
A NOVEL ALGORITHM WITH IM-LSI INDEX FOR INCREMENTAL
MAINTENANCE OF MATERIALIZED VIEW

1Dr.T.Nalini, , 2Dr. A.Kumaravel, 3Dr.K.Rangarajan
Dept of CSE, Bharath University

Email-id: nalinicha2002@yahoo.co.in
 drkumarvelappavoo@gmail.com

krranagajan@yahoo.com

ABSTRACT

The ability to afford decision makers with both accurate and
timely consolidated information as well as rapid query response
times is the fundamental requirement for the success of a Data
Warehouse. To provide fast access, a data warehouse stores
materialized views of the sources of its data. As a result, a data
warehouse needs to be maintained to keep its contents consistent
with the contents of its data sources. Incremental maintenance is
generally regarded as a more efficient way to maintain
materialized views in a data warehouse The view has to be
maintained to reflect the updates done against the base relations
stored at the various distributed data sources. The proposed
approach contains two modules namely, (1) materialized view
selection(MVS) and (2) maintenance of materialized view.
(MMV). In recent times, several algorithms have been proposed
for keeping the views up-to-date in response to the changes in
the source data. Therefore, we present an improved algorithm for
MVS and MMV using IM-LSI(Itemset Mining using Latent
Semantic Index) algorithm. selection of views to materialize
using the IM(Itemset Mining) algorithm method to overcome the
problem resulting from conventional view selection algorithms
and then we consider the maintenance of materialized views
using LSI. For the justification of the proposed algorithm, we
reveal the experimental results in which both time and space
costs better than conventional algorithms.

Keywords : materialization view, data warehousing, selection
cost, I-mine item set index, FP growth , LSI index

I. INTRODUCTION

Data warehouse (DW) can be defined as subject-oriented,
integrated, nonvolatile, and time-variant collection of data in
support of management’s decision [2]. It can bring together
selected data from multiple database or other information
sources into a single repository [3]. To avoid accessing from
base table and increase the speed of queries posed to a DW, we
can use some intermediate results from the query processing
stored in the DW called materialized views. Therefore,
materialized view selection involved query processing cost and
materialized view maintenance cost. Materialized views are the
derived relations, which are stored as relations in the database.
When a base relation is update, all its dependant materialized
views have to be updated in order to maintain the consistency
and integrity of the database. The process of updating a
materialized view in response to the changes in the base relation
is called ‘View Maintenance’ that incurs a ‘View Maintenance
Cost’. Because of maintenance cost, it is impossible to make all
views materialized under the limited space and time. This need
to select an appropriate set of views to materialize for answering
queries, this was denoted Materialized View Selection (MVS)
and maintenance the selected view denoted Maintenance of
Materialized View(MMV). [1-3]

The paper is organized as follows. In Section 2, we
describe a related work of materialized view selection
and materialized view maintenance and also explain in
section 3 and 4 propose work of MVS and MMV. In
section 5, we shown experimental setup, section 6,
display and its discussion and section 7, we describe
concluded the paper and section 8 will provide the
references.

2. RELATED WORKS

The problem of finding views to materialize to answer queries
has traditionally been studied under the name of view selection.
Its original motivation comes up in the context of data
warehousing.

Harinarayan et al. [21] presented a greedy algorithm for the
selection of materialized views so that query evaluation costs can
be optimized in the special case of “data cubes”. However, the
costs for view maintenance and storage were not addressed in
this piece of work. Yang et al. [5] proposed a heuristic algorithm
which utilizes a Multiple View Processing Plan (MVPP) to
obtain an optimal materialized view selection, such that the best
combination of good performance and low maintenance cost can
be achieved. However, this algorithm did not consider the
system storage constraints. Himanshu Gupta and Inderpal Singh
Mumick [8] developed a greedy algorithm to incorporate the
maintenance cost and storage constraint in the selection of data
warehouse materialized views. Amit Shukla et al. [12] proposed
a simple and fast heuristic algorithm, PBS, to select aggregates
for precomputation. PBS runs several orders of magnitude faster
than BPUS, and is fast enough to make the exploration of the
time-space tradeoff feasible during system configuration.
Himanshu Gupta and Inderpal Singh Mumick [3] developed
algorithms to select a set of views to materialize in a data
warehouse in order to minimize the total query response time
under the constraint of a given total view maintenance time.
They have designed approximation algorithms for the special
case of OR view graphs. Chuan Zhang and Jian Yang [5]
proposed a completely different approach, Genetic Algorithm, to
choose materialized views and demonstrate that it is practical
and effective compared with heuristic approaches. Sanjay
Agrawal et al. [6] proposed an end-to-end solution to the
problem of selecting materialized views and indexes. Their
solution was implemented as part of a tuning wizard that ships
with Microsoft SQL Server 2000. Chuan Zhang et al. [2]
explored the use of an evolutionary algorithm for materialized
view selection based on multiple global processing plans for
queries. They have applied a hybrid evolutionary algorithm to
solve problems. Elena Baralis, Tania Cerquitelli, and Silvia
Chiusano, developed a the I-Mine index, a general and compact
structure which provides tight integration of item set extraction
in a relational DBMS.[9]

