
High Performance Customizable Architecture for

Machine Vision Applications

Nelson Acosta and Lucas Leiva

*

INCA/INTIA, Facultad de Ciencias Exactas

Universidad Nacional del Centro de la Prov. De Bs. As, Tandil, 7000, Argentina

ABSTRACT

Vision based applications are present anywhere. A special
market is industry, allowing to improve product quality and
to reduce manufacturing costs. The vision systems applied
to industries are known as machine vision systems. These
systems must meet time constraints to operate in real time.
Generally the production lines are more and more fasters,
and the time to process and bring a response is minimal.
For this reasons, dedicated architectures are emplaced. In

this work a review of several commercial systems is
presented, as well a proposed architecture is depicted. The
architecture is concern as a customizable platform,
avoiding having knowledge in hardware description
languages. It is based on massive parallelism to achieve the
maximum processing performance. Several optimizations
at different levels are applied to increase the final system
speedup. Also, time and area metrics are reported, showing
that the architecture is well suitable for real time video

processing in industrial applications.
Keywords: Video processing, Machine Vision, FPGA,

1. INTRODUCTION

The host PC cannot process images from the new higher-
resolution cameras with faster frame rates. The industrial
high-performance applications require higher image size,
over 10MPixels with more than 10-bit deep; while the
frame rate required can be higher than 500 frame per
second.

All machine vision systems require some characteristics
from the running platform: real-time computing power,
high quantity of input/output data pin, determinism to fix
the real-time process, high throughput, and low latency.
There are almost three ways to achieve the proposed
image processing goals. The first approach is produced by
the biggest commercial processor companies, like Intel,
Hitachi, Philips, or Hewlett-Packard; where they produce

processor highly adapted to develop a machine vision
system. This topic is represented by small representative
processors.
The Trimedia processor (Phillips) [1] can process 6.5
billon operation per second, can support until 64MB
RAM, include 27 processing elements pipelined to exploit
the VLIW architecture from the C programming style.
The SH-5 (Hitachi) [2] processor is oriented to develop

grid configurations to high performance graphic

operations at a high frequency. It has three operands
instructions, 64 registers of 64 bits, running at 400 MHz
executing 714 MIPS.
The Itanium2 was developed by Intel and Hewlett-Packard
[3]. The main characteristics are: 1GHz running clock, 128
registers, two floating point units, 6 integer units, 6
multimedia units, and 4 load-store cache pipelines. The
architecture allows the compiler to define the instruction-

level parallelism; independent of the number of instruction
groups a particular processor is capable to compute. For
example the compiler could emit 128 instructions that
could be executed in parallel, where the processor would
execute them in groups of 6 instructions.
These approaches are oriented to a big market portion
because the inversion to produce the processor only can be
afforded by the biggest companies in the world. There are

countless of these kind of processors running in hundred
of cards in machine vision or smart cameras applications.
These applications designs are restricted to program the
processor without customizing the processor or the card
architecture; normally it’s very complicated to grown up
to another camera resolution, or a higher FPS, or a more
complex algorithm, because the architecture cannot let it.
The second way is based in the technological progress of
CMOS scaling circuits, leaving to ingrate image capture

with processing logic on a chip. These devise are known
as FPSP (focal-plane sensor-processor[4][5]. There are
two major components in all FPSP: the photo-sensor array
and the processors. Inside the capabilities, implements
image scalar operations (min, max, mean, global OR,
number of black pixels on a binary image, histogram,etc.),
image row/ column operations (profile, shadow),
neighborhood processing (kernel filters) and global

processing (FFT, wavelet transformation, Hough
transform). Several vision chips were developed, as Q-
Eye, powering AnaFocus’ Eye-RIS system [6], SCAMP-3
[7], MIPA4k [8], ASPA [9][10], VISCUBE [11].
This is an emerging technology in evolution that can be
used to solve particular problems, and still not provide
support to complete system implementation.
The third way to reach the requirements of the machine

vision system is through a custom architecture processor
for each application. These processors can be VLSI or
FPGA based system. The VLSI power only can be
afforded by great companies, and it is the same as
explained in the first point. So, in this paper the
reconfigurable architecture is analyzed. The approaches in
this area are numerous, the following discussion is not

