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ABSTRACT 

 
This paper outlines and deals with the 

problem of fault detection, isolation and 

identification of the four-elements detector system 

attached to the Cairo Fourier diffractometer facility 

(CFDF) used for neutron time-of-flight (TOF) 

spectrum measurements. A feed forward neural 

network and error back propagation training 

algorithm are employed to diagnose four commonly 

occurring faults of the detector system: 

preamplifier, amplifier, discriminator and the high 

voltage.  The diagnostic system processes the 

acquired data to determine whether the detector 

system state is normal or not. The experimental 

results showed that the trained network has the 

capability to detect and identify various faults 

which can make one of the detector units to be out 

of order. 

Keywords: Fault Detection / Neutron Time-of-

Flight / Neural Networks. 

1. INTRODUCTION 

 
The neutron time-of-flight (TOF) method has been 

used successfully for studying the properties of 

condensed matter, as it allows to study the sample 

under exceptional conditions e.g. at high pressure 

or temperature [1-4].  The Fourier (TOF) approach, 

has been developed [5], as it offers a duty factor up 

to 50% while the Fermi chopper systems make use 

of only ~ 0.1 – 0.5% of the available neutrons [6]. 

The Fourier method has been improved by the 

reverse time-of-flight (RTOF) concept which is 

based on the triggering of the (TOF) analyzer by 

the detected neutrons instead of the rotor’s position 

[7]. The Cairo Fourier Diffractometer Facility 

(CFDF) is installed in front of one of the ET-RR-1 

reactor horizontal channels [8,9]. It is based on the 

reverse time-of-flight concept [3] where the 

detector system consists of several independent 

units.  The layout of the RTOF diffractometer is 

schematically given in Fig.(1); where the incoming 

neutron beam is modulated by the chopper 

according to some function x(t), whose values are 

always in the range 0 ≤ x(t) ≤ 1. This function is a 

periodic function the frequency of which is varied 

in an appropriate manner during the experiment and 

is independent of neutron velocity. The transmitted 

neutrons are scattered by the sample into the 

detector, the detector signals are used to start the 

multi-channel analyzer. The multi-channel analyzer 

performs the cross-correlation functions between 

the pick-up signal coming out from the chopper and 

the neutron y signal coming out from the detector 

yielding the diffraction pattern of the measured 

sample.  The electronic devices attached to each 

detector unit (preamplifier-amplifier-discriminator) 

are great sources of faults and abnormal situations.  

Consequently, the maintenance and diagnosis of the 

CFDF failures is a quite a task.  The accurate 

diagnosis is mandatory, as it should lead to high 

system reliability and can save maintenance costs.  

The analog rate meter attached to the CFDF 

displays the average neutron count per second for 

the detector system as all. Consequently, the current 

organization and equipments of the CFDF have not 

the ability to determine the faulty device.  

Accordingly there is a need to design and 

implement a diagnosis system to help locating the 

faulty device.  Therefore the present work suggests 

and simulates ANN(artificial neural network)-based 

identification system for CFDF’s detector system.  

1.1 The CFDF Detector System 

 

The detector system consists of an array of four 

independent lithium glass (NE-912) scinitillators, 

installed at time focusing geometry in order to 

increase the luminosity (Fig.2-a). Each detector is 

fed with a suitable high-voltage.  Each detector 

element contains a light guide, photomultiplier 

(Fig.2-b) attached to its own charge sensitive 

preamplifier. The preamplifier accepts charge 

pulses from the detector and its output is an 

exponentially decaying tail pulse. The primary 

function of the preamplifier is to extract the signal 

from the detector without significantly degrading 

the intrinsic signal-to-noise ratio.  The output signal 
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coming out from the preamplifier is connected to an 

amplifier.  In order to count the pulses properly by 

a digital counter, the shaped linear pulses must be 

converted into digital ones.  Consequently, the main 

amplifier is followed by a discriminator in order to 

generate a logic pulse output if the pulse amplitude 

exceeds a predetermined discrimination level.   The 

electronic arrangement as attached to every detector 

unit is shown in Fig.2-c.  The output signals from 

the four elements of the CFDF detector system are 

logically summed, giving rise to one output signal.   

A new data acquisition system has been developed 

to replace the Finish made RTOF analyzer [9,10].  

The new system performs the cross-correlation 

function separately between the pick-up signal and 

the signal coming out from each detector element.  

2. DETECTOR SYSTEM FAULTS 

IDENTIFICATION SYSTEM 

 
The main possible faults should be defined 

precisely and can be summarized, for each detector 

unit, as: 

- The preamplifier failure leads to very low neutron 

count. (4 faults). 

