
Parallel Application Signature for Performance
Prediction

Alvaro Wong∗
Universitat Autònoma de Barcelona

Computer Architecture and Operating System Department (CAOS) Barcelona, SPAIN
PhD Thesis in High Performance Computing

Advisor: Prof. Emilio Luque†
∗alvaro@caos.uab.es,†emilio.luque@uab.es

In order to measure the performance of a parallel machine, a set of application kernels as benchmarks have often been
used. However, it is not always possible to characterize the performance using only benchmarks, given the fact that each
one usually reflects a narrow set of kernel applications at best. Computers show different performance indices for different
applications as they run them. Accurate prediction of parallel applications’ performance is becoming increasingly complex
and the time required to run it thoroughly is an onerous requirement; especially if we want to predict for different systems.

In production clusters, where throughput and efficiency of use are fundamental, it is important to be able to predict which
system is more appropriate for an application, or how long a scheduled application will take to run, in order to have the
foresight that will allow us to make better use of the resources available.

We have created a tool [4], which we dubbed Parallel Application Signature for Performance Prediction (PAS2P) to
characterize message-passing parallel applications. PAS2P instruments and executes applications in a parallel machine, and
produces a trace log. The data collected is used to characterize computation and communication behaviour. To obtain the
machine-independent application model, the trace is assigned a logical global clock according to causality relations between
communication events, through an algorithm was inspired by Lamport. Once we have the logical trace, we identify and
extract the most relevant event sequences (phases) and assign them a weight from the number of times they occur. Afterwards,
we create a signature defined by a set of phases selected depending on their weight. This is the signature through whose
execution in different target systems allows us to measure the execution time of each phase, and hence to estimate the entire
application’s run time in each of those systems. We do this by extrapolation of each phase’s execution time using the weights
we have obtained.

As shown in Figure 1, there is a sequence of stages that are necessary to obtain the relevant portions (phases) and their
weights. With this information, we can proceed to create a completely machine-independent signature for each application
that we can then execute in other systems in a shorter amount of time, since the execution time of the signature will always
be a small fraction of the whole application’s runtime. Finally, in the last stage, we predict the full execution time of the
parallel application by adding the execution time of all the phases multiplied by their weights.

PAS2P Methodology

Instrumentation

Extract
In

Parallel Application
Model

Phases Sav

E t tPatterns
Identification

Rest
Exe

Extract
Weights

Prediction

nstrumentation
Extrapolate

Phase’s time by
ved Coordinated
Checkpoint

Phase s time by
Weights

Predict
tart and measure
ecution time of
binary phase

ed ct
Application
Performance

Fig. 1. PAS2P methodology

To instrument the parallel applications, we need to collect communication events and the computational time. Afterwards
we define:

Event: The action of sending or receiving a message.
Extended Basic Block (EBB): A generalization of the Basic Block concept for parallel systems. We define it as a segment

of a process whose beginning and end are defined by occurrences of messages, either sent or received. We may also say
that it is a “computational time” segment bounded by communication actions.

The synchronization between computing nodes, which is absent in sequential applications, becomes necessary. To solve
this, we have to move from multiple physical, local clocks to a single logical, global clock. In [1], we showed a logical
clock based on the order of precedence of events accross processes as defined by Lamport. We found that the quality of
prediction falls, because there is a non-deterministic ordering of receptions.

To solve the non-deterministic events (receptions) problem, we have decided to introduce a new algorithm [3] inspired
by Lamport’s. Through this algorithm, we define a new logical ordering, in which, if one process Sends a message in a
Logical Time (LT), its reception will be modeled to arrive in a LT + 1 and never afterwards.

Once all events have been assigned an LT, we create a logical trace where we insert all events depending on its logical
time and type of communication (Send or Recv). Finally, once we have located each event, we divide the logical trace into
more logical times, that is, there can only be one event for each process in a logical time.

JCS&T Vol. 10 No. 3 October 2010

155

Now, we introduce two new concepts:
Tick: Logical time unit.
Parallel Basic Block (PBB): The set of Extended Basic Blocks delimited by two ticks. The first tick defined as Entry

Point has at least one event, and the second tick defined as Exit Point also has at least one event.
To find the repetitive behavior of an application we have created in the previous section a logical trace that allows us to

create the Parallel Basic Block. Now, we need to compare if the behavior of each PBB is similar to another. To do this, we
search for similarity between two Parallel Basic Blocks based on the three main components of its structure:

1) Communication type: Each of the assigned values of the entry points and each of the assigned values of the exit points
should be the same.