* CONICET

JCS&T Vol. 12 No. 1 April 2012

1

exhaustive and is limited to a small representative well

documented architectures.
In real-time video processing systems, a set of operations
are repetitively performed on every image frame in a
video stream. These operations are usually
computationally intensive and, depending on the video
resolution, can be also very data-transfer dominated.
These operations, which often require data from several
consecutive frames and many rows of data within each

frame, must be performed accurately and under real-time
constraints as the results greatly affect the accuracy of
application.
The use of reconfigurable system platform for image
recognition is well defined in [12] where the main
application is the surveillance. A face recognition
application on a Spartan3 with 1 GB DDR SDRAM, by
using a 5 Mpixel at 14 FPS camera, is implemented.
A SIMFD with small memory in each processing element

and a I/O array to reduce data transport is used as portable
supercomputer for video processing in [13]. A very detail
analysis is included comparing the architecture with DSP.
The XRI-1200 [14] card developed by DALSA can
process 1 Mpixel 12-bit deep image at 30 FPS to obtain X-
Ray analysis at real-time.
Other use of the machine vision is to construct a virtual
3D environment model [14], for example to guide a

synthetic person on this world. The data fusion of the 3
camera must compensate the partial observation of each
individual VGA camera working at 30 FPS.
The pipeline applied to the image processing [16] is
analyzed to show that the pipeline model can significantly
improve the speed of the large image processing.
A tool for automatic generation for FPGA real-time video
processing systems is presented in [17]. The generator

creates the memory and control functionality for a
functional spatio-temporal video processing system over a
FPGA. The main architecture is defined using VHDL to
be automatically synthesized.
The FPGA enable system designers to develop
applications with a large amount of parallelism [18]; this
characteristic allows a cheap architecture for high-
performance vision computing. The vision algorithms are

implemented to analyze the performance with FPGA,
DSP, Intel Core 2 Duo GPP and the FPGA on-chips
Microblaze and powerPC.
The smart cameras [19] are presented with all its history
evolutions from the Xerox first system to the future
directions of the area. They were the first embedded
systems to process real-time video images. The smart
camera can be developed thanks to the great advances in
embedded vision systems that are showed in [20].

The overview of real-time image or video processing
algorithm [21] from a research environment is used in an
actual real-time implementation on a resource constrained
hardware platform. These strategies consist of algorithm
simplifications, hardware architectures, and software
methods.
The interdisciplinary efforts are analyzed for the
successful development of machine vision applications

[22]. The light, lenses, camera calibration, camera,
interface, hardware platform, algorithms, and image
analysis are the main topics involved in the machine
vision inspection.
A review of mathematical principles and key issues in
image processing [23] are detailed depicted, such as the
description and characterization of images, edge detection,
feature extraction, segmentation, texture, and shape; while

a discussion topics are image matching, statistical pattern

recognition, syntactic pattern recognition, clustering,
diffusion, adaptive contours, parametric transforms, and
consistent labeling.
A complementary review is presented in [24] by analyzing
amounts of material on mathematical morphology, 3-D
vision, invariance, motion analysis, artificial neural
networks, texture analysis, X-ray inspection, foreign
object detection, and robust statistics.

The end users prospective of machine vision technology
are depicted in [25]. It is a powerful introductory material
not for systems designers. The main topics are principles
in lighting, optics, cameras, underlying image processing
and three-dimensional and color machine vision
techniques.
Application domains of real-time systems include machine
vision, object recognition and tracking, visual
enhancement and surveillance; these applications are

analyzed in a method and a tool to enable efficient
memory synthesis for real-time video processing systems
on FPGA [26]. The central objective of this method is the
optimized use of embedded memories in the process of
buffering data on-chip for an RVTPS operation. The
developed software tool is an environment for generating
HDL codes implementing the memory subcomponents.
The high speed video architectures use the inherent data

parallelism in applications by using deeply pipelined
functional units, increasing the number of processing
elements. The SIMD architectures are the most suited
computational model for video processing because they
can efficiently exploit massive data parallelism with
minimal data movement. This architecture also has a
programming model with minimum work.
The architectural solution proposed in this paper

implement hardware-based acceleration algorithms for
machine vision systems. The FPGA clock runs often a
lower speed than standard microprocessors; but they can
run on parallel units to get a higher throughput than
microprocessor with higher clock speeds.
There are two parallelization techniques to increase the
algorithm speed: sending different data sets to multiples
processing units, or mapping operations onto a pipeline.

