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ABSTRACT 

Vision based applications are present anywhere. A special 
market is industry, allowing to improve product quality and 
to reduce manufacturing costs. The vision systems applied 
to industries are known as machine vision systems. These 
systems must meet time constraints to operate in real time. 
Generally the production lines are more and more fasters, 
and the time to process and bring a response is minimal. 
For this reasons, dedicated architectures are emplaced.  In 

this work a review of several commercial systems is 
presented, as well a proposed architecture is depicted. The 
architecture is concern as a customizable platform, 
avoiding having knowledge in hardware description 
languages. It is based on massive parallelism to achieve the 
maximum processing performance. Several optimizations 
at different levels are applied to increase the final system 
speedup. Also, time and area metrics are reported, showing 
that the architecture is well suitable for real time video 

processing in industrial applications.  
Keywords: Video processing, Machine Vision, FPGA,  

1. INTRODUCTION 

 
The host PC cannot process images from the new higher-
resolution cameras with faster frame rates. The industrial 
high-performance applications require higher image size, 
over 10MPixels with more than 10-bit deep; while the 
frame rate required can be higher than 500 frame per 
second.  

All machine vision systems require some characteristics 
from the running platform: real-time computing power, 
high quantity of input/output data pin, determinism to fix 
the real-time process, high throughput, and low latency. 
There are almost three ways to achieve the proposed 
image processing goals. The first approach is produced by 
the biggest commercial processor companies, like Intel, 
Hitachi, Philips, or Hewlett-Packard; where they produce 

processor highly adapted to develop a machine vision 
system. This topic is represented by small representative 
processors. 
The Trimedia processor (Phillips) [1] can process 6.5 
billon operation per second, can support until 64MB 
RAM, include 27 processing elements pipelined to exploit 
the VLIW architecture from the C programming style.  
The SH-5 (Hitachi) [2] processor is oriented to develop 

grid configurations to high performance graphic 

operations at a high frequency. It has three operands 
instructions, 64 registers of 64 bits, running at 400 MHz 
executing 714 MIPS. 
The Itanium2 was developed by Intel and Hewlett-Packard 
[3]. The main characteristics are: 1GHz running clock, 128 
registers, two floating point units, 6 integer units, 6 
multimedia units, and 4 load-store cache pipelines. The 
architecture allows the compiler to define the instruction-

level parallelism; independent of the number of instruction 
groups a particular processor is capable to compute. For 
example the compiler could emit 128 instructions that 
could be executed in parallel, where the processor would 
execute them in groups of 6 instructions. 
These approaches are oriented to a big market portion 
because the inversion to produce the processor only can be 
afforded by the biggest companies in the world. There are 

countless of these kind of processors running in hundred 
of cards in machine vision or smart cameras applications. 
These applications designs are restricted to program the 
processor without customizing the processor or the card 
architecture; normally it’s very complicated to grown up 
to another camera resolution, or a higher FPS, or a more 
complex algorithm, because the architecture cannot let it. 
The second way is based in the technological progress of 
CMOS scaling circuits, leaving to ingrate image capture 

with processing logic on a chip. These devise are known 
as FPSP (focal-plane sensor-processor[4][5]. There are 
two major components in all FPSP: the photo-sensor array 
and the processors. Inside the capabilities, implements 
image scalar operations (min, max, mean, global OR, 
number of black pixels on a binary image, histogram,etc.), 
image row/ column operations (profile, shadow), 
neighborhood processing (kernel filters) and  global 

processing (FFT, wavelet transformation, Hough 
transform).  Several vision chips were developed, as Q-
Eye, powering AnaFocus’ Eye-RIS system [6], SCAMP-3 
[7], MIPA4k [8], ASPA [9][10], VISCUBE [11]. 
This is an emerging technology in evolution that can be 
used to solve particular problems, and still not provide 
support to complete system implementation. 
The third way to reach the requirements of the machine 

vision system is through a custom architecture processor 
for each application. These processors can be VLSI or 
FPGA based system. The VLSI power only can be 
afforded by great companies, and it is the same as 
explained in the first point. So, in this paper the 
reconfigurable architecture is analyzed. The approaches in 
this area are numerous, the following discussion is not 
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exhaustive and is limited to a small representative well 

