

A Formal Structure of Separation of Duty and Trust in

Modelling Delegation Policy

Ogundele O.S., Adewale O.S., Alese B.K. and Falaki S.O.

Department of Computer Science,

Federal University of Technology, Akure, Nigeria.

oloruntoba78@yahoo.com

Abstract
There are considerable number of approaches to

policy specification both for security management

and policy driven network management purposes as

reported in [20]. This specification sort security

policies into two basic types: authorization and

obligation policies. Most of the researches in

security policies specification over the years focus

on authorization policy modelling. In this paper, we

report our approach in the design and Modelling of

obligation Policy as delegation in information

security by considering separation of duty and trust

as pre-requisite conditions for delegation. The

formal structures of the Delegation models

developed was adapted from the Mathematical

structures of Separation of duty (both Static and

Dynamic SoD) in RBAC environment as described

in [8] and [16]. Three factors of Properties,

Experiences and Recommendation as described in

[22] were used for the Trust Modelling. Future

works proposed include the development of a

formal model for revocation after delegation and

integration of appropriate authorization policy with

the model.

1. Introduction

Separation of Duty (SoD) is widely recognized as a

fundamental principle in computer security [5],

[19]. In its simplest form, the principle states that a

sensitive task should be performed by two or more

different users acting in cooperation. The concept

of SoD has long existed before the information age;

it has been widely used in, for example, the banking

industry and the military, sometimes under the

name “the two-man rule” [16]. More generally, an

SoD policy requires the cooperation of at least n

different users to complete the task. SoD has been

identified as a high-level mechanism that is “at the

heart of fraud and error control” [5, 8]. An SoD

policy is a high-level policy in the sense that it does

not restrict which users are allowed to carry out the

individual steps in a sensitive task, but rather states

an overall requirement that must be satisfied by any

set of users that together complete a task [16].

[8] viewed SoD as an application-design principle

based on three well-understood design and

implementation steps given as integrity property

definition, application design and user assignment

to application partitions. Users of different skills or

interests are assigned to operate in different

application partitions. These assignments may last

for limited periods of time, and may change

dynamically. Therefore, users’ collusion to

perpetrate fraud will be checked or at least

controlled to the minimal.

According to [10] and [21] and as stated in [8]

despite the importance of SoD as a security

principle and its well-understood application in

business, industry, and government; few computer

systems have supported SoD as a security policy to

date.

The lack of wide-spread support was attributed by

[8] to three separate reasons. First, SoD is an

inherently application-oriented policy and, thus,

has been perceived to yield limited payoff for

operating systems and networks. Secondly, when

the SoD principle is interpreted within different

applications, it may yield many different SoD

policies [21] and recurrent administrative costs.

Third, most SoD policies proposed to date have

been only informally defined and, therefore, subject

to ambiguous or incomplete specifications, and

limited assurance.

Therefore, it is believe that the incorporation of

SoD into Role Based Access Control Model

(RBAC) to support Role Delegation will address

this lack of widespread support as reported in [8].

Since a system must not only support authorization,

but must also enable active entities to securely

delegate their roles without breaching security

policies.

2. Trust

[22] define trust as a relationship between a truster

and a trustee and it is dependent on a given task.

The truster’s trust for a trustee, with respect to a

given task, depends on several factors namely,

properties, experiences and recommendation.

Properties are verifiable characteristics of the

trustee. Experiences correspond to the past work

JCS&T Vol. 11 No. 2 October 2011

100

experience of the trustee and it reflect past

interactions that the truster had with the trustee.

Recommendations are the information that the

truster obtains from third parties whom the truster

trust about the capabilities of the trustee. How to

quantify these factors and assess the trustworthiness

of an entity before designating him as the delegate

has also been described in [22]. Trust modelling has

been reported in [11] and [13] where it was claimed

that trust is a relationship between two entities on a

specific statement and is represented using degrees

of belief b, disbelief d and uncertainty U.

In [11] and [13], subjective logic was utilized to

define recommendation and consensus formulae in

order to take into account multiple subjective views

on the same statement. In [12], a new component

base rate a, was added where a [0,1]. In [14], how

to specify trust networks consisting of multiple

paths between the trusted parties and provide a

practical method for analyzing and deriving

measures of trust in such environments were

shown.

[4] proposed a Trust based Access Control

(TrustBAC) model where the assignment of users

to roles depended on their trust value -1 to 1. While

in [15]; a trust model where the notion of trust

contexts was formalized was designed.

3. Structure of Separation of Duty Policy In

RBAC For Delegation Policy Modelling.

In [8], security policies were viewed as composition

of security properties. The notion of dependency

among policy properties were illustrated by them

by considering three types of properties: access-

attribute (AT), access-authorization (AA) and

access-management (AM).

Access attributes include subject and object

attributes (e.g., user, group, role, location

identifiers, secrecy and integrity levels, time-of-

access intervals), and AT properties typically

establish invariant relationships among attributes

(e.g., lattices of secrecy and integrity levels, user-

group membership invariants, inheritance of role

permissions). AA properties determine whether a

subject’s current access attributes satisfy the

conditions for accessing an object given the current

object attributes.

Formally, [8] described a simple structure of SoD in

RBAC as a security policy P as follows:

𝒫 = P ∧ 𝐴𝑑𝑚𝑖𝑛(𝑃)

Where P = AT ∧ AA ∧ AM.

