]. Conversely, 
no differences were found in IL-17 plasma of T2D 
compared to age-matched healthy controls[61].

In liver fibrosis secondary to primary biliary 
cirrhosis (PBC), patients presented higher peripheral 
Th17 cells when compared to healthy controls. In the 
liver, IL-17+ cells gathered around the portal areas[62]. 
Furthermore, in cirrhotic liver tissue IL-17+ cell infil-
tration was higher than controls[46].

In vitro studies of human hepatic stellate cells (HSC) 
exposed to IL-17 showed a dose dependent activation 
and proliferation response that was neutralized by 
an IL-17 antagonist[62]. Fabre et al[63] evaluated HSC 
activation (LX2 cell line and primary human hepatic 
stellate cells) by IL-17. They observed that IL-17 by 
itself was insufficient to activate the cells, but when 
combined with a suboptimal TGF-β dose generated 
a strong activation enhancing TGF-β response by 
increasing cell surface expression of its receptor and 
the profibrotic signaling[63].

Regarding the pediatric population, much less is 
known; we found only a study conducted by Łuczyński 
et al[64] in children with central obesity. They showed 
higher percentages of Th17 cells in the peripheral blood 
in comparison with healthy lean children[61]. In other 
pediatric diseases these T cells were involved, principally 
in inflammation, such as autoimmune thyroid disease 
or mycoplasma pneumoniae infection[65,66] (Table 3).

CONCLUSION
A pro-inflammatory state is crucial for the initiation 
and maintenance of inflammation in the onset and 
progression of NAFLD/NASH. T cells resident in non-
lymphoid tissues are able to regulate local inflammation 
by modulating immunological and non-immunological 
responses. many studies in different animal models 
have proved the important role of the Th17 pathway in 
inflammation and HSC activation. Much less is known 
about human physiopathology of NAFLD due to the 
limitations and difficulty to obtain samples. Studies with 
obese or diabetic patients obtained higher Th17 cells in 
blood with no changes or decrease in Tregs. If IL-17 is 
elevated or not in plasma is still controversial. Adipose 
tissue and intrahepatic Th17 lymphocyte subsets have 
been assessed in NAFLD/obese/PBC patients, being 
higher compared to control individuals.

It has been widely argued if inflammation occurs 
first in liver than in adipose tissue or the other way 
around. Until now, this is still unraveled but it is 

Table 3  Th17 in human tissues

Th17 
cells

Th17/
Tregs

IL-17 
expression

Disease Ref.

Liver ↑ ↑ ↑ NAFLD - 
MO

Rau et al[4]

PBC Shi et al[62]

CH - CIRR Tan et al[46]

VAT ↑↑ MO McLaughlin et al[59]

MO Zapata-Gonzalez 
et al[58]

SAT ↑ MAO Fabbrini et al[57]

MO McLaughlin et al[59]

PBMC ↑↑↑ ↑↑ NAFLD - 
MO

Rau et al[4]

T2D Zeng et al[60]

Obesity Łuczyński et al[64]

PBC Shi et al[62]

IL-17: Interleukin-17; Th17: IL-17 secreting T helper; Treg: Regulatory T 
cells; VAT: Visceral adipose tissue; SAT: Subcutaneous adipose tissue; 
PBMC: Peripheral blood mononuclear cells; NAFLD: Nonalcoholic fatty 
liver disease; MO: Morbid obesity; PBC: Primary biliary cirrhosis; CH: 
Chronic hepatitis; CIRR: Cirrhosis; T2D: Type II diabetes mellitus.
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known that the adipose tissue inflammation and their 
adipokines, free fatty acids, and gut derived microbial 
products could promote Th17 differentiation in the liver, 
with the consequent imbalance towards inflammation. 
Obesity may maintain a positive feedback loop that 
promotes Th17 survival in the inflamed liver. This would 
explain how weight loss after bariatric surgery can 
reverse clinical and histopathological features of NASH. 
On the other hand, it seems that the T cell imbalance 
occurs in situ, but to date there is not enough evidence 
to explain the connection between adipose tissue 
inflammation and hepatic injury progression. 

Studies that analyze the crosstalk between the 
different organs during the NAFLD/NASH progression 
should be promoted in order to evaluate and establish 
the main players in this disease.

Although there is evidence that implicates the Th17 
pathway as a key player in the progression of NALFD, 
it seems that there is a lot more to be elucidated. 
Plasticity of this cell subtype may render it a therapeutic 
target.
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