documented architectures. 
In real-time video processing systems, a set of operations 
are repetitively performed on every image frame in a 
video stream. These operations are usually 
computationally intensive and, depending on the video 
resolution, can be also very data-transfer dominated. 
These operations, which often require data from several 
consecutive frames and many rows of data within each 

frame, must be performed accurately and under real-time 
constraints as the results greatly affect the accuracy of 
application. 
The use of reconfigurable system platform for image 
recognition is well defined in [12] where the main 
application is the surveillance. A face recognition 
application on a Spartan3 with 1 GB DDR SDRAM, by 
using a 5 Mpixel at 14 FPS camera, is implemented. 
A SIMFD with small memory in each processing element 

and a I/O array to reduce data transport is used as portable 
supercomputer  for video processing in [13]. A very detail 
analysis is included comparing the architecture with DSP. 
The XRI-1200 [14] card developed by DALSA can 
process 1 Mpixel 12-bit deep image at 30 FPS to obtain X-
Ray analysis at real-time. 
Other use of the machine vision is to construct a virtual 
3D environment model [14], for example to guide a 

synthetic person on this world. The data fusion of the 3 
camera must compensate the partial observation of each 
individual VGA camera working at 30 FPS.  
The pipeline applied to the image processing [16] is 
analyzed to show that the pipeline model can significantly 
improve the speed of the large image processing. 
A tool for automatic generation for FPGA real-time video 
processing systems is presented in [17]. The generator 

creates the memory and control functionality for a 
functional spatio-temporal video processing system over a 
FPGA. The main architecture is defined using VHDL to 
be automatically synthesized.  
The FPGA enable system designers to develop 
applications with a large amount of parallelism [18]; this 
characteristic allows a cheap architecture for high-
performance vision computing. The vision algorithms are 

implemented to analyze the performance with FPGA, 
DSP, Intel Core 2 Duo GPP and the FPGA on-chips 
Microblaze and powerPC.  
The smart cameras [19] are presented with all its history 
evolutions from the Xerox first system to the future 
directions of the area. They were the first embedded 
systems to process real-time video images. The smart 
camera can be developed thanks to the great advances in 
embedded vision systems that are showed in [20]. 

The overview of real-time image or video processing 
algorithm [21] from a research environment is used in an 
actual real-time implementation on a resource constrained 
hardware platform. These strategies consist of algorithm 
simplifications, hardware architectures, and software 
methods.  
The interdisciplinary efforts are analyzed for the 
successful development of machine vision applications 

[22]. The light, lenses, camera calibration, camera, 
interface, hardware platform, algorithms, and image 
analysis are the main topics involved in the machine 
vision inspection. 
A review of mathematical principles and key issues in 
image processing [23] are detailed depicted, such as the 
description and characterization of images, edge detection, 
feature extraction, segmentation, texture, and shape; while 

a discussion topics are image matching, statistical pattern 

recognition, syntactic pattern recognition, clustering, 
diffusion, adaptive contours, parametric transforms, and 
consistent labeling.  
A complementary review is presented in [24] by analyzing 
amounts of material on mathematical morphology, 3-D 
vision, invariance, motion analysis, artificial neural 
networks, texture analysis, X-ray inspection, foreign 
object detection, and robust statistics. 

The end users prospective of machine vision technology 
are depicted in [25]. It is a powerful introductory material 
not for systems designers. The main topics are principles 
in lighting, optics, cameras, underlying image processing 
and three-dimensional and color machine vision 
techniques. 
Application domains of real-time systems include machine 
vision, object recognition and tracking, visual 
enhancement and surveillance; these applications are 

analyzed in a method and a tool to enable efficient 
memory synthesis for real-time video processing systems 
on FPGA [26]. The central objective of this method is the 
optimized use of embedded memories in the process of 
buffering data on-chip for an RVTPS operation. The 
developed software tool is an environment for generating 
HDL codes implementing the memory subcomponents. 
The high speed video architectures use the inherent data 

parallelism in applications by using deeply pipelined 
functional units, increasing the number of processing 
elements. The SIMD architectures are the most suited 
computational model for video processing because they 
can efficiently exploit massive data parallelism with 
minimal data movement. This architecture also has a 
programming model with minimum work. 
The architectural solution proposed in this paper 

implement hardware-based acceleration algorithms for 
machine vision systems. The FPGA clock runs often a 
lower speed than standard microprocessors; but they can 
run on parallel units to get a higher throughput than 
microprocessor with higher clock speeds. 
There are two parallelization techniques to increase the 
algorithm speed: sending different data sets to multiples 
processing units, or mapping operations onto a pipeline. 