The property P itself may have other properties in

addition to 𝐴𝑑𝑚𝑖𝑛(𝑃); for example, application –

oriented policies such as SoD, also include

property𝐶𝑜𝑚𝑝𝑎𝑡(P, 𝐴𝑝𝑝). They specify SoD policy

as incremental conjunctions of properties to RBAC

policies. That is;

𝑆𝑜𝐷 − 𝒫 = 𝑆𝑜𝐷 − P ∧ 𝐴𝑑𝑚𝑖𝑛 𝑆𝑜𝐷 − 𝑃 ∧
𝐶𝑜𝑚𝑝𝑎𝑡 𝑆𝑜𝐷 − P, 𝐴𝑝𝑝 ∧ 𝑹𝑩𝑨𝑪 − 𝓟Where

𝑹𝑩𝑨𝑪 − 𝓟 = RBAC − P ∧ 𝐴𝑑𝑚𝑖𝑛(RBAC − P),

and both

𝑆𝑜𝐷 − 𝒫 and RBAC − P are conjunctions of AT,

AM, and AA properties.

[8] further defined the types, functions and

properties of Role Based Access Control (RBAC)

system that are necessary to define SoD properties.

They considered RBAC system to be defined by a

state machine model. They denote set of system

states by STATES, the set of subjects by

SUBJECTS, the set of users by USERS, the set of

operations by OPERATIONS, and the set of object

by OBJECTS. A RBAC system is characterized by

the fact that a user’s membership to a “role” and by

the roles’ permissions to perform operations on

those objects. Hence, a role is a collection of

operations on object sets.

 The class of roles, ROLES, is a subset of

2𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑂𝑁𝑆𝑋 2𝑂𝐵𝐽𝐸𝐶𝑇𝑆
.

The function

𝑎𝑢𝑡𝑕: 𝑆𝑇𝐴𝑇𝐸𝑆𝑋𝑅𝑂𝐿𝐸𝑆𝑋𝑂𝐵𝐽𝐸𝐶𝑇𝑆 ⟶
2𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑂𝑁𝑆 Defines the operations allowed to each

role in each state of the system:

∀ 𝑠 ∈ 𝑆𝑇𝐴𝑇𝐸𝑆, ∀𝑜𝑝 ∈ 𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑂𝑁𝑆, ∀𝑟
∈ 𝑅𝑂𝐿𝐸𝑆, ∀𝑜𝑏𝑗 ∈ 𝑂𝐵𝐽𝐸𝐶𝑇𝑆, 𝑜𝑝
∈ 𝑎𝑢𝑡𝑕 𝑠, 𝑟, 𝑜𝑏𝑗 ⟺ ∃𝑜𝑏𝑗𝑠𝑒𝑡
⊆ 𝑂𝐵𝐽𝐸𝐶𝑇𝑆: 𝑜𝑏𝑗
∈ 𝑜𝑏𝑗𝑠𝑒𝑡 ∧ (𝑜𝑝, 𝑜𝑏𝑗𝑠𝑒𝑡) ∈ 𝑟

The function 𝑟𝑜𝑙𝑒_𝑚𝑒𝑚𝑏𝑒𝑟𝑠: 𝑅𝑂𝐿𝐸𝑆 ⟶ 2𝑈𝑆𝐸𝑅𝑆

defines the users assigned to a given role.

The function 𝑠𝑢𝑏𝑗𝑒𝑐𝑡_𝑢𝑠𝑒𝑟: 𝑆𝑈𝐵𝐽𝐸𝐶𝑇𝑆 ⟶
𝑈𝑆𝐸𝑅𝑆 returns the user associated with the subject.

The function

𝑠𝑢𝑏𝑗𝑒𝑐𝑡_𝑟𝑜𝑙𝑒𝑠: 𝑆𝑇𝐴𝑇𝐸𝑋𝑆𝑈𝐵𝐽𝐸𝐶𝑇𝑆 ⟶ 2𝑈𝑆𝐸𝑅𝑆

returns the roles assumed by a user in a given state

while executing a given subject. These roles must

have been assigned to the subject’s user.

The function

𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑟𝑜𝑙𝑒_𝑠𝑒𝑡: 𝑆𝑇𝐴𝑇𝐸𝑆𝑋𝑈𝑆𝐸𝑅𝑆 ⟶ 2𝑈𝑆𝐸𝑅𝑆 is

defined as follows:

∀𝑠 ∈ 𝑆𝑇𝐴𝑇𝐸𝑆, ∀𝑢 ∈ 𝑈𝑆𝐸𝑅𝑆,

If 𝑟 ∈ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑟𝑜𝑙𝑒_𝑠𝑒𝑡(𝑠, 𝑢),then we say that role

r is enabled or active for the user u in state s

4. Access Obligation Formalization

As an extension and a refinement to the above as

well as the three properties (AT, AM and AA), we

introduced access – obligation (AO) as the fourth

requirement which is a property that defines

obligation policy that we shall modelled as

delegation requirement. AO properties determine

whether a subject’s current role based on attributes

and role hierarchy satisfy the conditions for

delegating that role to another subject in accessing

JCS&T Vol. 11 No. 2 October 2011

101

the same object given the current object attributes

without breaching security policy.

Therefore, we extend the model described in [8] to

incorporate delegation (obligation policy) by

modelling Access Obligation which is formalized

as follows;

𝒫 = P ∧ AO ∧ 𝐴𝑑𝑚𝑖𝑛(𝑃)

To formalize Access – Obligation (AO), consider

an Access Control system that is characterized by

the fact that a subject’s right to access object are

defined by subject’s attributes, membership to

“role” and roles’ permissions to perform operations

on the object. Hence, a role is a collection of secure

operations on object sets.

