
Dynamic Generation of Test Cases with Metaheuristics 
 

Laura Lanzarini, Juan Pablo La Battaglia 
III-LIDI (Institute of Research in Computer Science LIDI) 

Faculty of Computer Sciences. National University of La Plata 
La Plata, Buenos Aires, Argentina 

{laural, juanlb}@lidi.info.unlp.edu.ar 
 

ABSTRACT 
The resolution of optimization problems is of 
great interest nowadays and has encouraged the 
development of various information technology 
methods to attempt solving them. There are 
several problems related to Software 
Engineering that can be solved by using this 
approach. In this paper, a new alternative based 
on the combination of population 
metaheuristics with a Tabu List to solve the 
problem of test cases generation when testing 
software is presented. This problem is of great 
importance for the development of software 
with a high computational cost and which is 
generally hard to solve. 
The performance of the solution proposed has 
been tested on a set of varying complexity 
programs. The results obtained show that the 
method proposed allows obtaining a reduced 
test data set in a suitable timeframe and with a 
greater coverage than conventional methods 
such as Random Method or Tabu Search. 
Keywords: Software Testing, Evolutionary 
Testing, Particle Swarm Optimization, 
Evolutionary Algorithms, Metaheuristics. 

1. INTRODUCTION 
The automatic generation of a test dataset that 
allows measuring the performance of a given 
program is a highly important task in software 
development that requires a high computational 
cost and is generally hard to solve.  
The solution to this problem has been widely 
studied for a long time now. The first paradigm 
used was the so-called “random test data 
generation”, which consisted in creating a test 
dataset in a random manner until reaching the 
termination condition or until a maximum 
number of test datasets had been generated [2].  
An alternative method to solve this problem is 
the symbolic generation of test data [11]. It 
consists in using symbolic values for the 
variables, instead of real values, thus allowing a 
symbolic execution. This execution generates 
algebraic restrictions that determine test cases.  

A third paradigm is the dynamic generation of 
test data [9]. In this case, the program is 
modified to provide information to the seed in 
order to verify whether a given criterion was 
reached. Thus, if the criterion was not reached, 
new data can be built to be used as input to the 
program. Under this paradigm, data generation 
becomes an optimization process, since each 
condition within the program can be analyzed 
as a function to minimize.  
In particular, various metaheuristics have been 
used to dynamically generate the necessary test 
cases. There are solutions based on genetic 
algorithms [12], simulated annealing [16] and 
immune systems [3]. Some recent solutions use 
Tabu Search [5] and Scatter Search [13]. 
The purpose of this paper is to present a new 
solution to the problem of finding a suitable test 
dataset for testing the performance of a program 
by using a PSO-based populational 
metaheuristics combined with a Tabu list.  
A white box testing procedure will be carried 
out, that is, the test-case seed will use 
information from the program structure to guide 
the search for new input data. Usually, the 
structural information is taken from the flow 
control graph of the program. The input data 
that are generated by the structural testing must 
be subsequently assayed against the program to 
check if they generate an incorrect behavior. 
This article is organized as follows: Section II 
describes the original PSO method, Section III 
details the special considerations that should be 
adapted to solving the problem of a multi-
objective, such as the generation of test cases 
using this structure, Section IV shows the 
obtained results. Finally, some conclusions are 
presented. 

2. PARTICLE SWARM 
OPTIMIZATION 

An algorithm based on particle swarms, also 
called Particle Swarm Optimization (PSO), is a 
populational metaheuristics where each 
individual represents a possible solution to the 
problem and adapts following three factors: its 
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knowledge of the environment (its fitness 
value), its historical knowledge or previous 
experiences (its memory), and the historical 
knowledge or previous experiences of the 
individuals in its neighborhood [4]. Its purpose 
is to evolve in its behavior so as to resemble the 
most successful individuals within its 
environment. In this type of technique, each 
individual is in continuous movement within 
the search space and never dies. On the other 
hand, the population can be seen as a multi-
agent system where each individual or particle 
moves within the search space storing, and 
ultimately communicating, the best solution 
that it has found [10].  
There are different versions of PSO; the most 
widely known are gBest PSO, which uses the 
entire population as neighborhood criterion, and 
lBest PSO, which uses a small neighborhood 
size [6, 14]. Neighborhood size affects 
algorithm convergence speed as well as the 
diversity of individuals in the population. As 
neighborhood size increases, algorithm 
convergence speed increases and individual 
diversity decreases.  
Each particle pi is made up by three vectors and 
two fitness values: 
− Vector xi = (xi1, xi2, …, xin) stores the 

current position of the particle in the search 
space. 