So, parallel computing can be done by time-parallel or 
space-parallel. 
The operational structures of those systems consist of on-
chip processors or custom vision coprocessors 
implemented by using high parallel processing units with 
efficient memory and bus architectures.  
This paper shows the parallel and pipeline techniques 
applied to a pattern recognition platform FPGA-based. 
These acceleration techniques can be used by an expensive 

custom design or by an automatic generation tool. The 
architecture generator produces the HDL code to be 
automatically synthesized, for example on FPGA.  
The structure of this paper is as the following: section 2 
cover the proposed architecture for high video computing, 
exploiting the subcomponents involved. Section 3 
summarizes the metrics obtained. Section 5 presents the 
conclusions and further works. 

2. ARCHITECTURE DESCRIPTION 
A video processing system is generally formed by a set of 
stages interacting in a particular mode to perform a task. 
Those steps are image enhancement, image segmentation, 
and feature detection/ measurement.  Some systems, as 
machine vision and surveillance, involve a stage which 
allows taking decisions. It can be implemented as a 
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classificator or a measure analysis technique. In this work a 

RBF Neural Network is used to give the intelligence to the 
system.  
The architecture is intended to implement a generic soft-
core, with the corresponding flexibility to support several 
application areas. The system is composed by a set of 
modules (or stages) executing in parallel, implementing a 
full image pipelining.  A general description is presented in 
the figure 1. 

 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 1.  System description 

The image information is transferred to the control unit, 
enabling the stages when a valid data arrives. The pixel 
value is transmitted to pixel preprocessing level stage, 
transforming the value according to a function established 
at system definition. The generated information is passed to 
region preprocessing level stage. This stage performs an 

image transform analyzing the region surrounding a pixel. 
These steps are commonly called image enhancement, and 
could be used to perform a contrast expansion, border 
enhancement or noise reduction.  
The image segmentation stage could be a system 
bottleneck, because these techniques have a great 
computational resources demand.  To avoid this problem, 
an algorithm to reduce resource was implemented, which 

allows detecting salient points in images. In this way, the 
algorithm detects that regions containing usable 
information to be analyzed for the next stages. The results 
determined by this stage are communicated to the 
controller, deciding if the next stages must be activated or 
not. The information is not passed to the next stage because 
this stage does not bring image information. The output is a 
flag indicating if the region is analyzable or not. 

The feature extraction stage consumes the data present in a 
double port memory, which contains the enhanced image. 
This stage performs a feature vector computation 
determining the pattern main features, transferred to a 
pattern recognition stage. The classification module is 
responsible to assign a category to the input feature vector, 
if the input is similar to a learning pattern.  
Each one of the mentioned stages is depicted in the next 

subsections, dealing both functional descriptions as 
architectural implementation details. 
 

Pixel preprocessing preprocessing 
Given an input function this stage transforms each one of 
the input pixel into a new value. The set of transformed 
values represents an enhancement image. The operator 

allows applying any injective function as logarithm 

expansion, exponential, threshold and further (Fig. 2).  
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Fig. 2.  Pixel preprocessing stage 

The pixel preprocessing module is implemented in a ROM, 
containing the respective transformed value for each input. 
The values are generated at system definition (Fig. 3).  
In this way, the input data is used to address the ROM. The 
output value is registered to increase the stability on the 

output. This implementation avoids the computation effort, 
demanding only one memory element.   
 

 
Fig. 3.  Pixel preprocessing architecture 

This architecture allows performing operations in grey 
level images (8 bits pixel depth). The ROM must be the 
capable to address 256 values, and can be synthesized in 
BRam or distributed in LUTs. Thus, a relaxation constraint 
is meted in order to adapt the system to existing resources. 

If the first option is taken, the implementation reduces the 
area required to store the complete values set, associating 
the stage to a single dedicated memory block. On the other 
hand, when these blocks are sparse in the platform, the 
function could be mapped to logic distributed in LUTs.     