Therefore;

∀ 𝑆𝑏𝑗𝑖 , 𝑆𝑏𝑗𝑘 ∈ 𝑆𝐵𝐽, ∀ 𝑜𝑝 ∈ 𝑂𝑃, ∀ 𝑟𝑜𝑙 ∈ 𝑅𝑂𝐿,

∀ 𝑜𝑏𝑗 ∈ 𝑂𝐵𝐽,
Where 𝑆𝑏𝑗, 𝑂𝑏𝑗, 𝑜𝑝, 𝑟𝑜𝑙 are Subject, Object,

Operation and Roles respectively.

 Then, Access Obligation is a function modelled as

follows,

𝐴𝑂: 𝑜𝑝 ∈ 𝑐𝑎𝑛_𝑑𝑒𝑙𝑒𝑔𝑎𝑡𝑒(𝑆𝑏𝑗𝑖 , 𝑆𝑏𝑗𝑘 , 𝑟𝑜𝑙, 𝑜𝑏𝑗) ⟺
∃ 𝑂𝑏𝑗 ⊆ 𝑂𝐵𝐽: 𝑟𝑜𝑙 ∈
 𝑅𝑂𝐿 ∧ (𝑜𝑝, 𝑜𝑏𝑗, 𝑟𝑜𝑙𝑒_𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛) ∈ 𝑟𝑜𝑙

The equations above therefore define the function;

Access-Obligation (Obligation Policy) as an

extension to SoD structure defined in [8].

Varieties of SoD properties and their relationship in

secure RBAC systems and their composition based

on property conjunctions have been defined. In [21],

Static and Dynamic SoD properties were

distinguished. [6] defined Static SoD (SSoD) by the

rule that “each user must be permitted to use only

certain transaction”. Their work was formalized by

[8] in RBAC environment as follows.

Let 𝐴𝑝𝑝 be an application and 𝑅𝑜𝑙𝑒𝑆𝑒𝑡 its assigned

roles in a secure RBAC system. 𝜎 ∈ 0 satisfies

the SSoD property with respect to 𝐴𝑝𝑝 if any two

distinct roles in 𝑅𝑜𝑙𝑒𝑆𝑒𝑡 do not have common

members. Such roles are said to be restricted.

Formally,

𝜎 ∈ 𝑆𝑆𝑜𝐷(𝑅𝑜𝑙𝑒𝑆𝑒𝑡, 𝐴𝑝𝑝) ⟺

 ∀ 𝑟1,𝑟2 ∈ 𝑅𝑜𝑙𝑒𝑆𝑒𝑡, 𝑟1 ≠ 𝑟2⟹

𝑟𝑜𝑙𝑒_𝑚𝑒𝑚𝑏𝑒𝑟(𝑟1) ∩ 𝑟𝑜𝑙𝑒_𝑚𝑒𝑚𝑏𝑒𝑟(𝑟2) = ∅

We developed a stronger version of this model

below to incorporate delegation policy by adding

the delegation requirements – (AO: can_delegate) –

modelled above that the target object of the two

roles be disjoint. Delegation in Static Separation of

Duty (SSoD) rules state that delegation of role

cannot take place between subjects (even if they

have the same or share similar attributes) and

belong to different role hierarchies; if the subjects

have distinct roles, do not have common members

and are not authorized to perform operations on the

same object with an application. For instance, Two

Accountants (SUBJECTS) that are Professional

(the same ATTRIBUTE) on employment in a bank

must occupy two distinct positions; which could be

an auditor (ROLE1) or an accountant (ROLE2) and

they will be performing different functions

(OBJECTS).

Let 𝐴𝑝𝑝 = [𝑂𝐵𝐽, 𝑟𝑜𝑙𝑒_𝑚𝑒𝑚𝑏𝑒𝑟, 𝑐𝑎𝑛_𝑑𝑒𝑙𝑒𝑔𝑎𝑡𝑒]
and

∀ 𝑆𝑏𝑗𝑖 , 𝑆𝑏𝑗𝑘 ∈ 𝑆𝐵𝐽, ∀ 𝑅𝑜𝑙𝑖 , 𝑅𝑜𝑙𝑘 ∈ 𝑅𝑂𝐿,
∀ 𝑆𝑏𝑗_𝑎𝑡𝑟𝑖 , 𝑆𝑏𝑗_𝑎𝑡𝑟𝑘 ∈ 𝑆𝐵𝐽_𝐴𝑇𝑅,
∀ 𝑅𝑜𝑙_𝑕𝑖𝑒𝑟𝑖 , 𝑅𝑜𝑙_𝑕𝑖𝑒𝑟𝑘 ∈ 𝑅𝑂𝐿_𝐻𝐼𝐸𝑅

if

[𝑆𝑏𝑗_𝑎𝑡𝑟𝑖(𝑠𝑏𝑗𝑖) = 𝑆𝑏𝑗_𝑎𝑡𝑟𝑘(𝑠𝑏𝑗𝑘)] ∈ 𝑆𝐵𝐽_𝐴𝑇𝑅,
and

[𝑅𝑜𝑙_𝑕𝑖𝑒𝑟𝑖(𝑅𝑜𝑙𝑖) ≠ 𝑅𝑜𝑙_𝑕𝑖𝑒𝑟𝑘(𝑅𝑜𝑙𝑘)]
∈ 𝑅𝑂𝐿_𝐻𝐼𝐸𝑅,

Then

𝑟𝑜𝑙𝑒_𝑚𝑒𝑚𝑏𝑒𝑟(𝑅𝑜𝑙𝑖) ∩ 𝑟𝑜𝑙𝑒_𝑚𝑒𝑚𝑏𝑒𝑟(𝑅𝑜𝑙𝑘)
= ∅

∧ 𝑆𝑏𝑗𝑖(𝑅𝑜𝑙𝑖)