− Vector pBesti = (pi1,pi2, …, pin) stores the 
best position of the solution found by the 
particle up to the moment. 

− Speed vector vi = (vi1, vi2, …, vin) stores the 
gradient (direction) according to which the 
particle will move. 

− The fitness value fitness xi stores the 
current solution capacity value (vector xi ). 

− The fitness value fitness_pBesti stores the 
capacity value of the best local solution 
found up to the moment(vector pBesti ). 

The position of a particle is updated as follows 

          xi(t+1) = xi(t) + vi(t+1)                      (1) 

As previously explained, the speed vector is 
modified taking into account its experience and 
the environment’s. The expression is the 
following: 
vi(t+1) = w.vi(t) + ϕ1.rand1.(pBesti - xi(t)) + 
                           ϕ2.rand2.(gi - xi(t))        (2) 
 
where w represents the inertia factor [15], ϕ1 
and ϕ2 are acceleration constants, rand1 and 
rand2 are random values belonging to the 

interval (0,1), and gi represents the position of 
the particle with the best fitness of the 
environment of pi (lBest o localbest) or the 
whole swarm (gBest o globalbest). Values of w, 
ϕ1 and ϕ2  are essential to assure the algorithm’s 
convergence. For more details on the selection 
of these values, consult [4] and [17]. 
Figure 1 shows the basic PSO algorithm. 
 
S ← InitializeSwarm()  
while termination condition is not reached do 
   for all i = 1 to size(S) do 
     Assess particle xi of swarm S  
     if fitness(xi) is better than fitness(pBesti) 
           pBesti  xi 
          fitness(pBesti) ← fitness(xi)  
     end if 
   end for 
   for all i = 1 to size(S) do 

Choose gi based on the neighborhood 
criterion used  
vi(t+1) = w.vi(t) + ϕ1.rand1.(pBesti - xi(t)) + 
             ϕ2.rand2.(gi - xi(t)) 

   end for 
end while 
Output : the best solution found 

Fig.1. Basic PSO 
 

3. DESCRIPTION OF THE 
PROPOSED SOLUTION 

The dynamic generation of test cases involves 
knowing if the coverage criterion is achieved 
during execution or not. To this end, the 
original program is modified by inserting 
instructions that allow the seed to gather the 
required information. New input data are added 
to the test dataset until the desired criterion is 
reached. Thus, this software engineering 
problem becomes an optimization problem, 
since the purpose is minimizing a certain 
distance to a preset coverage criterion. The 
method used to achieve this minimization is 
based on the particle swarm optimization 
algorithm.  

3.1.  PROGRAM COVERAGE 

The criterion used in this paper to determine if a 
program is correctly covered or not is 
condition-decision coverage. This means that 
every condition in a decision takes all possible 
outcomes at least once. There are other criteria, 
such as the statement coverage, which require 
the execution of all of the instructions of the 
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program or branch coverage wich requires the 
execution of every branch of the program. 
However, the criterion selected, by requiring 
that all conditions reach both truth values, 
ensures that all branches are covered, which 
also means that all the instructions of the 
program will be executed. 
In order to carry out this task, each condition of 
the program is analyzed independently. For 
each of them, the strategy described in the 
previous section is applied. Since the program 
has to be run to verify the status of each 
condition, it is possible to check more than one 
condition in one execution. 

3.2.  MODIFICATIONS OF THE PSO 
METHOD 

The optimization method used is a modified 
version of the basic PSO algorithm to take into 
account the specific characteristics of the 
problem at hand: 
− It is a multi-purpose optimization process 

that uses a different population for each 
condition. Each population has a different 
size [7]. 