 

Region preprocessing level 
This operator allows image enhancement through 

the analysis of image regions. These kinds of operators 
usually are implemented through a transformation 
matrix (kernel) which is applied iteratively on the entire 
image. At each step, this operation provides an intensity 
value corresponding to one pixel of the improved image. 
The transformation allows implementing border 
enhancement, noise reduction, sharpen, blur and other 
useful image processing filters.  

During the specification stage, the kernel coefficients are 
defined. These values are applied during the system 
execution to each pixel of the input image (Fig. 4). The 
component input is a serial input, given a data result in 
each pixel cycle. 
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Fig. 4.  Region preprocessing level enhancement. 

The architecture of this component is formed by storage 
and an operational subcomponent.  The first of those 

stores incoming intensity values in a pipeline to be 
processed, using two FIFOs and a set of 6 registers (Fig. 
5). The FIFOs store temporarily intermediate values acting 
as a sliding window that applies the filter to all regions of 
the image. The size of each FIFO is set by w-2, where w 
is the value corresponding to image width.  Only 6 registers 
are required because the FIFOs outputs and the input value 
form the data needed to apply the operation. 
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Fig. 5.  Region preprocessing level storage module 

The operational logic module is described at a high level of 
abstraction, allowing the synthesis tool to find the best 
implementation for operations. While the multiplication 
operation has a high cost, the component description is 

made in order to be as optimal as possible, allowing 
instantiate the hardware DSP cores provided in some 
families of Xilinx FPGAs (Virtex). For this case 
nine DSP cores are used, which performs all the products 
between the region and the coefficient matrix in 
parallel. The results of the products are added across the 
connection of these modules in cascade, but the design of 
these cores are optimized for sums of products, and is 

unnecessary to incorporate an architecture such as 
only increase the complexity by using additional adders 
(Fig. 6). The critical path for implementing this operation 
on a Xilinx Virtex4 FPGA has a delay time of 5.575 ns . 
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Fig. 6.  Region preprocessing level operational module 

To avoid the computation complexity, all the operators are 
reduced to fixed-point arithmetic. This type of 

operation ignores exponent calculations and performs 
the necessary arithmetic operations followed by a shift to 
obtain the required result. In this way, the set of operations 
required are implemented according to: 
•••• Pre-computed coefficients are defined as constants 

in the code that describes the system architecture. 
Being ci the real value that corresponds to the ith-
position of the matrix, the constant value for the 

coefficient in fixed point is c_fpi = ci x 210.  The 
fractional part obtained from this operation is 
discarded, and the sign must be taken into account, 
since the coefficients can be negative. 

•••• The input data is normalized with respect to 
coefficients shifting left 10 bits, and the multiplication 
is performed between the two values. 

•••• The multiplications are summed, and the result is 
shifted right 10 bits, to reconstruct the data subjected 
to normalization. 

A value 210 is used to maximize the calculus precision; the 
multiplier core contained in the device hardware has 18 
bit entries. The implementation maximizes accuracy with 
minimal logic. 
 

Candidate region detection 
To avoid the computational costs involved in image 

segmentation, a salient point detection technique is used. 
This technique allows detecting areas with objects presence 
to be analyzed later. The algorithm is based on the FAST 
salient point detector optimization [27]. 
This technique determines a salient point analyzing the 
pixels corresponding to the main axes to the central pixel. 
If at least three surrounding pixels are darker o brighter, the 
central pixel is a salient point.  

The results obtained by applying the technique are 
evaluated in regions. In this way a region is candidate if 
contains at least n salient points. 
The implementation of this stage consists of storage and a 
processing modules, as well as region level image 
enhancement stage. The storage subcomponent is formed 
by two FIFOs and three registers (FF8) implementing a 
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sliding window. In this case the number of registers is 

reduced because the data to be processed is lower (five per 
region). The size of the first FIFOs is w' and the second’s 
size is w'-1, where w' is the half of the image width. The 
storage capacity of these structures is reflected 
in the figures, where n = w'. The outputs of the FIFOs 
represent the right and the upper pixel (Fig. 7). 
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Fig. 7.  Salient point detection storage module 

The processing logic comprises one adder and 
one subtractor responsible to perform these operations 
between the central point and a threshold value (Fig. 
8). The implementation is optimized using two LUTs to 
achieve the result of both operations. The threshold 
is established during system definition. The operations are 
defined in macro level, relying to synthesis tool to meet 
the best emplacement. This implementation can get better 

results allowing dynamics thresholds in later versions. 
 

