JCS&T Vol. 11 No. 1

April 2011

Position Index Preserving Compression for Text Data

Md. Nasim Akhtar
Department of Information Technology
Moscow State Academy of Fine Chemical Technology, Moscow, Russia

Md. Mamunur Rashid
Department of Information Technology
Moscow State Academy of Fine Chemical Technology, Moscow, Russia

Md. Shafiqul Islam
Department of Information Technology
Moscow State Academy of Fine Chemical Technology, Moscow, Russia

Mohammod Abul Kashem
Department of Computer Science & Engineering
Dhaka University of Engineering and Technology, Gazipur, Bangladesh

Cyrll Y. Kolybanov
Department of Information Technology
Moscow State Academy of Fine Chemical Technology, Moscow, Russia

ABSTRACT

Data compression offers an attractive approach to
reducing communication cost by using available
bandwidth effectively. It also secures data during
transmission for its encoded form. In this paper an
index based position oriented lossless text
compression called PIPC (Position Index
Preserving Compression) is developed. In PIPC the
position of the input word is denoted by ASCII
code. The basic philosophy of the secure
compression is to preprocess the text and transform
it into some intermediate file which can be
compressed with better efficiency and which
exploits the natural redundancy of the language in
making the transformation. The proposed algorithm
compresses the data 35% to 50% of its original size
depending on occurrence of repeated word.

Keywords: Compression, Index, IDBE, LIPT,
PIPC.

1. INTRODUCTION

In the last decade, we have seen an unprecedented
explosion of textual information through the use of
Internet, Digital Library and information retrieval
system. It is estimated that by the year 2002 the
National service provider, backbone will have an
estimated traffic around 27645 Gbps and the
growth will continue 100% every year. The text
data occupies 45% of the total internet traffic but no
lossless compression standard for text has yet been
proposed [1].

Lossless compression researchers have developed
highly sophisticated approaches, such as Huffman
encoding, Arithmetic encoding, the Lempel-Ziv
(LZ) family, Dynamic Markov Compression.
Prediction by partial matching (PPM) and Burrows
Wheeler Transform (BWT) based algorithms.
However, none of these methods has been able to

reach theoretically best-case compression ratio
consistently, which implies that better algorithm
may be possible.
There were efforts earlier to apply different
compression techniques to compressed text on
server but only a few of the compression techniques
like LZ algorithm have been successful. A number
of sophisticated algorithms have been proposed for
lossless text compression, of which (Intelligent
Dictionary Based Encoding) IDBE and BWT out
perform the classical algorithms.
The IDBE algorithm follows steps:

1) Make an intelligent dictionary.

2) Encode the input text data.

In the proposed algorithm the intelligent dictionary
of IDBE has been omitted and we get a significant
file size reduction using the proposed technique. In
this paper, a Position Index Preserving
Compression (PIPC) for compressing English
document is proposed. It uses sophisticated
compression algorithm, proposed for lossless text
compression namely BZIP2 based on Burrow
Wheelers Transform (BWT) [2], GZIP based on
Lempel-Ziv (LZ) family[3] and (Length Index
Preserving Transformation) LIPT for preserving
English text[4]. Preprocessing of text archives
higher compression by encoding a word in input
file by word in to a compress file. The basic idea of
the actual module is to compress the text into some
intermediate form, which can be compressed with
better efficiency. The compress text is provided to a
back end data compression module, which
compresses the actual text. However, execution
time performance and run time memory
expenditure of this compression system have
remained high compared with the backend
compression algorithm, such as LIPT and IDBE

[5].

JCS&T Vol. 11 No. 1

Basic concept of proposed algorithm is discussed in
section 2 and the proposed algorithm is
implemented in section 3. A input and output file
size equation has been developed for the proposed
algorithm in section 4.The result applying
proposed algorithm is analyzed comparing with the
existing algorithm in section 5.In section 6 time
complexity of proposed algorithm has been
calculated and section 7 concluded the paper with
suggestion of future development [6].