− Since PSO is an optimization strategy, it 
moves population individuals within the 
solution space in search of the optimum. 
This occasionally leads to oscillatory 
movements [8] or results in a loss of 
diversity [2]. In the case of test case 
generation, the function to minimize for 
each condition is an expression that allows 
inverting the truth value. For this function 
to work properly, the inertia of each particle 
has to be conserved; that is, w is not used in 
the usual way.  

− Each population associated to a condition is 
formed by individuals that allow assessing 
it. They will all yield the same truth value. 
The purpose of the proposed method is 
using them to obtain the opposite truth 
value. It should be noted that the execution 
of the program using one of these 
individuals in its new position as input may 
not be enough to assess the desired 
condition, which would prevent the 
assignment of a fitness value. This would 
be the same as using a non-continuous 
solution space, where individuals leave the 
interest space when they move. For this 
reason, the PSO has been modified so as to 
only allow movements within the solution 

space; the rest of the individuals keep their 
current position. 

3.3. FITNESS FUNCTION 

The proposed solution is only applicable to 
numeric input variables. The fitness function 
used in each case is indicated in Table 1. Its 
goal is returning a positive value, which will 
gradually approach zero as the individual that 
represents the input data being used for the 
execution of the program moves forward in the 
correct direction to obtain the opposite truth 
value. 
 
Table 1. Fitness function used for each type of 
condition 
Condition FitnessFunction 
x=y, x≠y abs(x-y) 
x<y, x≤y y-x 
x>y, x≥y x-y 
x ^ y min( cost(x), cost(y)) 
x v y if (x=true and y=true) then 

            min(cost(x),cost(y)) 
else  Σcj FALSE cost(cj)) 

 

3.4.  GENERATION METHOD 

The selected method for test case generation is 
of the white-box type; therefore, the values of 
the variables involved in each condition at the 
moment of execution must be known. 
To this end, a method composed by two 
modules was used: 
− an execution wizard which, based on some 

symbols introduced in the source code 
(which do not affect execution), generates 
information on the values of each variable, 
and 

− a process that, taking any given program as 
input, adds the aforementioned symbols. 

All this information is automatically assessed 
by the test case generator. 
 
Figure 2 summarizes the proposed method. 
 
Conditions are ordered based on their 
occurrence within the code. After the first 
execution, at least one condition has been 
tested.  
For each iteration, the first condition that is 
tested but is not covered is identified, and its 
population used to generate new input datasets 
with     a      modified      version     of    PSO 
(Apply_Modified_PSO procedure). When there 
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P ← CreateInitialStructure {all populations are  
                                         empty} 
TestData ← {Generate one random solution }  
RunProgram(TestData)  
The conditions that were reached have now one 
individual in their population 
AnswList = TestData  
while termination condition is not reached do 
  idNoC ← {identify the 1st.condition that was  
                   assessed but not covered} 
  TestData ← Apply_Modified_PSO(P(idNoC)) 
  for all i = 1 to size(TestData) 
    if TestData(i) was not tested then 
          changes = RunProgram(TestData(i))  
          if changes > 0 then 
              Add TestData(i) to AnswList set; 
          end if 
          Add TestData(i) to the list of already 
          tested data. 
    end if 
  end for  
end while  

Fig.2. Proposed method 

is only one individual in the population, it is 
used to generate a predefined number of 
variations, half of them within the  10%  of  the 
range allowed and the other half a bit further 
away, within the 50% of this range.If the 
population has more than one individual, a 
variation of the global PSO is applied. The 
value gBest is obtained by averaging the 
position vectors of the two best individuals. All 
the individuals of the population, with the 
exception of the two best ones, calculate their 
velocity vector as follows: 

vi+1=0,75 rand1.vi + 0,75 rand2.(gBest - xi)    (3) 

whereas the two best individuals use less 
pressure to remain in their place and change 
their velocity vector update as follows: 

vi+1=0,75 rand3.vi + 0,25 rand4.(gBest - xi)    (4) 

As already mentioned, the concept of inertia is 
not used in the usual way, since the expected 
effect is that the particle pass through the 
optimum for the condition to invert its truth 
value therefore, in (3) and (4), the value used as 
inertia factor is a random number between 0 
and 0,75. As in equation (2), rand1, rand2, rand3 
and rand4 are random values belonging to the 
interval (0,1). 