- The high-voltage failure causes blocking of the 

detector elements and consequently leads to very 

low neutron count.  This failure can affect the 

four photomultipliers of the detector system as 

they are fed from the same high-voltage source. (1 

fault). 
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Figure 1: Schematic of the RTOF diffractometer operation principle

Figure 2:    a) The CFDF detector system          b) Scintillation detector with photomultiplier tube
    c) Electronic arrangement for each detector unit
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- Low-gain or high-gain adjustment of the amplifier 

leads to false neutron count below or above the 

normal counting rate. (4 faults).  The amplifier 

failure leads to low or high neutron count as well. 

- The developed data acquisition system performs 

the cross-correlation function separately for each 

detector element and accordingly each amplifier 

is followed by a separated discriminator. The 

discriminator’s failure leads to low or high 

neutron count. (4 faults). 

 

 

Figure 3: The systematic diagram of the data acquisition system attached to the CFDF

In summary, all of these faults have a negative 

effect on the detector performance and 

consequently the CFDF measuring time.  The 

transfer functions of the electronic units of the 

detector system are nonlinear and this makes the 

diagnosis process very complicated.  It is 

noticeable, from the previous failures list, that 

different reasons can cause the same fault.  The low 

neutron count, for example, can be caused by the 

high-voltage, preamplifier, amplifier or 
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Figure 4: Screen shot of MBP V.2.0.3 software with ANN
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discriminator failures. There are reasons that affect 

single detector where others affect the four detector 

units.   The proposed ANN identification algorithm 

is based on measuring the frequency of the digital 

signal output from each discriminator which 

represents the neutron count rate (neutrons/s) 

recorded by the corresponding detector.   In order to 

use ANN for identifying detector fault and no-fault 

conditions, it is necessary to select proper inputs 

and outputs of the network, structure of the 

network, and train it with appropriate data.  In the 

present work, inputs are selected as digital signals 

coming out from the detector units where each 

digital pulse represents detecting of one neutron.  

Therefore, there are 4 inputs representing the 

neurons counts. There are 14 outputs corresponding 

to 13 faults listed before and a no-fault condition. 

The output goes to 1 if that particular condition 

exits, otherwise it is zero. Therefore, there are 14 

output neurons.  To accomplish this objective, a 

hardware system is designed and built to acquire 

four-detector signals from CFDF (Fig.3) [10]. 

It is depicted a general model of ANN in Fig.(4).  

Thus, it was used 3-layer feed-forward ANN 

algorithm.  The following relation accomplishes the 

computation of the neural network’s outputs Ok for  

any given input pattern zp : 

��,� = ��� �	
����� 
	�����,����
��� ����

��� � 

where fok  and  fyj are respectively the activation 

function for output unit ok  and hidden unit yj; wkj is 

the weight between output unit ok and hidden unit yj 

; zI,p is the value of input unit zi of input pattern zp; 

the (I+1)
th

 input unit and the (J+1)
th

 hidden unit are 

bias units representing the threshold values of 

neurons in the next layer. It was taken the 

monotonous increasing sigmoid function in the 

algorithm in the previous equation classically: 

 ���� = ��� + ����� 
2.1 Neural Network Training 

 

The artificial neural network is trained so that 

application of a set of input produces the desired set 

of outputs. Training is accomplished by 

sequentially applying input vectors, while adjusting 

network weights according to pre-determined 

procedures. During the training process, the 

network weights gradually converge to values such 

that each input vector produces the desired output 

vector [11]. Training algorithms are categorized as 

supervised and unsupervised. Supervised training 

requires the pairing of each input vector with a 

target vector representing the desired output. The 

input vector is applied, the output of the network is 

computed and compared with the corresponding 

target vector, and the difference is fed back through 

the network and the weights are changed according 

to an algorithm that tends to minimize the error. 

Unsupervised learning is an important concept in 

neural networks that led to the development of 

various configurations of learning phenomena. The 

training set consists solely of input vectors. The 

training algorithm modifies network weights to 

produce output vectors that are consistent. The 

training process extracts the statistical properties of 

the training set and groups similar vectors into 

classes. Learning typically occurs by example 

through training, where the training algorithm 

iteratively adjusts the connection weights 

(synapses). Backpropagation (BP) is one of the 

most famous training algorithms for multilayer 

perceptrons. BP is a gradient descent technique to 

minimize the error E for a particular training 

pattern. For adjusting the weight (wij) from the I
th

 

input unit to the j
th

 output, in the batched mode 

variant the descent is based on the gradient ���  � !"#) 
for the total training set :   

∆!"#�%� = −' ∗ )�)!"# + * ∗ ∆!"#�% − �� 
The gradient gives the direction of error E. The 

parameters ε and α are the learning rate and 

momentum respectively [13]. 