The primary intent of this research is to selecting
views to materialize so as to achieve finer query response in low
time by reducing the total cost associated with the materialized
views. The proposed work exploits materialize the candidate
views by taking into consideration of query frequency, query
processing cost and space requirement. In order to find the
frequent queries, we make use of Item set Mining (IM)
techniques from which the frequently user accessible queries
will be generated. [11]. For the item set mining we are using FP
TREE algorithm to find the frequency queries. Then, an
appropriate set of views can be selected to materialize by
minimizing the total query response time and the storage space
along with maximizing the query frequency. The outcome can be
directly utilized by the users to obtain the quicker results once a
set of views is materialized for the data warehouse [11-14]. After
selecting a top k queries are materialized. These queries are
maintenance when base table updated without re-computation
using LSI (latent Semantic Index).

JCS&T Vol. 12 No. 1 April 2012

32

3 APPROACHES TO MATERIALIZED VIEW
SELECTION (MVS)

The challenge behind the first phase is to materialize the
candidate views by taking into consideration of query frequency,
query processing cost and space requirement. In order to find the
frequent queries, we make use of Item set mining techniques
from which the frequently user accessible queries will be
generated. Then, an appropriate set of views can be selected to
materialize by minimizing the total query response time and/or
the storage space along with maximizing the query frequency.
These can be utilized by the users to obtain the quicker results
once a set of views is materialized for the data warehouse.

The input to the proposed approach is data warehouse model, DW
and a user’s table (UT) that contains the list of queries used by
the number of users. For materialized view, the queries that are
mostly used by the users should be selected but, at the same
time, the query processing cost should be less. According to, we
have used the data ware house, DW that contains four tables. The
schema of the data ware house used in the proposed approach is
represented with four various tables such as customer (T1), order
(T2), product (T3) and vehicle (T4). Here, ‘order’ (T2) is a target
table, which consists of four field records such as OrderID,
ProductID, CustomerID and Time of buying where, ProductID
and CustomerID are two foreign key relations. The order table
contains one tuple for each new order, and its key is OrderID.
The customer table contains details about the customer and its
field records are customerID, Name, Age, Housetype and City.
The relationship among the multiple tables presented in the
example is represented as: T2 T1; T2 T3 and T4 T1, where
Ti Tj means that the foreign key of table Ti is the primary key
of Tj.

3.1 Finding the parameters of view selection cost

Then, we have built one user’s table, UT to find the frequency of
every query for computing the query frequency cost. The user’s
table is denoted as, UT consisting of ‘m’ columns and ‘n’ rows.
Every row signifies the number of users who are used the data
ware house to find the important information by posing the
queries. Every column signifies the set of queries used by the
corresponding users. Here, the users table is maintained for the
input data ware house model so that the query frequency
computation can be possible. Once a user’s table is built, we can
select a set of views for materialization. The frequency
computation is not an easy task if the user’s table contains large
number of attribute columns as well as user rows. So, there is
need a standard algorithm to mine the frequent queries from the
user’s table, UT. In addition to, the choice of algorithm is a major
concern in finding the frequent queries for further reducing the
time complexity. By considering these, we make use of the
IMine algorithm, Index Support for Item Set Mining to mine the
frequent queries. The advantage of the IMine algorithm is that it
can mine the frequent queries with less computation time due to
its IMine index structure compared with the traditional
algorithms like, Apriori and FP-Growth.
So, we have applied IMine algorithm to user’s query table UT for
finding the frequent queries and their corresponding support
value. Then, for all the queries, we maintain a table, T that
contains the frequency obtained from the IMine algorithm, the
query processing cost and spatial cost required. Using this table,

the selection cost SQ of every query Q is computed by combining
the above three values. The main objective is that the spatial cost
and query processing cost should be minimized but, the
frequency-based cost should be maximized. The reason behind is
that, if the query is to be materialized, then the query should be
frequently used by the number of users. On the other hand, the
storage cost should be minimum in order to reduce the space
require to store the results. By considering this multi-objective,
at first we sort the queries in a descending order based on
frequency and at the same time, for other objectives, the queries
are sorted in a ascending order according to the storage cost and
query processing cost. Then, we select the top ‘k’ queries from
the every sorted list so that the queries that are satisfying
multiple objectives can be possibly selected. After that, the
queries that are presented in the three sorted lists are selected to
find the selection cost, SQ [14-20].