So, parallel computing can be done by time-parallel or
space-parallel.
The operational structures of those systems consist of on-
chip processors or custom vision coprocessors
implemented by using high parallel processing units with
efficient memory and bus architectures.
This paper shows the parallel and pipeline techniques
applied to a pattern recognition platform FPGA-based.
These acceleration techniques can be used by an expensive

custom design or by an automatic generation tool. The
architecture generator produces the HDL code to be
automatically synthesized, for example on FPGA.
The structure of this paper is as the following: section 2
cover the proposed architecture for high video computing,
exploiting the subcomponents involved. Section 3
summarizes the metrics obtained. Section 5 presents the
conclusions and further works.

2. ARCHITECTURE DESCRIPTION
A video processing system is generally formed by a set of
stages interacting in a particular mode to perform a task.
Those steps are image enhancement, image segmentation,
and feature detection/ measurement. Some systems, as
machine vision and surveillance, involve a stage which
allows taking decisions. It can be implemented as a

JCS&T Vol. 12 No. 1 April 2012

2

classificator or a measure analysis technique. In this work a

RBF Neural Network is used to give the intelligence to the
system.
The architecture is intended to implement a generic soft-
core, with the corresponding flexibility to support several
application areas. The system is composed by a set of
modules (or stages) executing in parallel, implementing a
full image pipelining. A general description is presented in
the figure 1.

Fig. 1. System description

The image information is transferred to the control unit,
enabling the stages when a valid data arrives. The pixel
value is transmitted to pixel preprocessing level stage,
transforming the value according to a function established
at system definition. The generated information is passed to
region preprocessing level stage. This stage performs an

image transform analyzing the region surrounding a pixel.
These steps are commonly called image enhancement, and
could be used to perform a contrast expansion, border
enhancement or noise reduction.
The image segmentation stage could be a system
bottleneck, because these techniques have a great
computational resources demand. To avoid this problem,
an algorithm to reduce resource was implemented, which

allows detecting salient points in images. In this way, the
algorithm detects that regions containing usable
information to be analyzed for the next stages. The results
determined by this stage are communicated to the
controller, deciding if the next stages must be activated or
not. The information is not passed to the next stage because
this stage does not bring image information. The output is a
flag indicating if the region is analyzable or not.

The feature extraction stage consumes the data present in a
double port memory, which contains the enhanced image.
This stage performs a feature vector computation
determining the pattern main features, transferred to a
pattern recognition stage. The classification module is
responsible to assign a category to the input feature vector,
if the input is similar to a learning pattern.
Each one of the mentioned stages is depicted in the next

subsections, dealing both functional descriptions as
architectural implementation details.

Pixel preprocessing preprocessing
Given an input function this stage transforms each one of
the input pixel into a new value. The set of transformed
values represents an enhancement image. The operator

allows applying any injective function as logarithm

expansion, exponential, threshold and further (Fig. 2).

Function Representation

User defined function

0

2 0

4 0

6 0

8 0

10 0

12 0

14 0

0 5 0 10 0 15 0 2 0 0 2 5 0

Serial

Input
Serial
Output

)1log(*5.0 InOut +=

Fig. 2. Pixel preprocessing stage

The pixel preprocessing module is implemented in a ROM,
containing the respective transformed value for each input.
The values are generated at system definition (Fig. 3).
In this way, the input data is used to address the ROM. The
output value is registered to increase the stability on the

output. This implementation avoids the computation effort,
demanding only one memory element.