 
Fig. 8.  Salient point detection processing module 

Feature extraction 
The feature extraction stage is the main phase of image 
processing systems.  At this stage all relevant information 
is collected to perform the pattern 
recognition/classification. Moreover, this stage is essential 

to achieve proper system operation and is totally dependent 

to the application area to be developed.  
A region of interest (ROI) is projected to get some feature 
or set of features, such as shape, texture, color, etc. A ROI 
is defined as the area within an image that can hold a 
pattern.  
While the operation imposes further delay of the system 
(operating at region level), the candidate region detection 
module avoids to analyze all the regions.  

This stage may be viewed simply as a set of transformation 
functions applied iteratively on each ROI. The range of 
functions available can be very extensive. Thus, the 
flexibility is a key factor in the development stage. For this 
reason a compiler is proposed, capable to transform a high 
level user code to a hardware optimized description (Fig. 
9). The optimizations are performed by compiling a 
intermediate code capable of group operations minimizing 
both the area and the processing time. A detailed 

description of the compiler was presented in [28]. 
 

H
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Fig. 9.  Feature extraction stage 

 
The architecture of this stage is formed by a controller and 
a processing logic. The controller architecture is defined as 
a FSM (Fig. 10. ), and performs the data requests to 
memory according to the ROI to be analyzed. The readed 

data is delivered to the processing logic to compute the 
feature vector.  
The controller remains in idle (IDLE) state, until the an 
enable signal activation. When this event occurs, the 
controller change his state to execution (EXEC), reading 
the ROI.  
 

IDLE EXEC

en = 1

eo_rc =0

eo_rc = 1  
 

Fig. 10.  Feature extraction main FSM. 

 
The ROI read is implemented using two counters to 
address relative positions of pixels in memory. One of 
these calculates the relative displacement required per row 

(row_cnt) and another calculates the relative displacement 
in columns (col_cnt). These values together with the base 
address bring the desired memory address. 
 

addr = col_cnt + row_cnt + base_addr 
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The architecture considers that reading is always active, 

avoiding to incorporate a new state inside the FSM to read 
the first ROI pixel. A continuous memory read is accepted, 
because the memory is implemented as a dual-port 
memory, allowing to write data for previous stages, and 
ROI component readings simultaneously. A continuous 
data reading not affect the component, because the data 
only will be used when the architecture require. 
The data processing is carried out by a SIMD architecture, 

where the input data is delivered to a number of processors. 
The processing elements, computes the FV components 
values, and can be read asynchronously.  
To avoid overwriting data, a double buffering technique is 
applied. This configuration enables to perform a read 
operation on the last valid and complete FV. When a vector 
computation finishes, the signal fv_sel is changed to 
indicate to this vector as the last valid. Thus, the read 
operation will be performed on this vector, and 

computations will be performed on the other FV. This logic 
not affects to the auxiliary registers set, since they only 
contain partial results (Fig. 11. ).  
 

 
Fig. 11.  FV storage and computation architecture 

 

Pattern recognition 
The pattern recognition stage is based on ZISC78[29] and 
CM1K[30] devices architecture. This classifier is defined 
as a Radial Basis Function Neural Network, allowing 
associating a category to a pattern. This neural network is 
trained off-chip. Its means that the training set is used by a 

training tool capable to generate a hardware description of 
the RBFNN. 
The architecture is composed by a controller and a set of 
neurons. The neurons are interconnected via a neuron 
communication bus (Fig. 12).  
The controller is implemented by a state machine. This 
component coordinates the operations of the neurons to 
perform the classification. It is also responsible for 

controlling feature vector readings and reports the status of 
the component, indicating when it has achieved the 
outcome of a classification (rdy). 

 
Fig. 12.  Pattern recognition architecture 

The neural intercommunication bus imposes a critical path 
to the system. This problem is directly associated with the 
neurons number in the network. To avoid system 
bottlenecks, intermediate registers are placed uniformly 
distributed on the inter-neuron communication bus. This 

segmentation allows increasing the maximum operational 
frequency. 
A detailed description of this architecture can be founded 
in [31]. This work presents a comparison between the 
architecture presented and commercial devices. 
 