3.2 Designed formulae to compute the selection cost

For finding the selection cost of the every query, the query
frequency cost Qf, query storage cost Qs and Query processing
cost Qp are computed using the following formulae,

)(

i
 Max i

Q

Q
f f

f
Q =

 ;

)(

i
 Max i

Q

Q
p P

P
Q =

 ;

)(

i
 Max i

Q

Q
s S

S
Q =

Where, Qf frequency of query Q

 QP
 Processing cost of query Q

 QS
 Storage of cost QS

Using these parameters such as, Qf, Qs, and Qp, the selection cost
SQ is computed using the designed formulae that maximize the
query frequency and minimize the spatial cost and query
processing cost.

)1(*)1(** spfQ QQQS −+−+= δβα

Where, are Weights such that sum of equals 1. Moreover, δβα
,and δβα and represent Query frequency cost, Qf represent query
storage cost, and Qs and Qp represent Query processing and cost
respectively. Then, the set of queries whose cost is implemented
in less than the minimum threshold () is selected to build the
materialized views. TM
Where, α, β, and δ Weightage constants, Qf Query
frequency cost, Qs query storage cost, and Qp Query
processing cost. Then, the set of queries that are satisfied the
minimum threshold (TM) is selected to build the materialized
views.

Thus, the selected views to materialize can be achieved the best
combination of good query response, low query processing cost
and low storage space.

3.3 Experiment for designed formula:

This section presents the running example of the designed
formulae utilized in computing the selecting cost. Table 1 gives
the users and their queries representing in the matrix format that
is given to IMine algorithm to find the frequent queries. Table 2
represents the queries and their relevant frequency, processing
cost and storage cost. Then, the queries are sorted in an
ascending order for the frequency column and descending order
for the processing and storage cost column. Then, top k-queries

JCS&T Vol. 12 No. 1 April 2012

33

selected from table 3 are used to find the selection cost. The
selection cost of the queries is computed based on the above
equation and the values computed are shown in table 3. From the
table 3, Q1and Q4 can be selected for materialized view
selection based on the threshold value (0.65).

To satisfy the multiple constraints we are selection only two
queries from the total queries.

Fig2 : Before and After Materialized view

4 APPROACHES TO MATERIALIZED VIEW
MAINTENANCE (MVM)

This section describes the detailed procedure of the designed
approach to view maintenance. The principle behind the second
module is to handle the maintenance problem without re-
computing the materialized views. For example, if the data
warehouse gets updated (Addition and deletion of data source)
after selecting materialized view, the corresponding updating
data source should be reflected in the view. In order to deal with
the updating and deletion of data source, the output of the query
should be given by considering the updated data records without
re-computing the whole process. Accordingly, we have designed
an approach to view maintenance without accessing the data
warehouse or view. The process of updation and deletion can be
happened whenever the data sources are updating the records to
the original data warehouse. The diagram given in figure 2
describes the data warehouse updation from the data sources and
figure 3 describes the overall procedure of the proposed
approach.

Fig3: Data warehouse updation from the multiple sources,

Fig 4: View Maintenance process

4.1. Representation of changes

Once we generate the materialized view for the specific data
records, the maintenance of materialized view is important. In
order to maintain the information about the materialized view,
the following types should be handled. Let, V = R1 ∞ R2 ∞ R3
be the set of relations in the materialized view and R be the
relations denoted as, R = (A, B, C). Here, the data warehouse
updation especially data record changes can be done in three
different ways such as, (1) insertion, (2) deletion and, (3)
modification of data record.

(1) Insertion: Let <DW> be the original data warehouse house
and if new record Ri is added into the original data warehouse,
the data warehouse will be changed to < DW + Ri >.
(2) Deletion: Let the data record, Ri be defined in the original
data warehouse and < DW - Ri > is denoted like the data record
deleted from the original data warehouse < DW >.
(3) Modification of data record: Let Ri be the data record
defined in the < DW > and the specified data record Ri is changed
to Ri

’. But, there is no addition or deletion in the data ware house
and there is a change as < DW - Ri’ - Ri >.