𝑆𝑏𝑗 _𝑎𝑡𝑟 𝑖 ,𝑆𝑏𝑗 _𝑎𝑡𝑟 𝑘∈𝑆𝐵𝐽 _𝐴𝑇𝑅

𝑆𝑏𝑗𝑘(𝑅𝑜𝑙𝑘)

= ∅
Therefore, Delegation with Static SoD is

formalized as the function stated as follows;

𝑆𝑆𝑜𝐷 𝐷𝑙𝑔 : |{𝑜𝑏𝑗 ∈
𝑂𝐵𝐽|𝑐𝑎𝑛_𝑑𝑒𝑙𝑒𝑔𝑎𝑡𝑒(𝑆𝑏𝑗𝑖 , 𝑅𝑜𝑙𝑖 , 𝑜𝑏𝑗𝑖) ∩ 𝐴𝑝𝑝 ≠
 ∅} ∩

𝑅𝑜𝑙 𝑖 ,𝑅𝑜𝑙𝑘 ∈ 𝑅𝑂𝐿
 {𝑜𝑏𝑗 ∈

𝑂𝐵𝐽|𝑐𝑎𝑛_𝑑𝑒𝑙𝑒𝑔𝑎𝑡𝑒(𝑆𝑏𝑗𝑘 , 𝑅𝑜𝑙𝑘 , 𝑜𝑏𝑗𝑘) ∩ 𝐴𝑝𝑝 ≠
∅} = ∅

In [17], object based dynamic SoD was introduced

as a more flexible and realistic alternative to the

Static SoD. However, their informal definitions

[17] [21], does not specify precisely which objects,

operations and roles are subjected to the Dynamic

SoD (DSoD) condition.

Delegation in DSoD rule state that delegation of

role may not take place between subjects (even if

they have the same or share similar attributes) and

belong to same role hierarchies; if the subjects have

distinct roles, may have common members and but

are not authorized to perform operations on the

same object within an application at the same time.

For instance, A professor (SUBJECT) that is

presenting a student for oral examination

(OBJECT) as thesis supervisor

(CURRENT_ROLE(i)) cannot stand as both the

internal examiner (CURRENT_ROLE(i)) as well as

external examiner (CURRENT_ROLE(k)) even

though he is qualified to occupy both position by

virtue of his qualifications (ATTRIBUTES). The

same professor may later occupy an external

examiner’s position (CURRENT_ROLE(k)) in

another forum where he will not be internal

examiner (CURRENT_ROLE(i)) but all acting on

the same OBJECT (which is examination).

Let 𝐴𝑝𝑝 = [𝑂𝐵𝐽, 𝑟𝑜𝑙𝑒_𝑚𝑒𝑚𝑏𝑒𝑟, 𝑐𝑎𝑛_𝑑𝑒𝑙𝑒𝑔𝑎𝑡𝑒]
and

∀ 𝑆𝑏𝑗𝑖 , 𝑆𝑏𝑗𝑘 ∈ 𝑆𝐵𝐽,

JCS&T Vol. 11 No. 2 October 2011

102

∀ 𝑅𝑜𝑙𝑖 , 𝑅𝑜𝑙𝑘 ∈ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑅𝑜𝑙,
∀ 𝑆𝑏𝑗_𝑎𝑡𝑟𝑖 , 𝑆𝑏𝑗_𝑎𝑡𝑟𝑘 ∈ 𝑆𝐵𝐽_𝐴𝑇𝑅,
∀ 𝑅𝑜𝑙_𝑕𝑖𝑒𝑟𝑖 , 𝑅𝑜𝑙_𝑕𝑖𝑒𝑟𝑘 ∈ 𝑅𝑂𝐿_𝐻𝐼𝐸𝑅

if

[𝑆𝑏𝑗_𝑎𝑡𝑟𝑖(𝑠𝑏𝑗𝑖) = 𝑆𝑏𝑗_𝑎𝑡𝑟𝑘(𝑠𝑏𝑗𝑘)] ∈ 𝑆𝐵𝐽_𝐴𝑇𝑅,
and

[𝑅𝑜𝑙_𝑕𝑖𝑒𝑟𝑖(𝑅𝑜𝑙𝑖) = 𝑅𝑜𝑙_𝑕𝑖𝑒𝑟𝑘 (𝑅𝑜𝑙𝑘)]
∈ 𝑅𝑂𝐿_𝐻𝐼𝐸𝑅,

Then

𝑟𝑜𝑙𝑒_𝑚𝑒𝑚𝑏𝑒𝑟(𝑅𝑜𝑙𝑖) ∩ 𝑟𝑜𝑙𝑒_𝑚𝑒𝑚𝑏𝑒𝑟(𝑅𝑜𝑙𝑘)
≠ ∅ ∧

𝑆𝑏𝑗𝑖 , (𝑅𝑜𝑙𝑖) ∩
𝑆𝑏𝑗 _𝑎𝑡𝑟 𝑖 ,𝑆𝑏𝑗 _𝑎𝑡𝑟 𝑘 ∈𝑆𝐵𝐽 _𝐴𝑇𝑅

𝑆𝑏𝑗𝑘(𝑅𝑜𝑙𝑘) ≠

∅Therefore, Delegation with Dynamic SoD is the

function modelled as follows;