Fig. 3. Pixel preprocessing architecture

This architecture allows performing operations in grey
level images (8 bits pixel depth). The ROM must be the
capable to address 256 values, and can be synthesized in
BRam or distributed in LUTs. Thus, a relaxation constraint
is meted in order to adapt the system to existing resources.

If the first option is taken, the implementation reduces the
area required to store the complete values set, associating
the stage to a single dedicated memory block. On the other
hand, when these blocks are sparse in the platform, the
function could be mapped to logic distributed in LUTs.

Region preprocessing level
This operator allows image enhancement through

the analysis of image regions. These kinds of operators
usually are implemented through a transformation
matrix (kernel) which is applied iteratively on the entire
image. At each step, this operation provides an intensity
value corresponding to one pixel of the improved image.
The transformation allows implementing border
enhancement, noise reduction, sharpen, blur and other
useful image processing filters.

During the specification stage, the kernel coefficients are
defined. These values are applied during the system
execution to each pixel of the input image (Fig. 4). The
component input is a serial input, given a data result in
each pixel cycle.

JCS&T Vol. 12 No. 1 April 2012

3

Fig. 4. Region preprocessing level enhancement.

The architecture of this component is formed by storage
and an operational subcomponent. The first of those

stores incoming intensity values in a pipeline to be
processed, using two FIFOs and a set of 6 registers (Fig.
5). The FIFOs store temporarily intermediate values acting
as a sliding window that applies the filter to all regions of
the image. The size of each FIFO is set by w-2, where w
is the value corresponding to image width. Only 6 registers
are required because the FIFOs outputs and the input value
form the data needed to apply the operation.

clk

we
out

FIFO(n)

data

clk

we

out

FIFO(n)

data

d_in

clk

en q

FF8

d

clk

en q

FF8

d

clk

en q

FF8

d

clk

en q

FF8

d

clk

en q

FF8

d

clk

en q

FF8

d

p8

p7

p6

p5

p4

p3

p2

p1

p0

Fig. 5. Region preprocessing level storage module

The operational logic module is described at a high level of
abstraction, allowing the synthesis tool to find the best
implementation for operations. While the multiplication
operation has a high cost, the component description is

made in order to be as optimal as possible, allowing
instantiate the hardware DSP cores provided in some
families of Xilinx FPGAs (Virtex). For this case
nine DSP cores are used, which performs all the products
between the region and the coefficient matrix in
parallel. The results of the products are added across the
connection of these modules in cascade, but the design of
these cores are optimized for sums of products, and is

unnecessary to incorporate an architecture such as
only increase the complexity by using additional adders
(Fig. 6). The critical path for implementing this operation
on a Xilinx Virtex4 FPGA has a delay time of 5.575 ns .

p0
Add

DSP

c0

p1
Mult

Add

DSP

c1

p7

DSP

c7

p8

DSP

c8 res

shift

Mult

Add

Add

Mult

Mult

Fig. 6. Region preprocessing level operational module

To avoid the computation complexity, all the operators are
reduced to fixed-point arithmetic. This type of

operation ignores exponent calculations and performs
the necessary arithmetic operations followed by a shift to
obtain the required result. In this way, the set of operations
required are implemented according to:
•••• Pre-computed coefficients are defined as constants

in the code that describes the system architecture.
Being ci the real value that corresponds to the ith-
position of the matrix, the constant value for the

coefficient in fixed point is c_fpi = ci x 210. The
fractional part obtained from this operation is
discarded, and the sign must be taken into account,
since the coefficients can be negative.

•••• The input data is normalized with respect to
coefficients shifting left 10 bits, and the multiplication
is performed between the two values.

•••• The multiplications are summed, and the result is
shifted right 10 bits, to reconstruct the data subjected
to normalization.

A value 210 is used to maximize the calculus precision; the
multiplier core contained in the device hardware has 18
bit entries. The implementation maximizes accuracy with
minimal logic.

Candidate region detection
To avoid the computational costs involved in image

segmentation, a salient point detection technique is used.
This technique allows detecting areas with objects presence
to be analyzed later. The algorithm is based on the FAST
salient point detector optimization [27].
This technique determines a salient point analyzing the
pixels corresponding to the main axes to the central pixel.
If at least three surrounding pixels are darker o brighter, the
central pixel is a salient point.