4.2 Maintaining tables in updating manager

The ultimate aim of this phase is to build the approach that
should reflect the changes done in the updation phase by
considering the maintenance cost. Actually, the original data
warehouse obtains the data from the multiple data sources that
may be in different places. So, the data warehouse can be
updated from the multiple data sources that are connected with
the different data sources. The view maintenance process is
initiated by the updating manager when the data gets added or
deleted in ‘n’ number of times. Once the ‘n’ updates occurred,
the corresponding updates should be reflected in the query
output using the depicted procedure. In the updating manager,
four tables are maintained about to query attributes, function,
query result table and temporary table using LSI index. After
constructing the materialized view, the three tables are
constructed from the view definition. These three tables are
necessary to update the materialized view without accessing the
original data warehouse and materialized view.

1) Query attribute table AT: This table contain N*M matrix,
where N is the number of queries materialized and M is the
number of attributes within the queries materialized. The values
within the matrix may be zero or one, based on whether the
attribute is defined in the query or not. The binary values only
defined within the query attribute table so that it can be named as
binary matrix. This table is used to relate the updated record with
the attributes of the query materialized. This table is formed to
identify the tables which are relevant to the query.

2) Query function table FT: This function table maintains the
functions of the queries materialized so that the relevant function

JCS&T Vol. 12 No. 1 April 2012

34

of the queries can be performed on the updated record. The
query function table is represented with the matrix N*K, where
‘N’ is the number of queries materialized and ‘K’ is the function
utilized in the query. This table is necessary to find out the
comparison predicate, which restricts the rows to be added to the
materialized view.

3) Temporary version table TT: This table maintains the detailed
information of the updated record. Here, the table contains
whether the data is inserted, deleted or updated along with the
version id. The detailed information of the updated record is
located in the temporary version table after the view
maintenance process finished. Once the view maintenance
process finished for the particular updates, the relevant data will
be deleted from the temporary version table that will help to
reduce the space complexity.

4) Query result table RT: This table may be represented as, N*1
matrix, where, N represents the number of queries materialized,
Here, the query results of every materialized queries are
maintained so that the refreshing the query is easy.

5. EXPERIMENT

The data warehouse schema of the chosen example is given in
table 6 in which four tables such as customer, product, order and
vehicle are used.

Based on the above example, the following three queries, Q1, Q2
and Q4 are considered as the query materialized shown in table
5.

Once the query has selected for materialized, query attribute
table, query function table and temporary version will be
constructed. For the given example, the attributes needed to
execute the queries are cid, cname, price and quantity that are
stored as attributes in query attribute table. The query attribute
table for the chosen queries is given in table 6, in which “binary
one” indicates the attributes presented in the query. Query
function table maintains the functions of all materialized queries
in table 7.

Whenever the data are inserted into the original data warehouse,
the same data is maintained into the temporary version table.

Similarly, we consider five updates were done in the original
data warehouse so that those data are also updated into the
temporary version table. The sample data considered as updated
to warehouse is maintained in the following table 9.

5.1 Finding relevant queries to view adaptation

When the temporary version table contains ‘n’ versions, we have
decided to use the batching technique to refresh the view extent
rather than the sequential method. In general, sequential and
batch maintenance methods are used to maintain the materialized
views. Here, we decided to use the batch strategy for updating
the result of the particular query defined within materialized
view. In this method, whenever ‘n’ versions are updated in the
temporary version table, the view maintenance process will be
started. Here, at first, new arrival column of version table is
converted into the binary matrix. If the corresponding attribute
contains the data entry, then the binary matrix will have ‘binary
one’ in their relevant field. If the attribute does not contain any
entry, the corresponding value would be ‘binary zero’.

After obtaining this matrix, every row matrix is matched with the
every row of the query attribute table to find the difference
value. The matching should be done with the row matrix of
query attribute table that contains the value one. In this set of
elements, we find out the number of matches. If the matches will
be zero, there is no need to update the materialized view of this
query based on the updated record. If the significant matches are
found out, then the function defined in the query function table
will be performed on the updated data record and the final output
of the query will be automatically updated. This procedure is
repeated for the every data record in the query temporary table
and the results get updated.

JCS&T Vol. 12 No. 1 April 2012

35

Once the relevant changes are identified, the corresponding view
is refreshed based on the function defined within the query
function table.