𝐷𝑆𝑜𝐷 𝐷𝑙𝑔 : |{𝑜𝑏𝑗 ∈ 𝑂𝐵𝐽|𝑐𝑎𝑛_𝑑𝑒𝑙𝑒𝑔𝑎𝑡𝑒

(𝑆𝑏𝑗𝑖 , 𝑟𝑜𝑙𝑒_𝑚𝑒𝑚𝑏𝑒𝑟(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑜𝑙 𝑖
), 𝑜𝑏𝑗) ∩ 𝐴𝑝𝑝

≠ ∅}
∩

𝑅𝑜𝑙𝑖 , 𝑅𝑜𝑙𝑘 ∈ 𝑅𝑂𝐿
 {𝑜𝑏𝑗

∈ 𝑂𝐵𝐽|𝑐𝑎𝑛_𝑑𝑒𝑙𝑒𝑔𝑎𝑡𝑒(𝑆𝑏𝑗𝑘 , 𝑟𝑜𝑙𝑒_𝑚𝑒𝑚𝑏𝑒𝑟

(𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑅𝑜𝑙𝑘), 𝑜𝑏𝑗) ∩ 𝐴𝑝𝑝 ≠ ∅} = ∅

5. Modelling Trust in Delegation Policy

Having considered various research works that have

been done in delegation and separation of duties,

and developing models that refined and formalize

the basis on which a delegator selects a delegatee to

ensure secure delegation of roles from one subject

to another, and without breaching the information

security policy; we model trust as an extension of

the already designed delegation model based on

SoD as another pre-requisite condition for

delegation.

The work of [22] was refined from the tasks chain

to roles and subject attributes chain and is

formalized as follows for each of the three criteria

defined.

5.1 Formalizing “Properties” In Trust

Modelling For Delegation Policy.

Basically, properties depend on the attributes of the

subjects which are the requirements for a subject to

delegate his role(s) to another subject. For example,

the role of performing surgery requires the subject

to be a certified surgeon. In a more details format,

the surgeon has to be a specialist in a particular

aspect of surgery (for instance, ENT, gynaecologist,

Neuro Surgery e.t.c). Therefore, an ENT cannot

delegate his role to a gynaecologist based on the

difference in the area of specialization (attributes)

notwithstanding that both of them are surgeons.

Specific examples can be qualifications and areas

of specialization of the subjects which can be

quantified or weighted to evaluate the attributes

value.

We formally defined structure of properties based

on trust as follows:

Let the attributes needed for 𝑆𝑏𝑗𝑖 to delegate his

role 𝑅𝑜𝑙𝑖 to 𝑆𝑏𝑗𝑘 be defined as follows:

𝑆𝑏𝑗_𝐴𝑡𝑟𝑖 = 𝑆𝑏𝑗_𝐴𝑡𝑟𝑖1, 𝑆𝑏𝑗_𝐴𝑡𝑟𝑖2, … , … , 𝑆𝑏𝑗_𝐴𝑡𝑟𝑖𝑛

Then if

𝑆𝑏𝑗_𝐴𝑡𝑟𝑘 ≠ ∅
and

𝑆𝑏𝑗_𝐴𝑡𝑟𝑖 ∩ 𝑆𝑏𝑗_𝐴𝑡𝑟𝑘 ≠ ∅ = 𝑃
Then

𝑆𝑏𝑗𝑖𝑐𝑎𝑛 𝑑𝑒𝑙𝑒𝑔𝑎𝑡𝑒 𝑆𝑏𝑗𝑘 ∶ 𝑅𝑜𝑙𝑖
else

𝑆𝑏𝑗𝑖𝑐𝑎𝑛𝑛𝑜𝑡 𝑑𝑒𝑙𝑒𝑔𝑎𝑡𝑒 𝑆𝑏𝑗𝑘 ∶ 𝑅𝑜𝑙𝑖

To assign weight to the attributes value(s), the

intersecting elements will be quantified and

weighted values will be assigned to each element.

The computation of the overall sum of the weights

give the relative trust based on a set standard of the

security framework.

To formalized the above,

Let the weight assigned to each element of the

attributes set be defined as follows:

𝑆𝑏𝑗_𝐴𝑡𝑟_𝑊𝑔𝑡𝑖
= 𝑆𝑏𝑗_𝐴𝑡𝑟_𝑊𝑔𝑡𝑖1, 𝑆𝑏𝑗_𝐴𝑡𝑟_𝑊𝑔𝑡𝑖2, … , … , 𝑆𝑏𝑗_𝐴𝑡𝑟_𝑊𝑔𝑡𝑖𝑛
Then from equation above,

𝑆𝑏𝑗𝑖𝑐𝑎𝑛 𝑑𝑒𝑙𝑒𝑔𝑎𝑡𝑒 𝑆𝑏𝑗𝑘 ∶ 𝑅𝑜𝑙𝑖 if the structure

stated as follows is computed to be true and cannot

delegate otherwise.