The results obtained by applying the technique are
evaluated in regions. In this way a region is candidate if
contains at least n salient points.
The implementation of this stage consists of storage and a
processing modules, as well as region level image
enhancement stage. The storage subcomponent is formed
by two FIFOs and three registers (FF8) implementing a

Convolution Filter

Convolution Kernel

Serial
Input

Serial

Outpul

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

JCS&T Vol. 12 No. 1 April 2012

4

sliding window. In this case the number of registers is

reduced because the data to be processed is lower (five per
region). The size of the first FIFOs is w' and the second’s
size is w'-1, where w' is the half of the image width. The
storage capacity of these structures is reflected
in the figures, where n = w'. The outputs of the FIFOs
represent the right and the upper pixel (Fig. 7).

clk

we

out

FIFO(n)

data

clk

we

out

FIFO(n-1)

data

clk

clk

en q

FF8

d

clk

en q

FF8

d

clk

en q

FF8

d

d_in

en

p_down

p_right

p_center

p_left

p_up

Fig. 7. Salient point detection storage module

The processing logic comprises one adder and
one subtractor responsible to perform these operations
between the central point and a threshold value (Fig.
8). The implementation is optimized using two LUTs to
achieve the result of both operations. The threshold
is established during system definition. The operations are
defined in macro level, relying to synthesis tool to meet
the best emplacement. This implementation can get better

results allowing dynamics thresholds in later versions.

Fig. 8. Salient point detection processing module

Feature extraction
The feature extraction stage is the main phase of image
processing systems. At this stage all relevant information
is collected to perform the pattern
recognition/classification. Moreover, this stage is essential

to achieve proper system operation and is totally dependent

to the application area to be developed.
A region of interest (ROI) is projected to get some feature
or set of features, such as shape, texture, color, etc. A ROI
is defined as the area within an image that can hold a
pattern.
While the operation imposes further delay of the system
(operating at region level), the candidate region detection
module avoids to analyze all the regions.

This stage may be viewed simply as a set of transformation
functions applied iteratively on each ROI. The range of
functions available can be very extensive. Thus, the
flexibility is a key factor in the development stage. For this
reason a compiler is proposed, capable to transform a high
level user code to a hardware optimized description (Fig.
9). The optimizations are performed by compiling a
intermediate code capable of group operations minimizing
both the area and the processing time. A detailed

description of the compiler was presented in [28].

H
W

S
W

Fig. 9. Feature extraction stage

The architecture of this stage is formed by a controller and
a processing logic. The controller architecture is defined as
a FSM (Fig. 10.), and performs the data requests to
memory according to the ROI to be analyzed. The readed

data is delivered to the processing logic to compute the
feature vector.
The controller remains in idle (IDLE) state, until the an
enable signal activation. When this event occurs, the
controller change his state to execution (EXEC), reading
the ROI.

IDLE EXEC

en = 1

eo_rc =0

eo_rc = 1

Fig. 10. Feature extraction main FSM.

The ROI read is implemented using two counters to
address relative positions of pixels in memory. One of
these calculates the relative displacement required per row

(row_cnt) and another calculates the relative displacement
in columns (col_cnt). These values together with the base
address bring the desired memory address.

addr = col_cnt + row_cnt + base_addr

JCS&T Vol. 12 No. 1 April 2012

5

The architecture considers that reading is always active,

avoiding to incorporate a new state inside the FSM to read
the first ROI pixel. A continuous memory read is accepted,
because the memory is implemented as a dual-port
memory, allowing to write data for previous stages, and
ROI component readings simultaneously. A continuous
data reading not affect the component, because the data
only will be used when the architecture require.
The data processing is carried out by a SIMD architecture,

where the input data is delivered to a number of processors.
The processing elements, computes the FV components
values, and can be read asynchronously.
To avoid overwriting data, a double buffering technique is
applied. This configuration enables to perform a read
operation on the last valid and complete FV. When a vector
computation finishes, the signal fv_sel is changed to
indicate to this vector as the last valid. Thus, the read
operation will be performed on this vector, and

computations will be performed on the other FV. This logic
not affects to the auxiliary registers set, since they only
contain partial results (Fig. 11.).