Refreshing the view extent based on insertion changes:
Suppose the data record, < R+ > is newly added in the data
warehouse and assume that this data is related to the query
function FT(i) of query Q(i). Then, the query output will be
refined by adding this data so that the refreshing view can be
known as, self maintainable.
RT

new(i) = RT
old(i) is replaced by if TBVT(i) belong to AT(i) and

FT(i)

)()),(()(iAtobelongsRifRiRFiR T
old

TT
new

T >+<+=
Function Formula

Min If max(RT
old(i) < TVT(ai) then

RT
old(i) = RT

new(i)

Max If max(RT
old(i) > TVT(ai) then

RT
old(i) = RT

new(i)

Count RT
new =RT

old + 1

Avg RT
new =RT

old
 + TVT(ai) /n+1

Sum RT
new =RT

old
 +TVT(ai)

Refreshing the view extent based on deletion changes:
Suppose the data record, < R+ > is newly deleted in the data
warehouse and this data are related to the query function FT(i) of
query Q(i). Then, the query output stored in query result table
will be refined by performing the query function over this data.

Function Formula

Min If min(RT
old(i) < TVT(ai) then RT

old(i) else
(RT

old(i) ,RT
new(i))

which minimum value is stored , that value is
deleted means deletion update will not work

Max If max(RT
old(i) > TVT(ai) then RT

old(i) else
(RT

old(i) = RT
new(i))

which maximum value is stored , that value is
deleted means deletion update will not work

Count RT
new =RT

old – 1

Avg RT
new =RT

old
 - TVT(ai) /n-1

Sum RT
new =RT

old
 -TVT(ai)

)()),(()(iAtobelongsRifRiRFiR T

old
TT

new
T >−<−=

Refreshing the view extent based on modification: Let the data
record < R > from the data warehouse be modified to another
value < R* >. Then, refreshing the view is carried out by
performing the query function to the modified data record and
the query output is updated without accessing the data
warehouse.

Function Formula

Min If min(RT
old(i) < TVT(ai) then RT

old(i) else (RT
old(i)

,RT
new(i))

Max If max(RT
old(i) > TVT(ai) then RT

old(i) else (RT
old(i) =

RT
new(i))

Avg RT
new =RT

old - RT
old (i) + TVT(ai) /n

sum RT
new = RT

old - RT
old (i) + TVT(ai)

)(* *)),(()(iAtobelongsRifRiRFiR T

old
TT

new
T ><=

After the five updates, the binary matrix is generated based on
the attributes updated. The binary matrix generated for the above
temporary version table is given in table 9. Then, query attribute
table is matched with the binary matrix in which the query Q1 is
not match with Version no and the query Q2 is matched with
V1(I) and V4(I). So, for all queries materialized, the updates are
found out such a way it leads to the modification of query result
table.

After updation is completed all temporary tables removed from
the memory space. Again temporary version tables are create
when new batch of updation forming in the update buffer.

Fig 5: Query updation time

6. RESULTS AND DISCUSSION

This section presents the experimentation of the proposed
approach and the detailed analysis over the proposed approach
with the previous algorithm.

6.1 Experimental set up and database description

The proposed approach to incremental maintenance of
materialized view is implemented using JAVA. The database
taken for experimentation is customer transaction database that
contains four tables such as customer (T1), order (T2), product
(T3) and vehicle (T4). The description of the database is given in
figure 1. The experimentation is carried out using the core2duo
processor with 1 GB RAM. The total number of data available
in customer table is 500 and the order table contains 10000.
Similar way, the product table contains 900 and vehicle table
consists of 400.

The performance of the proposed approach is compared with the
previous algorithms such as IRVSA (Incremental Re-
computation Strategy View Selection Algorithm) [25], IVSA
(Incremental Strategy View Selection Algorithm) [25], RVSA
(Re-computation Strategy View Selection Algorithm) [25] and
YKL algorithm [26]. Here, total Cost measured in seconds is
used as the performance measure for evaluating and comparing
the performance of the proposed approach.

6.2 Performance Experiments

The performance of the proposed approach in maintenance of
materialized view is analyzed with the help of three different
experiments. 1) The effect of percentage of updates 2) The
effect of query load 3) Scalability analysis. In the first set of
experiment, the updates are varied in different percentage and
total cost needed to maintain the materialized view is computed
for different algorithm as well as proposed approach. In the
second set of experiment, query load is varied significantly such
a way that, the total query cost in sec is computed to find the
performance of the algorithms. Similar way, the scalability
analysis is also carried out by varying the size of the data
warehouse.