2. BASIC CONCEPT OF THE PROPOSED
ALGORITHM
In this paper a new text compression technique,
called Position Index preserving Compression
(PIPC) is proposed which makes the text better
compressible than most of the above methods. The
philosophy of compression is to compress the text
into some source text file which compressed when
the natural redundancy of the language is occurring.

April 2011

PIPC encoding scheme makes use of recurrence of
some words in the English text. Where position is
different indexed to create context in the compress
text that their corresponding ASCII code can
exploit. PIPC use ASCII code to denote index
position of the words hence two or more lengths of
words are repeated again and again in the
compressed text resulting better context [7][8].

In addition to say that PIPC also uses the ASCII
code denoted the offset of the word in the English
dictionary having the same words. This serves to
include additional context in the compressed text.
To make efficient the algorithm, the repetition of
words, that is word frequency in English text is
main factor from our point of view. Huffman
compression methods also need sharing of the some
static dictionary at both the sender and receiver end.
Also the IDBE method requires the dictionary both
sender and receiver end [9].

Read one word from input file;
Enqueue ();
} / /Enter word into list
Write compress-file to total number of
word;
While (! end of list) {
If (! null of current token) {
Write current token;
Write multiply bit;
While (! end of list) {
If (current token ==next current
token)

Write their position and multiply bit;

10

Original Text j Build up N\ Encode N\ Encoded List N Store Compressed
1 am a student Token List V| TokenList [—V| [E€¥amE¥a€¥student€X(—| File

Original Text — Retrieve Original |4 Decoded — Read Compressed

I am a student N— File N— Compressed file ~ \— File

Fig: 1 Text compression paradigm incorporating a lossless strategy.
The algorithm has been developed following two }/ /End of while
strategies, one is Encoding strategy and other is }/ /End if
Decoding strategy. .
}/ /End of while
3. ENCODING ALGORITHM
MSL_Compression () { 4. DECODING ALGORITHM:
While (! end of file) {
Algorithm Decoding ()

{

Read total no of word;
Create list and all token set null initialize;
While (! end of file)
{
Retrieve token;
Read input position;
If (Test (W)) Enqueue (W);
Else {
For expected word find next null
token in list and put into token;

}
Read multiply bit;

JCS&T Vol. 11 No. 1

Read word position;
Make actual position;
Enqueue true position

}
Dequeue (); }

Int Test (int position)

{
If (position = position] & token == NULL)

Return 1;
Else

Return 0;

5. IMPLEMENTATION OF THE PROPOSED
ALGORITHM
An English text document file takes as input file for
implementation of proposed algorithm. As an
example, the original text is:

I am Monoj Kumar Student of department of
Computer Science and Engineering.
Roll no Reg no in Dhaka University of
Engineering and Technology DUET.

April 2011

Gazipur Bangladesh DUET is my best choice
DUET is one of the most famous university in
Bangladesh It also well known all over the
world.
I am Laltu Kumar Saha Student of department
of Computer Science and Engineering Roll no
Reg no in Dhaka University of Engineering
and Technology DUET Gazipur Bangladesh
DUET is my best choice DUET is one of the
most famous University in Bangladesh It also
well known all over the world.
I am Siplob Kumar Sen Student of department
of Mechanical Engineering Roll no Reg no in
Dhaka University of Engineering and
Technology DUET Gazipur Bangladesh DUET
is my best choice DUET is one of the most
famous University in Bangladesh It also well
known all over the world.
There are four Engineering departments in DUET
Computer Science and Engineering CSE
Mechanical Engineering ME Civil. Engineering CE
and Electrical and FElectronics Engineering EEE.
Students of DUET are working well in Bangladesh
and all over the world. There are many kinds of
creation in the world Man is one kind of creational
A am student of DUET.DUET is the Engineering
university .Student study in university.