In this paper, the Sigmoidal function is used to 

describe the nonlinearity (logistic function) 

associated with each neuron.  The ANN structure 

shown in Fig.(4) is trained with a data sets obtained 

from the actual faults created on the detector system 

electronics. This study uses the neutron counts 

coming out from the four detector units as inputs to 

ANN. A total of 2100 input patterns corresponding 

to different faults, as described in Table (1), are 

used.  

 
Table (1): Number of Training Patterns per Fault. 

Condition Number of patterns 

No fault 300 

Low neutron count for Det1, 

Det2, Det3 and Det4 

200 

Low neutron count for Det1. 200 

Low neutron count for Det2. 200 

Low neutron count for Det3. 200 

Low neutron count for Det4. 200 

High neutron count for Det1. 200 

High neutron count for Det2. 200 

High neutron count for Det3. 200 

High neutron count for Det4. 200 
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Table (2): Samples of input/output patterns. 

 These fault patterns represent various possible 

combinations for each fault. The no fault 300 

patterns represent neutron counts coming out from 

the detector system during the experimental 

measurements carried out using different samples. 

Table (2) contains bit samples of these 

combinations.  

Once the ANN structure is constructed, the 

training process involves choosing parameters for α 

(momentum coefficient) and η (learning 

coefficient) by trial and error, when using back-

propagation with momentum algorithm.  This study 

tried number 0.1 to 0.9 in increments of 0.1 for the 

momentum and learning coefficients and had the 

best results with 0.7 for α and 0.68 for η .  Selecting 

the number (N) of nodes in the hidden layer is 

under intensive study without conclusive answers. 

The learning performance of the current ANN has 

been extensively tested under the effect of different 

numbers of nodes in the hidden layer to attain a 

mean square error= 0.0035. This learning 

performance has been tested for different values of 

k coefficient in the sigmoid function.  Some of 

these results are outlined in Table (3).  Based on 

this study, the number of 12 nodes in the hidden 

layer yields good training results. Therefore the 

ANN size is 4:12:14.  After 753 training iterations 

for ANN structure, the Sum of Squared Error (SSE) 

reduced to 0.0035. 

The fault diagnosis system determines which 

detector unit has faulty electronic device/devices 

but does not specify the faulty device itself 

(preamplifier/amplifier or discriminator).  In most 

cases each of the three components is candidate to 

be faulty one. To determine exactly the out of order 

device, the following fault isolation procedure 

should be performed: Run the ANN diagnosis to 

determine the faulty detector. 

- Swap each electronic element of the faulty 

detector with the corresponding one in one of the 

faultless detectors under conditions that one 

device only can be moved to the healthy detector. 

- Run the ANN diagnosis once again. 

- Simple analysis of the recorded results leads to the 

faulty element. 

 
Table (3): Effect of hidden layer node number (N) on 

the learning. 

N Epochs No. for training 

convergence(k=1) 

Epochs No. for training 

convergence(k=2) 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Not converged 

Not converged 

Not converged 

6790 

3994 

2495 

1970 

2570 

2238 

2001 

Not converged 

6002 

2878 

1481 

1549 

985 

816 

753 

795 

779 
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The first run yields that the third detector is 

faulty (preamplifier-3, amplifier-3 or 

discriminator-3). These components 

(preamplifier-3, amplifier-3 or discriminator-3) 

of this detector are swapped with the corresponding 

ones in the other detectors as following:  

After running the ANN diagnosis for the 

second time, we will get a new faulty detector.  

Assuming that the run indicated that the second 

detector (Detector-2) is the faulty one, accordingly 

the strange element (Amplifier-3) is the faulty one 

in the system.  If there is more than one faulty 

element in the detector unit, we will get more than 

faulty detector in the second run and the faulty 

element (strange element in the row) can be 

determined.  

3. CONCLUSIONS 

A diagnostic system based on ANNs was 

introduced.  The diagnostic system, having acquired 

the diagnosis knowledge, can represent complex 

relationships between symptoms and fault types 

that are difficult to model with traditional physical 

methods. Artificial neural networks have nonlinear 

structure and this is an effective feature that it 

approaches to the results of learning phase. Then, it 

gives results in test phase in short time.  In this 

paper, feedforward network and error 

backpropagation training algorithm is used to 

perform fault detection for the main detector units 

of the Cairo Fourier Diffractometer Facility.  This 

diagnostic system processes the acquired data to 

determine whether the detector system state is 

normal or not.  Moreover, the faulty electronic 

element (preamplifier, amplifier or discriminator) 

can be identified and isolated.  This is an important 

feature since it helps the operator to make the 

correct decision leading to high system reliability 

and can save maintenance costs.   
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