Fig. 11. FV storage and computation architecture

Pattern recognition
The pattern recognition stage is based on ZISC78[29] and
CM1K[30] devices architecture. This classifier is defined
as a Radial Basis Function Neural Network, allowing
associating a category to a pattern. This neural network is
trained off-chip. Its means that the training set is used by a

training tool capable to generate a hardware description of
the RBFNN.
The architecture is composed by a controller and a set of
neurons. The neurons are interconnected via a neuron
communication bus (Fig. 12).
The controller is implemented by a state machine. This
component coordinates the operations of the neurons to
perform the classification. It is also responsible for

controlling feature vector readings and reports the status of
the component, indicating when it has achieved the
outcome of a classification (rdy).

Fig. 12. Pattern recognition architecture

The neural intercommunication bus imposes a critical path
to the system. This problem is directly associated with the
neurons number in the network. To avoid system
bottlenecks, intermediate registers are placed uniformly
distributed on the inter-neuron communication bus. This

segmentation allows increasing the maximum operational
frequency.
A detailed description of this architecture can be founded
in [31]. This work presents a comparison between the
architecture presented and commercial devices.

3. RESULTS

There are a lot of variables acting in system definition

phase, including the frame size. Thus, the freedom degree
is high. The system can operate if the stages frequencies
are lower than pixel arriving frequency. In this way, the
system can be seen as a fully pipelined architecture
governed by the pixel clock.
Because this system is intended to be use in industries, the
response time must be the shorter possible. Also, as this is
image pipeline architecture, the best way to assess

performance is through latency. This factor provides an
understanding of the time to give a response.
Given the type of architecture that arises, the latency for
each stage individually is known. Thus, the entire system
latency is given by the accumulation of partial latencies.
For the stage of improvement pixel level, this factor (LPP)
is associated with a ROM reading and storing this data in a
register, so that the latency in this case is 1 pixel period

(PPixel)

LPP = 1 PPixel

However, the region-level improvement requires that two
rows of the image are temporarily stored and three extra
pixels to fill the data set needed to implement the first
filter. So, the latency for this step (LRP) is given by:

LRP= (2w+3) PPixel

Where w is the image width.
The salient point detection, only stores the odd columns
and odd rows of the image, needing 4 rows of the image
and three additional pixels available to operate. The
latency of this stage (LSPD) is:

JCS&T Vol. 12 No. 1 April 2012

6

LSPD = (4 w + 3) PPixel

The results of salient point detection are used by the
candidate regions detector, while it may provide an answer
at an earlier time in the worst case required to verify that
the number of salient points of an entire region to be
analyzed. The worst case is comprised to all rows of the
image that comprise the candidate region and the width of

one candidate region (ROIw). The latency (LROCD), for a
ROI size of ROIH x ROIw is given by:

LROCD = (((ROIH-1)*w) + ROIW)PPixel

The operational frequency of these stages does not
correspond to the operating cycle of the system. It is related
to the cycle of transmission of one pixel (pixel clock). For
precise latency calculation is necessary to consider also the

space defined between two rows determined by the
horizontal sync signal.
Feature extraction is done by reading each point of the
ROI, so latency (LFE) is given by this value plus an
additional cycle to update the feature vector. The period
considerate in this case is the related to system clock
(Psystem).

LFE = ((ROIw *ROIH) +1) Psystem

Finally the recognition latency (LPR) is given by reading the
feature vector (FVSize) plus the time required for the
response, and 2 additional cycles of control. The time to
generate the output is equal to the number of registers in
the neuron communication bus (NR). In this way, the
latency is:

LPR = (FVSize + NR + 2) Psystem

Thus, the overall latency of the system (LSystem) is
comprised of the partial sum of the latencies of each stage.

LSystem = LPP + LRP + LSPD + LROCD + LFE + LPR

On the other hand, the double port memory must be
capable to allocate w*2ROIH to optimize system
performance. The memory is emplaced in physical block
memories presents in the FPGA.