6. ENCODED FORM OF SOURCE TEXT

244

I0x00amiy00¢omonao0kumara[15tudent 0] *1of0’ SFA ML fRo0#¥0 depar tment IE IComputerfat1Scier
and07coddvRi0Engineering0odn»aEGO0a000, 0:vz0™ ATOA0yD%, G0xX0; Kwh{2Zs | uepld00&780R0 11 08z ONAl
Regihz0iniLif »%éﬂu4ﬂ0hakaukiﬂUniversitqu1,ﬂ”uTechnD1ugyu CIDUETD»Cty@-+1c0+-0Gazipurire
Bang?adeshDMs”«MiuisUDul—zyu.umyuv@ubestumfuchnicenx‘uuneug’u!utheuTU<-ﬁbDu JImasti€ ofam
It0. Y0also0t%0wel 104 &0knownD " ADal10%AT 0over 05AT Dwvor 1 d0EARIOLa TLUDDSahal Ddepartnent 0-051p
SendiMechanicaloiThereddlar eleddfourD00CSEDIMechanecal DOMEDDC 1viT00CEDDE ectricaliDET ectror

EEEDDStudents D0working0Omany0Dkinds00"0animalo 0§ iman00i00student020universityliistucyll

7. ORIGINAL TEXT
Applying decoding algorithm the original text has
been retrieved.

8. CALCULATION OF FILE SIZE
Input File Size Equation
This equation calculates the exact input file size.

ff(l) xword _length(i)+ f(sp _cha)

i=0
Where,
N = Total no words
i = Instantaneous word
f (i) = frequency of Instantaneous words

11

word length = word length of Instantaneous

words f (sp_cha) = total no of word- frequency of

dot- frequency of Comma - frequency of (?)

Output File Size Equation
This equation calculates the compressed file size.

2xm+ ﬁ: word _length(i) + f,,,(f(i))

i=1

+ Z (fj><225—(j+1)><225 (f()+ f/'><225—(j+1)><225 (f (@)

Where,
m = No of individual words
£5,4=No of frequency of 0 to 224 interval

JCS&T Vol. 11 No. 1

f j*225 —(j+1)*225 f(1)=At least one time of j to
j+1 interval.

fj*225 —(j+1)*225 f(i))=No of frequency of j*225
to (j+1)*225 interval.

Words Frequency Distribution with Length
Table-1: Word frequency Distribution

April 2011

9. RESULT ANALYSIS

In this section the performance of PIPC using
position index is evaluated. The measurements have
compression results in terms of frequency of words
with word’s length which measures the minimum
and maximum range in between which the
proposed algorithm is effective. The result is given
in the Table-1 and Figure-1.

File Original Com-
Name file size word length with frequency pressed
(Byte) file size
1 2 3 4 5 6 7 8 9 10 | 11 (Byte)
Solar 4410 81 158 147 137 69 | 89 | 56 | 43 | 29 13 16 3220
Student 900 24 52 37 36 25 6 14 4 2 21 13 452
Bible 700 20 11 62 16 15 12 3 3 0 0 409
Biblel 700 20 7 59 22 18 11 3 3 0 0 484
Repeat 5000 696 | 348 348 348 0 0 0 0 0 0 1840
In Table-1 a minimum and maximum range for of word. Maximum 65% compression will be

PIPC algorithm is calculated. The PIPC works
properly on an average of minimum 4% repetition

obtained when huge number of repetition will
occur.

Word frequency distribution

Word length
Fig:2 The graph of Solar.txt, its word frequency distribution

Table2: Percentage of Compression Using PIPC

20 A 3

g § = e

X 15

o 10

= 10 2 8

= = 7

S = B

E‘E‘D T T T T ||_|||_|
1 2 3 4 5 6 7 8 9 10

File Name Original File size PIPC compressed file Percentage of
(Byte) size(Byte) compression
Solar.txt 4410 3220 27%
Student.txt 900 452 50%
Bibble.txt 700 409 42%
Paperl.txt 3000 2290 24%
Paper2.txt 2000 1480 26%

12

JCS&T Vol. 11 No. 1

Comparison Graph between Original and PIPC file size:

000
4500
4000
2500
2000
2500

2000
150N

File size

Compresed table with PIPC

April 2011

Value Axis |

LI T

i

O A
oL

i
N
e

File name

filesize

@ Criginal file size

m FPIFC compresed :

