
MultiMice Air Hockey. A Game with a Low-Cost
Non-Conventional Interface

Damián Flores, Silvia Castro and Sergio Martig
{df, smc, srm}@cs.uns.edu.ar

Laboratorio de Investigación y Desarrollo en Visualización y Computación

Gráfica (VyGLab)
Departamento de Ciencias e Ingeniería de la Computación

Universidad Nacional del Sur
8000 Bahía Blanca, Argentina

ABSTRACT

Interaction between user and computer is gradually
going beyond the traditional mouse and keyboard.
New ways of interaction are emerging, which use
new and different means for data acquisition. Virtual
or augmented reality, haptic, tangible or camera-
based user interfaces are all examples of this.
Computer games take advantage of these new
facilities, as they obtain the benefit of providing new
user (player) experience with every new interface
developed. In this article, we present a non-
conventional user interface for the popular Air
Hockey game. This interface is based on a table-like
surface with support for multiple users.
Additionally, it does not require special nor costly
hardware.

Keywords:
Non-conventional Interfaces, Multiple-User
Interaction, Table-like display.

1. INTRODUCTION

User interfaces are always in continuous
development and progress. Since the command line
interface, a large number of different interfaces have
been developed, including mouse, touchpads and
multitouch screens, among others. Nowadays, there
is a tendency for user interfaces to go beyond the
traditional desktop [1].

The use of compact accelerometers and gyroscopes
allows to track the movement of a device, making it
possible to control a game or application by using
the physical movement of the device, as in the case
of the Wii controller. Camera-based interfaces also
provide another way to get gesture sensing or
recognition. Augmented reality, haptic interfaces,
voice recognition, etc, provide new ways for
interaction with the computer. All these examples
are not only non-traditional ways of providing input
to the computer applications, but also are outside the
view of an everyday desktop.

Every new interface presents its own new ways of
interaction, and the user may sometimes need to get
used or require some training. Also, some systems
require specific hardware or buildings with special
working conditions.

Computer games are one of the driving forces of
software industry. New games are closely associated
with computer technology development, as new
games demand new technology and, at the same
time, technology development allows new game
experiences.

In this context, we developed an application, the
MultiMice Air Hockey, that allows multiple user
interaction, emphasizing not only the fact of
transcending the desktop, but also the use of low
cost hardware.

2. BACKGROUND

Games with non-conventional interfaces have begun
to emerge. Augmented reality is a source of new
game ideas; some classical board games, such as
Mah-Jonng, Casino, or a Maze, were developed by
Szalavari [2] in which the emphasis was specially in
collaboration. The Goblin XNA [3] is a framework
for 3D user interfaces, focused in gaming and
augmented reality.

Tangible interfaces are also used for game and
learning, NikVision [4] is a console for children
learning that makes use of tangible interfaces; force
feedback also extends the interaction experiences by
manipulating our sense of touch.

Other examples of new interfaces are multitouch
tables, being probably the Microsoft Surface one of
the most known. However, its price ascends to some
thousand dollars. Cheaper alternatives exist, built by
many other manufacturers, but the cost is still high
for a home game application. These tables allow
multiple users to interact at the same time. This
allows stunning games and/or applications to be
developed, such as the coming-soon RUSE [5]
game. There also exist some approaches to simulate
the behavior of such tables by using the Wiimote
[6]. In our case, we have multiple user support, not
by means of touching but by providing each user
with a mouse and enhancing the output with a large
projecting surface.

Taking into account these approaches, and with the
design condition of an inexpensive development, we
created a game application having multiple user
support on a table-based interface.

JCS&T Vol. 10 No. 2 June 2010

81

3. THE GAME

Most computer games are played in a conventional
PC configuration, based on traditional interaction
styles. This configuration consists typically on a PC,
a CRT or LCD display as an output device, different
conventional input devices like mice, keyboard and
joysticks; and WIMP interfaces.