4. CONCLUSIONS AND FURTHER WORK
This work presents a flexible architecture capable to be
adapted to several application areas. All the stages of a
machine vision system are covered, adjusting to the system
needs.

The use of FPGA as platform provides a great level of
parallelism to implement video processing application. On
the other hand, the image pipelining proposed allows
optimizing system performance. This architecture is well
suitable for special video sensors as line scan cameras.
A high level of spatial and temporal parallelism is
exploited in the design. The architecture is a high
performance platform solution, capable to be used by

vision system developers without experience in hardware
description languages.
A detailed analysis is presented also, showing that the
proposed solution can achieve the constraints imposed in
industrial application. So, with all custom application
parameters defined, an accurate processing time, frame rate
and global system latency can be estimated at pre-

implementation time. This feature lets evaluate system

constraints at earlier design stages.

This architecture cannot allow changing configurations
parameters in operation time. But these features are
contemplated in new versions. Actually, a research is
doing to use this architecture in floor tiles inspection.
A machine vision generator tool is currently building,
capable to generate customizable architectures. The tool

allows defining a complete system to be generated,
bringing the possibility to validate it in software.

5. REFERENCES

[1] Philips, “Programmable Media Processor –

TriMedia TM-1300”. Internal Report. Processor

datasheet. 2001. Pp: 1-9.

[2] J. Brambor: “Implementation notes of binary dilation

and erosion on 64-bit SH5 processor”. Centre de

Morphologie Mathematique, Ecole National

Superieur des Mines de Paris, France. October 2002.

Pp: 1-17.

[3] HP: “Inside the Intel Itanium 2 Processor”. A

Hewlett-Packard Technical White Paper. 2002. Pp: 1-

44.

[4] Orly Yadid-Pecht, Ralph Etienne-Cumming, CMOS

Imagers: From Phototransduction to Image

Processing, Springer, 2004

[5] A. Zarandy, Focal-Plane Sensor-Processor Chips,

ISBN 9781441980076, Springer, 2011.

[6] A. Rodríguez-Vázquez, R. Domínguez-Castro, F.

Jiménez-Garrido, S. Morillas, A. García, C. Utrera,

M. Dolores Pardo, J. Listan, R. Romay, “A CMOS

Vision System On-Chip with Multi-Core, Cellular

Sensory-Processing Front-End”, In Cellular

Nanoscale Sensory Wave Computing, C. Baatar, W.

Porod, T. Roska, ISBN: 978–1–4419–1010–3, 2009

[7] P.Dudek, D.R.W.Barr, A.Lopich and S.J. Carey,

“Demonstration of real-time image processing on the

SCAMP-3 vision system”, IEEE International

Workshop on Cellular Neural Networks and their

Applications, CNNA 2006, pp.13-13, Istanbul,

August 2006

[8] J. Poikonen, M. Laiho, and A. Paasio, MIPA4k: A

64×64 cell mixed-mode image processor array, in

IEEE International Symposium on Circuits and

Systems Taiwan, 2009, pp. 1927–1930

[9] A.Lopich and P.Dudek, "ASPA: Focal Plane Digital

Processor Array with Asynchronous Processing

Capabilities", IEEE International Symposium on

Circuits and Systems, ISCAS 2008, pp 1592-1596,

May 2008

[10] A.Lopich and P.Dudek, "Implementation of an

Asynchronous Cellular Logic Network as a Co-

Processor for a General-Purpose Massively Parallel

Array", European Conference on Circuit Theory and

Design, ECCTD 2007, pp.84-87, Seville, Spain,

August 2007

[11] P. Földesy, R. Carmona-Galan, A ́ . Zarándy, C.

Rekeczky, A. Rodríguez-Vázquez, T. Roska, 3D

multi-layer vision architecture for surveillance and

JCS&T Vol. 12 No. 1 April 2012

7

reconnaissance applications, ECCTD-2009, Antalya,

Turkey

[12] A. W. Azman, A. Bigdeli, Y. M. Mustafah, and B. C.