3. RESULTS 
 
There are a lot of variables acting in system definition 

phase, including the frame size. Thus, the freedom degree 
is high. The system can operate if the stages frequencies 
are lower than pixel arriving frequency. In this way, the 
system can be seen as a fully pipelined architecture 
governed by the pixel clock.  
Because this system is intended to be use in industries, the 
response time must be the shorter possible. Also, as this is 
image pipeline architecture, the best way to assess 

performance is through latency. This factor provides an 
understanding of the time to give a response.   
Given the type of architecture that arises, the latency for 
each stage individually is known. Thus, the entire system 
latency is given by the accumulation of partial latencies. 
For the stage of improvement pixel level, this factor (LPP) 
is associated with a ROM reading and storing this data in a 
register, so that the latency in this case is 1 pixel period 

(PPixel)  
 

LPP = 1 PPixel 
 
However, the region-level improvement requires that two 
rows of the image are temporarily stored and three extra 
pixels to fill the data set needed to implement the first 
filter. So, the latency for this step (LRP) is given by:  

 
LRP=  (2w+3) PPixel 

 
Where w is the image width. 
The salient point detection, only stores the odd columns 
and odd rows of the image, needing 4 rows of the image 
and three additional pixels available to operate.  The 
latency of this stage (LSPD) is: 
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LSPD = (4 w + 3) PPixel 
 
The results of salient point detection are used by the 
candidate regions detector, while it may provide an answer 
at an earlier time in the worst case required to verify that 
the number of salient points of an entire region to be 
analyzed. The worst case is comprised to all rows of the 
image that comprise the candidate region and the width of 

one candidate region (ROIw). The latency (LROCD), for a 
ROI size of ROIH x ROIw is given by: 
 

LROCD = (((ROIH-1)*w) + ROIW )PPixel 
 
The operational frequency of these stages does not 
correspond to the operating cycle of the system. It is related 
to the cycle of transmission of one pixel (pixel clock). For 
precise latency calculation is necessary to consider also the 

space defined between two rows determined by the 
horizontal sync signal. 
Feature extraction is done by reading each point of the 
ROI, so latency (LFE) is given by this value plus an 
additional cycle to update the feature vector. The period 
considerate in this case is the related to system clock 
(Psystem). 
 

LFE =  ((ROIw *ROIH)  +1 ) Psystem 

 
Finally the recognition latency (LPR) is given by reading the 
feature vector (FVSize) plus the time required for the 
response, and 2 additional cycles of control. The time to 
generate the output is equal to the number of registers in 
the neuron communication bus (NR). In this way, the 
latency is: 

 
LPR = (FVSize + NR + 2)  Psystem 

  
Thus, the overall latency of the system (LSystem) is 
comprised of the partial sum of the latencies of each stage. 
 

LSystem = LPP + LRP + LSPD + LROCD + LFE + LPR 

 

On the other hand, the double port memory must be 
capable to allocate w*2ROIH to optimize system 
performance. The memory is emplaced in physical block 
memories presents in the FPGA.  

4. CONCLUSIONS AND FURTHER WORK 
This work presents a flexible architecture capable to be 
adapted to several application areas. All the stages of a 
machine vision system are covered, adjusting to the system 
needs.  

The use of FPGA as platform provides a great level of 
parallelism to implement video processing application. On 
the other hand, the image pipelining proposed allows 
optimizing system performance. This architecture is well 
suitable for special video sensors as line scan cameras.  
A high level of spatial and temporal parallelism is 
exploited in the design. The architecture is a high 
performance platform solution, capable to be used by 

vision system developers without experience in hardware 
description languages.  
A detailed analysis is presented also, showing that the 
proposed solution can achieve the constraints imposed in 
industrial application. So, with all custom application 
parameters defined, an accurate processing time, frame rate 
and global system latency can be estimated at pre-

implementation time. This feature lets evaluate system 

constraints at earlier design stages.  
 
This architecture cannot allow changing configurations 
parameters in operation time. But these features are 
contemplated in new versions.  Actually, a research is 
doing to use this architecture in floor tiles inspection.  
A machine vision generator tool is currently building, 
capable to generate customizable architectures. The tool 

allows defining a complete system to be generated, 
bringing the possibility to validate it in software.   
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