Fig 3: Comparison Graph between Original and PIPC file size

Table 3: Comparison Table between IDBE and PIPC in respect to File Size

File Name Original File IDBE compressed PIPC compressed Percentage of
size(Byte) file size(Byte) file size(Byte) improvement
Solar.txt 4410 3290 3220 2.1%
Student.txt 900 540 452 16.25%
Paperl.txt 3000 2420 2290 5.3%
Paper2.txt 2000 1600 1480 7.5%
Comparison between IDBE and PIPC
5000 = =
4500
_ 4000 B Original file size
2 3500
m 3000 EIDBE compressed
ﬁ 25[][] les|ize
® 2000 @ PIPC compresed
filesize
= 1500
1000
500
0
NS QR L
N @3& = & &
il & &
File name

Fig 4: Comparison graph between IDBE and PIPC in file size

13

JCS&T Vol. 11 No. 1

10. TIME COMPLEXITY OF ENCODING
ALGORITHM

In the encryption module the time complexity
depends on the two strategy, one is separating the
word as token, which required time for retrieved
total number of lines from input file and number of
character per line, written as, No of line *(No of
character per line)’. Other is for writing output file
depends on the total number of node which are
equal to the total number of word consists the input
file, written as, No of Node*(No of Node - 1).

So, the Time complexity of the encoding algorithm

is: O (L*C*+N*(N-1))

Time Complexity of Decoding Algorithm
In the decryption module the time complexity is
reverse process of the two encoding strategy, one is
creating the total number of node equal to the
total number of words and other is for writing
output file depends on the total number of line from
intermediate file and number of character per line,
written as,

No of line * (No of character per line) 2,
So, the Time complexity of the decoding algorithm
is: O (N+L*C?)
Where,

L =No. of line,

C = No. of character per line,

N = Total No. of Node.

11. CONCLUSION
A novel lossless text compression called Position
Index Preserving Compression (PIPC) has been
implemented. The proposed algorithm compresses
data without any intelligent dictionary that makes it
different from existing algorithms. Moreover the
proposed techniques reduce the file size
significantly compare to the exiting algorithm. For
further development we proposed advanced

14

April 2011

technique of PIPC algorithm that is to be
implemented in some additional strategy. This
strategy could follow a double indexing technique,
where PIPC algorithm will be used first, followed
by encoding the intermediate file by binary
indexing.

12. REFERENCES
[1] Suzanne Bunton, “On-Line Stochastic Processes
in Data Compression”, Doctoral Dissertation,
University of Washington, Dept. of Computer
Science and Engineering, 1996, pp 3-4.
[2] M. Burrows and D. J. Wheeler, “A Block-
sorting Lossless Data Compression Algorithm”,
SRC Research Report 124, Digital Systems
Research Center, 2000, pp 12-14.
[3] J. Ziv and A. Lempel, “A Universal Algorithm
for Sequential Data Compression”, IEEE Trans.
Information Theory, IT-23, 1999, pp.237-243.
[4] F. Awan, A. Mukherjee, “LIPT: A lossless Text
Transform to Improve Compression”, Proceeding
of International Conference on Information and
Theory: Coding and computing, IEEE Computer
Society Less Vegas Nevada,, 2001, pp 47-51.
[5] H. Kruse and A. Mukherjee “Data Compression
Using Text Encryption”, Proc Data Compression
Conference, 1997, IEEE Computer Society Press, ,
pp 447-448..
[6] D.A.Huffman, “A Method for the Construction
of Minimum Redundancy Codes”, Proc. IRE,
40(9),1952, pp.1098-1101.
[7] H. Kruse and A. Mukherjee, “Preprocessing
Text to Improve Compression Ratios”, Proc. Data
Compression Conference, IEEE Computer Society
Press, 1998, pp 556-557.
[8] Fred Halsall, “Multimedia Communications.”

Second Edition, 2002, pp.116-120.

[9] Horowitz, Sahni, Rajasekaran, “Fundamentals
of Computer algorithms.” Edition 2003-04, pp. 18.
Received: March 2010. Accepted: December 2010.

	Text8: Received: March 2010. Accepted: December 2010.