Additionally, there is a large class of games played
on surfaces representing boards, courts, terrains, etc.
and those surfaces are represented on the
conventional general purpose displays before
mentioned. Display devices greatly influence the
way in which a player interact with the game.
Interaction enables the user to express himself in a
human-like fashion and this interaction could be
more effective and satisfying [7].

In order to achieve a more natural interface as an
alternative to the quite expensive table-based games
for multiple users, we have developed a
hardware/software interface transcending the
desktop barrier and providing intuitive and more
human-like interaction techniques. Besides, another
key characteristic is that it does not require costly
hardware nor particular buildings, unlike some of
the applications mentioned previously. The
hardware used in this interface is easily available.
An horizontal rectangular frame, wrapped with a
special transparent plastic fabric, makes the natural
surface display; a multimedia projector provides the
output image on the surface and 2-to-4 mice allows
interaction with the application. This arrangement
allows a tabletop game to be played in a natural way
and without special training.

Fig. 1. Arrangement of the table surface. Each user
is provided with a mouse and the surface image is
displayed with the help of a projector.

The Real Game
Air Hockey is a famous and popular game in which
two competing teams (typically one player per team)
try to score points in the goal of the opposing team.
The game requires an air-hockey table, a mallet per
player and a puck.

The air-hockey table consists of a large and smooth
surface with a surrounding rail to prevent the puck
and mallets from leaving the table (Fig. 2). The table
surface has reduced friction to speed up the game. It

is played typically by two players, and the winner is
the first who scores seven goals.

Air Hockey was chosen given the similarity of the
interface proposed and the actual game, with the
horizontal display representing the table and each
player controlling one mallet through the use of its
mouse. User interaction in this way results natural
for the player, since mouse movements map directly
into mallet movements.

Fig. 2. A physical air hockey table (left), and the
mallets (right).

Our Proposal
Novel display designs present new opportunities for
games; in the presented table-like display, the
surface enables users to interact with the game in an
intuitive and natural way; for this application, an
intuitive physical interaction modality is also
presented.

In the following sections we describe how the game
can be played in this context, and then, a detail of
the hardware and software developed is presented.

How to Play
The user is presented on the table surface with the
air hockey table and is able to control his mallet by
moving the mouse over the surface. In a classic
configuration, two players compete and the
interaction between them is merely competitive.
There exists the possibility of four players, two per
team, to play the game; in this case, team-mates can
cooperate to build strategic moves, such as a zigzag
puck movement.

Fig. 3. The game in two-player mode. Each mouse
controls a game mallet.

JCS&T Vol. 10 No. 2 June 2010

82

The table area is divided, half the area for each team,
and each team must remain inside its area. In the
game this is accomplished by restricting the mallets
movement inside their area. In the four player case,
the team area is further divided, half for each player.
This is due, in part to avoid interference between
players of the same team, and in part to simplify the
collision management.

Hardware
From the hardware point of view, we must consider
the input and output elements of the interface. For
output, it is used a horizontal table display, with the
output image being projected onto the surface from
below of the table. In order to make the image
larger, a mirror is placed below the table; thus
allowing the projector to be placed farther, enlarging
the final image size (Fig. 4 shows the mirror).

For input, each user is provided with a traditional
mouse, with the ability of using them all at the same
time. Wireless mice may be used to make the user to
feel more comfortable. Additionally, the interaction
could be enhanced, in a more realistic way, with an
adequate prop based on cheap mouse technology.

This combination of horizontal display and multiple
mice allows more than a single user to stand at the
table and to interact intuitively in a collaborative or
competitive way within the game.

Fig. 4. The mirror below the table makes possible to
enlarge the image.

Software
The application developed is a version of the
popular Air Hockey game, taking advantage of the
high similarity with the real game. Every physical
element such as the table, puck and mallets has its
corresponding game component, which is
responsible of the correct update and drawing of the
models. The models of the objects were built using
the 3D sketching software SketchUp.

There are three main activities to perform in the
game logic: Positioning the mallets, moving the
puck and checking for goals. The mallets are moved
according to user movements of the mouse; the puck
follows physics laws of movement and collisions

with the mallets and with the table borders; and the
goals are detected monitoring the position of the
puck on the table.