𝑆𝑏𝑗_𝐴𝑡𝑟_𝑊𝑔𝑡𝑖𝑘 = 𝑆𝑏𝑗_𝐴𝑡𝑟_𝑊𝑔𝑡𝑖

𝑛

𝑖=1

≥ 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑉𝑎𝑙𝑢𝑒 𝑆𝑝𝑒𝑐𝑖𝑓𝑦 𝑓𝑜𝑟 𝑅𝑜𝑙𝑖

where 1 ≤ 𝑖 ≤ 𝑛.

5.2 Formalizing “Experience” In Trust

Modelling For Delegation Policy.

Experience constitutes an important factor in

delegation. A delegator is more likely to choose a

candidate as a delegate if the delegate has prior

experience of occupying that role. [22] identified

two factors that contribute to experience. One factor

is when the task was performed, and the second

factor is how well the tasks were performed.

The two factors above were refined to reflect

subjects and roles attributes. That is, the period the

subject occupies the role and his performance

during his occupation of the role. For example, it

will be better and more reasonable for an Head of

department to delegate his role to a candidate who

has occupies the position of an head of department

before for the longest period of years and who is

adjudged to have performed creditably.

Performance values can take a value of 0 (non

performer) or 1 (Satisfactorily Performance).

Formally, experience based on trust can be

formalized as follows;

Let the performance period and performance values

required of role 𝑅𝑜𝑙𝑖 be defined as follows

respectively:

𝑆𝑏𝑗_𝑃𝑓𝑚_𝑃𝑒𝑟𝑖
= 𝑆𝑏𝑗_𝑃𝑓𝑚_𝑃𝑒𝑟𝑖1 , 𝑆𝑏𝑗_𝑃𝑓𝑚_𝑃𝑒𝑟𝑖2 , … , 𝑆𝑏𝑗_𝑝𝑓𝑚_𝑃𝑒𝑟𝑖𝑛
And

𝑆𝑏𝑗_𝑃𝑓𝑚_𝑉𝑎𝑙𝑖 = 1

JCS&T Vol. 11 No. 2 October 2011

103

Then, the expression below defined the Weight

required for the occupation of role 𝑅𝑜𝑙𝑖 of 𝑆𝑏𝑗𝑖 ;

𝑆𝑏𝑗_𝐸𝑥𝑝_𝑊𝑔𝑡𝑖 = (𝑆𝑏𝑗_𝑃𝑓𝑚_𝑃𝑒𝑟𝑖)

𝑛

𝑖=1

+ 𝑆𝑏𝑗_𝑃𝑓𝑚_𝑉𝑎𝑙𝑖
where 1 ≤ 𝑖 ≤ 𝑛.

If

𝑆𝑏𝑗_𝑃𝑓𝑚_𝑃𝑒𝑟𝑘 ≠ ∅
And

 (𝑆𝑏𝑗_𝑃𝑓𝑚_𝑃𝑒𝑟𝑘) +

𝑛

𝑘=1

𝑆𝑏𝑗_𝑃𝑓𝑚_𝑉𝑎𝑙𝑘

≥ (𝑆𝑏𝑗_𝑃𝑓𝑚_𝑃𝑒𝑟𝑖)

𝑛

𝑖=1

+ 𝑆𝑏𝑗_𝑃𝑓𝑚_𝑉𝑎𝑙𝑖
where 1 ≤ 𝑘 ≤ 𝑛. and 1 ≤ 𝑖 ≤ 𝑛.

Then

𝑆𝑏𝑗𝑖𝑐𝑎𝑛 𝑑𝑒𝑙𝑒𝑔𝑎𝑡𝑒 𝑆𝑏𝑗𝑘 ∶ 𝑅𝑜𝑙𝑖

else

𝑆𝑏𝑗𝑖𝑐𝑎𝑛𝑛𝑜𝑡 𝑑𝑒𝑙𝑒𝑔𝑎𝑡𝑒 𝑆𝑏𝑗𝑘 ∶ 𝑅𝑜𝑙𝑖

5.3 Formalizing “Recommendation” In

Trust Modelling For Delegation Policy.

Recommendations are the information that the

truster obtains from reputable sources about the

trustee. Recommendations in this context are

provided from two other subjects whom the truster

trust about the capabilities of the trustee.

Formally, recommendation based on trust can be

formalized as follows:

Let 𝛽 be the minimum total values from two

recommenders 𝑆𝑏𝑗𝑧 and 𝑆𝑏𝑗𝑗 required for 𝑆𝑏𝑗𝑖 to

delegate his role 𝑅𝑜𝑙𝑖 to 𝑆𝑏𝑗𝑘

Given the recommended values of 𝑆𝑏𝑗𝑘 from 𝑆𝑏𝑗𝑧

and 𝑆𝑏𝑗𝑗 as

𝑆𝑏𝑗_𝑅𝑒𝑐_𝑉𝑎𝑙𝑍 =
 𝑆𝑏𝑗_𝑅𝑒𝑐_𝑉𝑎𝑙𝑧1 , 𝑆𝑏𝑗_𝑅𝑒𝑐_𝑉𝑎𝑙𝑧2 , … , … , 𝑆𝑏𝑗_𝑅𝑒𝑐_𝑉𝑎𝑙𝑧𝑘
And

𝑆𝑏𝑗_𝑅𝑒𝑐_𝑉𝑎𝑙𝑗
= 𝑆𝑏𝑗_𝑅𝑒𝑐_𝑉𝑎𝑙𝑗1 , 𝑆𝑏𝑗_𝑅𝑒𝑐_𝑉𝑎𝑙𝑗2 , … , … , 𝑆𝑏𝑗_𝑅𝑒𝑐_𝑉𝑎𝑙𝑗𝑘

respectively,

if

 (𝑆𝑏𝑗_𝑅𝑒𝑐_𝑉𝑎𝑙𝑧𝑘) +

𝑧𝑘

𝑧=1

 (𝑆𝑏𝑗_𝑅𝑒𝑐_𝑉𝑎𝑙𝑗𝑘)