The new input data to be considered will be the 
positions of the individuals after their 
corresponding velocity vectors are added. 
The RunProgram process is in charge of 
applying the input data and identifying which 
conditions have changed their status, since with 
every execution, new fulfilled or tested 
conditions may appear. During this process, the 
conditions that have been tested incorporate the 
used input data to their populations, replacing 
the original individual.  
Unlike the conventional PSO algorithm, those 
individuals that generated new input data when 
moving but which did not allow testing the 
condition when running the program, will not 
be recorded in the population, leaving the 
original individual in the same position. 
Each input dataset used to run the program is 
recorded on a list in order to reduce 
computation time. All input data that modified 
the status of any condition are incorporated to 
the output test dataset, AnswList. 

4. RESULTS 

The solution was implemented in Ruby, an 
interpreted, reflexive, object-oriented 
programming language which is highly flexible 
and allows not only the quick modification of 
the solution, but also the implementation of the 
execution wizard that informs the value of the 
variables of each condition to the test case 
generator. 
The performance of the proposed method was 
tested in the generation of test data for some 
typical programs of the data testing field: 
− Triangles: it receives the length of the three 

sides of a triangle and indicates the type of 
triangle. 

− Calday: it receives a date and indicates the 
corresponding day of the week. 

− Select: it receives an array with a 
disordered list and a k index and returns the 
kth lower element. 

− QuickSort: list sorting method. 
− Bessel: algorithm that solves Bessel 

functions Jn and Yn. 

Table 2 shows the average of the results 
obtained after 100 independent executions of 
the proposed method considering a maximum 
number of 150 iterations. The results obtained 
with   the  Tabu  Search   method [5]   and   a  

 

JCS&T Vol. 10 No. 2                                                                                                                               June 2010

94



Table 2. Results obtained with the method proposed and how it compares to two existing solutions 

     Modified PSO 
 Tabu Search Random Proposed Method 
Method Coverage Testing Coverage Testing Coverage Testing 
Triangles 73.83 60.09 95.25 35.64 99 55.17 
Calday 81.93 1440.23 98.45 202.56 99.11 504.06 
Select 99.04 145.87 100 16.67 100 63.96 
QhickSort 10096.16 5.78 100 1.63 100 2.05 
Bessel 96.03 2235.96 96.16 294.13 100 620.32 
 
 

completely Random generation under the same 
conditions are also included. 
As it can be seen, the final coverage reached by 
the method herein proposed based on a 
modification of the PSO is higher for the tested 
programs. Based on the average number of tests 
of each method, the application of search 
strategies to solve problems requiring a small 
number of iterations should be considered. It 
can be seen that the Random method allows 
determining a test dataset that is suitable for the 
Select program and performs very few tests. In 
this particular case, the solution is easy to find, 
and the application of a search strategy only 
limits the exploratory capacity of the method, 
which does not occur with the random 
generation method. Nonetheless, even though 
the number of tests is higher, the fulfillment of 
the proposed method is still suitable. 
In order to check that the results were really 
significant, they were subjected to a variance 
comparison statistical analysis. 
Each sample was assessed with the 
Kolmogorov-Smirnov test to verify if they had 
a normal distribution. If they were normal (this 
only happened with the samples corresponding 
to number of tests in the "triangles" program), 
comparison was made by means of the Student 
test. For the remaining cases (whose 
distribution was not normal), the non-
parametric test of Kruskal-Wallis was applied. 
The p-value obtained was below 0.05, which 
allowed verifying that the differences are 
statistically significant. 

5. CONCLUSION 

A new method for the generation of test cases 
has been presented. This method is based on a 
modified version of the PSO algorithm and uses 
specific populations associated to each 
condition of the program.   

A testing and assisted execution system has 
been implemented for programs written in 
Ruby, which was used to measure the 
performance of this proposal.  
The results obtained for each of the programs 
with the different methods indicate that the 
proposed method is robust, increasing 
fulfillment in all cases and slightly decreasing 
the number of total executions, thus proving 
that a significant contribution was made to the 
field.  
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