The physics behavior is encapsulated in a single
class in the project, the CollisionManager class. This
class provides its clients with methods to detect
collisions and to handle the behavior of the colliding
objects.

4. IMPLEMENTATION

The game was written in C#, using the XNA
framework, and runs on Windows XP. XNA is a
game development framework developed by
Microsoft, with the particularity of running in a
managed runtime environment which is available for
Windows XP, Vista and the Xbox 360 game
console. As a framework, it provides all the base
infrastructure for game development, such as the
game loop, time management, interface with the
graphics device, etc.

In the next sections, a description of how the
problem of multiple mice arose and how was it
addressed, is presented.

Getting Multiple Mice Support
In order to being able to use the proposed hardware,
it is needed to support the interaction of multiple
mice at the same time; thus, the first task was the
addressing of this issue. This topic is not new, it was
addressed for different platforms, MID [8] (Multiple
Input Devices) is a java package that supports
multiple mice, CPNMouse [9] is a driver for
Windows XP and Tsee and Greenberg [10] made a
toolkit for Single Display Groupware applications.

However, difficulties arose when interacting with
some of them, for example, MID does not work on
Windows XP, the others are event-driven or
callback-based, not having a good behavior in our
particular domain, considering a game implemented
with a game loop polling the state of the input
device on every loop. In the event-driven case, an
event meaning “MouseMove” interrupts the game
loop at an irregular frequency, depending on the user
movements, a similar effect happens with the use of
callbacks. Based on this, we used a facility provided
by Windows XP to manage the state of the mice.

Windows supports multiple mice, but is not able to
recognize or differentiate which one the data is
coming from. [11] Having more than a single mouse
connected is possible and easy by simply plugging
them into free USB ports. However, in such a
situation, we cannot identify the source pointing
device. Even though each mouse provides its own
input stream, the resulting stream is made by the
sum of all mice. This behavior is due to Windows
architecture, in which the implicit assumption that
nobody would use multiple mice, led to the fact that
the ID of the different devices were not taken into
account by the Win32 API. This API receives

JCS&T Vol. 10 No. 2 June 2010

83

packets with mouse information sent from the
drivers. Information includes button state, delta
values and a unique ID. When the Win32 API
system processes the mouse packets to generate the
mouse events, the OS just eliminates the ID
identifier, making the programmer unable to
distinguish between the multiple mice sending
events.

The Raw Input API
The raw input API [12] is an interface that allows
programmers to gather user raw input from a wide
range of devices. Provided by Microsoft, this API is
available in its operating systems since Windows
XP. User input can come from a joystick, touch
screen, remote control, or other devices, thus,
allowing great flexibility in user input. These
devices are sometimes known as Human Interface
Devices (HIDs) and the raw input API provides us
with a robust method of accepting input from any
combination of HIDs, including the mouse and
keyboard.

The particularity of this API is that it allows simple
access to all HIDs, but only to the raw input,
meaning that the data offered is low-level and
device-specific, being up to the application to
interpret it properly. The application must register
the HIDs it wants to receive input from, and the
information is received via the WM_INPUT
message.

The RawInputLib
Based on the raw input API, we developed a new
library to interface with the low level information
offered by the API. Written in C#, this library offers
the following features: It handles and encapsulates
the complexities of having to manage the low level
data, allows the management of multiple
independent mice and offers a simple and clear
interface to application programs.

This library was designed to be capable of managing
the raw input of multiple devices at the same time.
But, at the present, it just supports multiple mice
only.

It manages two aspects of each device, the status and
the device information. The status is all the
information that varies very frequently, such as the
mouse position or state of the buttons, whereas the
device information is practically static. Retrieved
mainly from the Windows registry, device
information include: Device ID, Name given by
Windows and a description (Such as “Generic PS/2
mouse”).

As this library was thought with the game in mind, it
maintains the state of the device and its information
is accessed by polling, instead of through events.