2) Communication Volume: each of the values of the entry and exit points must be similar, and can accept a difference
of up to 5%.

3) Computational Time: each computational time allows for a difference of up to 5%.
In order to identify the most relevant portions (phases) of the parallel application, we are proposing a technique that

searches for similarity between Parallel Basic Blocks. Another method [2] is being proposed to extract these phases which
consists of creating them directly from the logical trace. Unlike the previously proposed algorithm for the detection of
phases, we have identified as similar phases that were not, and we have created a robust similarity algorithm thus generating
less phases, with which the quality of prediction increases. The quality of the PAS2P methodology is measured by the
significantly lower value of the prediction error. We compare the results obtained with the proposed algorithm (similarity
between Parallel Basic Blocks vs. similarity between phases), it can be seen that we have increased from having a 96% to
a 98.7% of quality prediction.

Once we have identified phases of the application, we proceed to create its weight vector and define the relevant phases.
Weight Vector: This vector will be given by the frequency in which each phase repeats.
Relevant Phase: A phase is relevant when the weight vector multiplied by the execution time is representative of the total

runtime of the application. We have considered that this ”representativeness” will be given if the phase stands for 1% or
more of the total execution time of the whole application.

To build the Parallel Application Signature, the last step is to re-run the application to create the coordinated checkpoints
before each relevant phase happens. The checkpoint operation is taken before the starting point of the specific phase, in
order to guarantee a correct warm-up time for the machine’s components (cache, TLB’s, etc).

PAS2P gives us the phases and where they occur, it also tells us how many times the phase has repeated (weight vector
for each phase). To run the signature means to execute its constituent phases. This is done using the coordinated checkpoint
obtained for the different phases restarting from the saved state and start measuring from the point a phase begins until it
ends. We repeat this method and proceed to execute all constituent phases.

To evaluate the quality of the prediction and validate the proposed methodology, we have executed on two target machines
with multicore (dual y quad) architecture as shown in Fig. 2 with different applications with 64 processes to predict the
execution time with an average accuracy above 98%.

Application
Signature ex

on Cluste

Signature Ex
Time (S

+ PAS2P Op

Cluster base

PAS2P

Predicted Ap
Execution Tim

in Cluste

Signature

Signature execution
on Cluster B

xecution
er A

xecution
ET)
eration

Signature Execution
Time (SET)

+ PAS2P Operation

plication
me (PET)
er A

Predicted Application
Execution Time (PET)

in Cluster B

Fig. 2. Experimental methodology

Program SET SET vs PET PETE AET

(Sec) AET(%) (Sec) (%) (Sec)

Prediction on Cluster A

CG 5.39 0.22% 2413.01 0.01% 2412.70

Sweep3D 1.94 0.15% 1257.03 0.27% 1260.32

POP 15.48 1.95% 758.31 4.33% 792.56

Prediction on Cluster B

CG 8.42 0.29% 2793.42 1.90% 2847.42

Sweep3D 3.01 0.22% 1328.04 0.40% 1322.62

POP 22.79 1.41% 1608.85 0.17% 1611.59

PETE: Prediction Execution Time Error

PAS2P methodology allows us to generate a model of a parallel application, and subsequently, extract its most significant
behavior (phases) automatically in order to create a Parallel Application Signature, that by its execution, lets us predict the
application’s performance on different parallel computers.

ACKNOWLEDGMENTS.

This research has been supported by the MEC-MICINN Spain under contract TIN2007-64974, Appreciation to CONACYT-
MEXICO for the support provided to Alvaro Wong.

REFERENCES

[1] A. Wong, D. Rexachs, and E. Luque. Parallel application signature. In Cluster Computing and Workshops, 2009. CLUSTER ’09. IEEE
International Conference on, pages 1 –4, 31 2009-sept. 4 2009.

[2] A. Wong, D. Rexachs, and E. Luque. Extraction of parallel application signatures for performance prediction. High Performance
Computing and Communications, 10th IEEE International Conference on, 0:223–230, 2010.

[3] A. Wong, D. Rexachs, and E. Luque. Parallel application signature for performance prediction. In In International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA 2010) CSREA Press., volume Vol 2, 2010.

[4] A. Wong, D. Rexachs, and E. Luque. Pas2p tool, parallel application signature for performance prediction. In Para 2010: State of the
Art in Scientific and Parallel Computing, Accepted, 2010.

JCS&T Vol. 10 No. 3 October 2010

156

	Text1: Thesis Overview