𝑗𝑘

𝑗 =1

≥ 𝛽

Then

𝑆𝑏𝑗𝑖𝑐𝑎𝑛 𝑑𝑒𝑙𝑒𝑔𝑎𝑡𝑒 𝑆𝑏𝑗𝑘 ∶ 𝑅𝑜𝑙𝑖
else

𝑆𝑏𝑗𝑖𝑐𝑎𝑛𝑛𝑜𝑡 𝑑𝑒𝑙𝑒𝑔𝑎𝑡𝑒 𝑆𝑏𝑗𝑘 ∶ 𝑅𝑜𝑙𝑖

From the above, the two major requirements have

been considered from roles, objects and subjects’

attributes as pre-requisite condition for roles

delegation in an open system for ease of security

administration. The schematic architecture of the

model is shown diagrammatically below.

Figure 1.0: - Schematic Architecture of the Information Security Model Designed [18]

JCS&T Vol. 11 No. 2 October 2011

104

DESIGN OF EXPERIMENT, RESULTS AND

DISCUSSION

A typical University departmental organization was

selected for the experimental design where the

following major roles were identified and coded as

follows; Head of department (HOD), Examination

officer (EO), Undergraduate Lecturing (ULEC),

Postgraduate Lecturing (PLEC), Examiners

(EXAM), Post Graduate Programme Coordinator

(PGPC), Post Graduate Diploma Coordinator

(PGDC), Project Coordinator (PRJC), SIWES

Coordinator (SIWC), Engineers (ENGR),

Technologists (TECH), administrative staff

(ADM), and Students (STD), PhD Supervisors

(PHSV). Detail of the experiment was reported in

[18].

The experimental results obtained from the simulation runs are as presented in the tables below:

Table 1.0: Typical Experimental Result from Delegation Based on Separation of Duty

Simulation Runs No of Successful

Delegation

No of Unsuccessful

Delegation

Total No of

Process Initiated

% of Success

SR1. 1 14 15 6.67

SR2. 3 12 15 20

SR3. 1 14 15 6.67

SR4. 1 14 15 6.67

SR5. 0 15 15 0

Total 6 69 75 % Average = 8

Table 2.0: Typical Experimental Result from Delegation Based on Trust

Simulation Runs No of Successful

Delegation

No of Unsuccessful

Delegation

Total No of

Process Initiated

% of Success

SR1. 3 12 15 20

SR2. 5 10 15 33.33

SR3. 1 14 15 6.67

SR4. 3 12 15 20

SR5. 5 10 15 33.33

Total 17 58 75 % Average =

22.67

Figure 2.0: Percentage Success from Simulation Results for the delegation Models based SoD and Trust.

0

5

10

15

20

25

30

35

SR1 SR2 SR3 SR4 SR5

Separation of Duty

Trust

JCS&T Vol. 11 No. 2 October 2011

105

Results from the tables above show that percentage

average of successful delegation based on separation of

duty and trust from our experimental simulation runs

were found to be 8% and 22.67% respectively.

Separation of duty especially when both static and

dynamic SoD principles are combined was found to

play a relatively significant role in ensuring secure

delegation processes based on the experimental result.

Therefore, logically, the results as shown in Table 1.0

revealed that it may be significantly effective in

protecting system resources especially where

confidentiality and integrity of the resources are to be

ensured since only roles are separated. It generated a

fairly low percentage of successes with the last

returning a zero. The implication is the fact that, the

same role that has been separated from a subject can be

re assigned again to the subject from whom it was

previously separated under another circumstances thus,

it will expose the system vulnerabilities making it more

secure.

Trust models on the other hand also record a fairly low

percentage average of success (22.67%). This may or

may not be objective in assigning roles to subjects in

the quest to access objects. Although, experience of

subject in occupying a role may be significant in

delegation, but the fact that the recommenders may be

subjective in giving recommendations about the

subjects may also make delegation based on trust to

return fairly low percentage.

6. Conclusion
Delegation gives temporary privilege to one or more

users so that critical tasks can be completed without

breaching security policy. Previous works [1, 2, 3, 22,

23, 24] showed that delegation is a complex problem to

solve and is generally modelled separately from other

administration requirements. The reason is that

previous models were generally based on the RBAC

(Role- Based Access Control) model which usually

may not be secure enough to deal with all delegation

requirements.

We proposed two requirements as a pre-requisite

condition for role delegation. These are Separation of

Duty (SoD), and Trust. These requirements were used

for designing the mathematical structures for the

delegation model of the obligation policy. It is of the

authors’ opinion that delegation of roles through

decentralised administration and the specification of

separation of duty and trust should bring about a

stricter access control in information system security

design based on the simulation results using formulated

hypothetical data.

Future works will include the formalization and the

integration of appropriate models for various

revocations methodologies after successful delegation,

determination, analysis and resolution of policy(ies)

conflicts and integration of appropriate authorization

policy into the model to further refine and validate the

delegation policy.