Lovell: “Optimizing resources on an FPGA-based

smart camera architecture”. Digital image computing

techniques and applications. 2007. Pp. 600-606.

[13] A. gentile and D. Scott Wills: “Portable video

supercomputing”. IEEE Transactions on Computers,

Vol 53, Nro 8, August 2004. Pp: 960-973.

[14] Dalsa, "XRI-1200: PC based Digital Image Processor

for X-ray Imaging", Datasheet,

www.teledynedalsa.com, 2007.

[15] C. Wu, H. Aghajan, and R. Kleihorst: “Mapping

vision algorithms on SIMD architecture smart

cameras”. ICDSC 07, 2007. Pp: 27-34.

[16] Z. Xiao and B. Zhang, "Parallel image processing

based on pipeline", in Proc. Geoinformatics, 2010,

pp.1-4.

[17] H. Norell, N. Lawall and M. O’Nils: “Automatica

generation of spatial and temporal memory

architectures for embedded video processing

Systems”. EURASIP Journal on Embedded Systems,

Volumen 2007, Article ID 75368. 2007. DOI:

10.1155/2007/75368. Pp: 1-11.

[18] Mahendra G. Samarawickrama: “Performance

evaluation of vision algorithms on FPGA”. ISBN: 1-

59942-373-1. 2010. Pp: 1-25.

[19] Ahmed Nabil Belbachir: “Smart Cameras”. Springer.

ISBN: 978-1-4419-0952-7. DOI: 10.1007/978-1-

4419-0953-4. 2009. Pp: 1-394.

[20] N. Kehtarnavaz and M. Gamadia: “Real-Time image

and video processing: From research to reality”.

Springer. DOI: DOI 10.2200 / S00021 ED1 V01Y

2006 04IVM 005. A publication in the Morgan and

Claypool Publishers 2006. Pp: 1-108.

[21] B. Kisacanin, S. Bhattacharyya and S. Chai:

“Embedded Computer Vision: Advances in Pattern

Recognition”. ISBN 978-1-84800-303-3. DOI

10.1007/978-1-84800-304-0. Springer-Verlag

London. 2009. Pp: 1-300.

[22] Alexander Hornberg: “Handbook of Machine

Vision”. ISBN-13: 978-3-527-40584-8. Wiley-VCH

2006. Pp: 1-823.

[23] W. E. Snyder and Hairong Qi: “Machine Vision”.

ISBN: 978-0-521-83046-1. Cambridge Press. 2007.

Pp: 27-34.

[24] E. R. Davies: “Machine Vision. Theory, Algorithms

and Practices”. ISBN: 8131201775, Elsevier Press.

Oxford University Press. 2003. Pp: 1-938.

[25] Kello Suech: “Understanding and Applying Machine

Vision”. ISBN: 0-8247-8929-6. by Marcel Dekker,

Inc. 2000. Pp: 1-336.

[26] Najeem Lawal: “Memory Synthesis for FPGA

Implementation of Real-Time Video Processing

Systems”. Mid Sweden University Doctoral Thesis.

2009. ISBN 978-91-86073-26-8.

[27] L. Leiva, N. Acosta, “Detección Rápida de Puntos

Salientes en Imágenes”, XV Workshop Iberchip, 25 a

27 de marzo 2009, Buenos Aires, Argentina.

[28] L. Leiva, N. Acosta,"MISD Compiler for Feature

Vector Computation in Serial Input Images", ARPN

Journal of Systems and Software. vol. 1, no. 3, pp:

108-116, June 2011.

[29] Silicon Recognition, “ZISC: Zero Instruction Set

Computer”, Version 4.2, Silicon Recognition, Inc.,

2002

[30] Cognimem, CogniMem_1K: Neural network chip for

high performance pattern recognition, datasheet,

Version 1.2.1, www.recognetics.com, 2008.

[31] L. Leiva, N. Acosta, "Hardware Radial Basis

Function Neural Network Automatic Generation",

JCS&T: Journal of Computer Science & Technology.

vol. 11, no. 1,pp: 15-20, April 2011.

JCS&T Vol. 12 No. 1 April 2012

8

	Text1: Invited Paper