Another aspect taken into account in the library is
the orientation of the mouse, that is, when two
people stand in front of each other, moving the
mouse up, down, left or right is not the same in the

sense that, for example, left for the first means right
for the other. This issue arose because of the change
in the display orientation, when it is vertical there is
a general agreement in what “left” means; in
contrast, when horizontal, it depends on user
location. So, coordinates and movements need to be
transformed according to mouse orientation.

The interface with the programmer is very simple,
carried out by having an instance of the
MouseManager class. This class, as its name
suggests, is the responsible of managing every
mouse and it is the façade of the library. Through
this class, it is possible to access the number of
devices detected, and hence query information for
each one.

Once created, and before start querying data, the
mouse manager needs to register the devices by
providing the handle of the window corresponding
to the application.

5. CONCLUTIONS AND FUTURE WORK

We have presented the MultiMice Air Hockey, a
game provided with a low cost non conventional
interface allowing players to interact in an intuitive
and simple way. This is due to the similarity in the
disposition of the display, enabling the user to play
the game as if he were at a real table. Also, the use
of mice as input devices makes the user capable of
using the system without requiring special training,
except for the game itself. Until now, only several
informal tests have been undertaken, mainly for
study of how intuitive the game interactions are. We
plan to design tests for evaluating this framework as
well as for designing new ones.

A trend towards new interaction schemes could be
identified when developing new applications in this
hardware/software context. We plan to develop other
interaction styles which are beyond the mouse, to
obtain intuitive interaction techniques to work with
users’ hands as they would do in the physical world.
Many questions remain to be answered in this
growing field.

Moreover, we have developed the multiple mice
library and the table as basic elements that can be
used to create new multiple collaborative games and
applications.

6. ACKNOWLEDGEMENTS

This work was partially supported by the PGI
24/N020 and 24/ZN19, Secretaría General de
Ciencia y Tecnología, Universidad Nacional del Sur,
Bahía Blanca, Argentina.

7. REFERENCES

[1] Martig, S., Castro, S., Larrea, M., Escarza, S.:
Interfaces no Convencionales. Su impacto en las
interacciones. WICC’09 (2009)

JCS&T Vol. 10 No. 2 June 2010

84

[2] Szalabari, Z., Eckstein, E., Gervautz, M.:
Collaborative Gaming in Augmented Reality.
Proceedings of VRST’98, pp. 195-204, Taipei,
Taiwan, 1998.

[3] The Goblin XNA Framework,
http://graphics.cs.columbia.edu/projects/goblin

[4] Marco, J., Cerezo, E., Baldasarri, S.: NikVision:
Desarrollo de Videojuegos Basados en
Interfaces Naturales. CEIG’08 Barcelona, 2008.

[5] The RUSE game, http://www.therusegame.com

[6] Johnny Chung Lee Projects,
http://johnnylee.net/projects/wii

[7] Kerren, A., Ebert, A., Meyer, J., Editors.
Human-Centered Visualization Environments,
GI-Dagstuhl Research Seminar, LNCS 4417
Springer-Verlag, 2007

[8] MID: Multiple Input Devices,
http://www.cs.umd.edu/hcil/mid

[9] Westergaard, M.: Suporting Multiple Input
Devices in Microsoft Windows. Proceedings of
Microsoft Summer Workshop for Faculty and
Ph Ds. Cambridge, England, 2002.

[10] Tsee, E., Greenberg, S.: Rapidly Prototyping
Single Display Groupware through the
SDGToolkit. Proc Fifth Australasian User
Interface Conference. Australian Computer
Society Inc., pp 101-110. (2004)

[11] Pawar, U.S., Pal, J., Toyama, K.: Multiple Mice
for Computers in Education in Developing
Countries.

[12] Microsoft Raw Input API,
http://msdn.microsoft.com/en-
us/library/ms645536(VS.85).aspx

[13] Castro, S., Larrea, M., Martig, S.: Interfaces No
Convencionales para Juegos. Primeras Jornadas
de Educación en Informática y TICS de
Argentina (JEITICS 2005)

JCS&T Vol. 10 No. 2 June 2010

85