7. References
[1] Barka E. and Sandhu R, “A Role-based Delegation Model

and Some Extensions”, In proceedings of 16th Annual

Computer Security Application Conference, pp. 168-176,

2000.

[2] Barka E. and Sandhu R, “Role-Based Delegation Model/

Hierarchical Roles (RBDM1)”, In proceedings of the 20th

Annual Computer Security Applications Conference

(ACSAC’04), pp. 396-404, 2004

[3] Crampton J. and Khambhammettu H., “Delegation in

Role-Based Access Control”, International Journal of

Information Security, Vol. 7, No. 2, pp. 123-136, 2008.

[4] Chakraborty S. and Ray I., “Integrating Trust

Relationships into the RBAC model for access control in

open Systems”, In proceeding of the 11th ACM Symposium on

Access Control Models and Technologies, Pages 49-58, 2006.

[5] Clark D. D. and Wilson D. R., “A Comparison of

Commercial and Military Computer Security Policies”, IEEE

Symposium on Security and Privacy, Oakland, California, pp.

184-194. 1987

[6] Clark D. D., and D. R. Wilson, “Evolution of a Model for

Computer Integrity,” in Report of the Invitational Workshop

on Data Integrity, Z.G. Ruthberg and W.T. Polk (eds.), NIST

Special Publication 500-168, Appendix A, 1989.

[7] Ferriaolo David, Cugini Janet, and Kuhn Richard., “Role-

based access control (RBAC): Features and motivations”. In

Proceedings of 11th Annual Computer Security Application

Conference, pages 241-48, New Orleans, LA, December 11-

15 1995.

[8] Gligor V. D., Gavrila S. I., Ferraiolo D., “On the Formal

Definition of Separation-of-Duty Policies and their

Composition”, IEEE Symposium on Security and Privacy, 3-6

May 1998, Oakland, California.

[9] Gligor, V. D., S. I. Gavrila, and J. Cugini, “The RBAC

Security Policy Model”,

http://cspa09.ncsl.nist.gov/disk2/rbac/docs/model.ps. 1999.

[10] Hummel, A. A., K. Deinhart, S. Lorenz, V. D. Gligor,

“Role-Based Security Administration”, Sicherheit in

Informationsystemen (K. Bauknecht, D. Karagiannis, and S.

Teufel (eds.)), vdf Hochschulverlag, ETH Zurich, pp. 69-92,

March 1996.

[11] Josang A., “An Algebra for Assessing trust in

Certification Chains”, In Proceedings of the Network and

Distributed Systems Security Symposium, Australian. 1999.

[12] Josang A. and Bhuiyan T., “Optimal Trust Network

Analysis with Subjective Logic”, In Proceedings of the

Second International Conference on Emerging Security

Information, Systems and Technologies. 2008.

[13] Josang A., “Artificial Reasoning with Subjective Logic”,

In Proceedings of the 2nd Australian Workshop on

CommonSense Reasoning. 1997.

[14] Josang A, Gray E, and Kinateder M, “Simplification and

Analysis of Transitive Trust Networks”, Web Intelligence

and Agents Systems, 4 (2): 139 – 161, 2006.

JCS&T Vol. 11 No. 2 October 2011

106

http://cspa09.ncsl.nist.gov/disk2/rbac/docs/model.ps

[15] Ray I., Ray I, and Chakraborty S. (2009), “An

Interoperable Context sensitive Model of Trust” Journal of

Intelligent Information Systems, 32(1): 75 – 104. 2006

[16] Li Ninghui and Wang Qihua, “Beyond Separation of

Duty: An Algebra for Specifying High level Security

Policies”, CCS’06 (ACM), October 30–November 3,

Alexandria, Virginia, USA. 2006.

[17] Nash M. J. and K. R. Poland, “Some Conundrums

Concerning Separation of Duty” Proceeding of IEEE

Symposium on Security and Privacy, Oakland, California, pp.

201-207. 1990.

[18] Ogundele O.S., “Design of a Multilevel Access Control

Models based on Attributes, Separation of duty and Trust”.

PhD Thesis. Federal University of Technology, Akure,

Nigeria, 2011.

[19] Saltzer J.H. and Schroeder M.D., “The Protection of

Information in Computer Systems”, Proceedings of the IEEE

63(9): 1278 – 1308, 1975

[20] Sloman M. and Lupu E. C., “Security and management

policy specification”. IEEE Network, Special Issue on

Policy-Based Networking, 16(2):10–19, March/April 2002.

[21] Simon R. T., and Zurko M. E., “Separation of Duty in

Role-Based Environments,” Proc. of Computer Security

Foundations Workshop X, Rockport, Massachusetts, June

1997

[22] Toahchoodee M., Xie X., and Ray I., “Towards

Trustworthy Delegation in Role Based Access Control

Model”, In Proceedings of ISC 2009 Conference, Pg 379 –

394, Pisa, Italy, 2009

[23] Ye Chunxiao and Wu Zhongfu and Fu Yunqing, “An

Attribute-Based Delegation Model and Its Extension”,

Journal of Research and Practice in Information Technology

Vol. 38, No. 1, 2006.

[24] Zhang, X.W., Oh, S. And Sandhu, R. S., “PBDM: A

flexible delegation model in RBAC”. Proceedings of the 8th

ACM Symposium on Access Control Models and

Technologies (SACMAT’03). Com

o, Italy, 2003.

JCS&T Vol. 11 No. 2 October 2011

107

	Text8: Received: July 2011. Accepted: Aug. 2011.