JCS&T Vol. 12 No. 1 April 2012

36

6.3 Comparative analysis

This section presents the comparative analysis of the proposed
approach with the three algorithms presented in the paper [25] as
well as the algorithm described in [26]. For analyzing the effect
of updates, the data records are continuously updated to the
original data warehouse and the computation time is computed.
For doing this experiment, initially, we have taken 500 records
in customer table, 10000 records in order table, 900 records
product table and 400 records in the vehicle table. Then, the
similar number of records is updated to the original data
warehouse to find the computation time needed to view
maintenance process. Similar way, the process is repeated and
the values are plotted as graph shown in figure 4 and figure 5.
The figure shows that the performance of the proposed approach
is significantly improved in terms of computation time compared
with the previous algorithms.

Fig. Effect of percentage of updates

Fig.5. Effect of percentage of updates

In the second set of experiment, we have taken 100 queries for
materialized view selection and then the records are updated
continuously. The computation cost needed to update these
queries is computed and the experiment is repeated for different
set of queries. Finally, the values are plotted as graph shown in
figure 6 and figure 7. From the figure, when the queries are
increased, the total cost is also increased. But, the increasing rate
of the proposed approach is less compared with previous
algorithms. So, the performance of the proposed approach is
improved better in terms of computation time compared with the
previous algorithms.

Fig.6. Effect of query load

Fig.7. Effect of query load
In the scalability analysis, the experiments are performed for
different size of data warehouse. Here, for the change factor 1,
the data warehouse is taken as same as that of the first set of
experiment and then the computation time needed to update the
query is computed. For the change factor 2, the data warehouse
size is increased two times than the first one and the
experimentation is again continued to obtain the computation
time. The results obtained from the experimentation are plotted
as a graph shown in figure 8 and figure 9. From the figures, the
performance of the proposed approach is significantly improved
in terms of computation time compared with the previous
algorithms.

Fig. 8. Scalability analysis

Fig. 9. Scalability analysis

7. CONCLUSIONS

The maintenance of views to materialize is one of the most
important issues in designing a data warehouse. The view
selection problem and materialized view maintenance problem
have been addressed in this paper by means of taking into
account the essential constraints for selecting views to
materialize so as to achieve the best combination of low storage
cost, low query processing cost and high frequency of query and
updation of materialized view using LSI. In the first approach, a
mathematical model was designed to select materialized view
by considering the frequency, processing cost and spatial cost.
In addition to, the choice of algorithm is a major concern in
finding the frequent queries for further reducing the time
complexity. By considering these, we make use of the I-Mine
algorithm, Index support for item set mining to mine the
frequent queries. For the second approach of view
maintenance we are using LSI index for maintaining the
materialized view without re-computation. For
experimentation, the proposed approach is executed on the
simulated data warehouse model and the query list to find the
efficiency of the proposed approach in maintaining of
materialized view. As further extensions of this work,
improve the index for updating the materialized view. For future
research in this area could focus on validating this model against
some real-world data warehouse systems and also concentrate on
join queries for maintenance.

JCS&T Vol. 12 No. 1 April 2012

37

8. REFERENCES
[1] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom,
"View Maintenance in a Warehousing Environment." In
Proceedings of the ACM SIGMOD Conference, San Jose,
California, May 1995.
[2] C. Zhang, X. Yao, and J. Yang. An evolutionary
Approach to Materialized View Selection in a Data
Warehouse Environment. IEEE Transactions on Systems,
Man and Cybernetics, vol. 31, no.3, pp. 282-293, 2001.
[3] H. Gupta, I.S. Mumick,” Selection of views to
materialize under a maintenance cost constraint”, In Proc.
7th International Conference on Database Theory
(ICDT'99), Jerusalem, Israel, pp. 453-470, 1999.
[4] V. Harinarayan, A. Rajaraman, and J. Ullman.
“Implementing data cubes efficiently”. Proceedings of
ACM SIGMOD 1996 International Conference on
Management of Data, Montreal, Canada, pages 205--216,
1996.
[5] J.Yang, K. Karlapalem, and Q. Li. “A framework for
designing materialized views in data warehousing
environment”. Proceedings of 17th IEEE International
conference on Distributed Computing Systems,
Maryland, U.S.A., May 1997.
[6] S. Agrawal, S. Chaudhuri, and V. Narasayya,
“Automated Selection of Materialized Views and Indexes
in SQL Databases,” Proceedings of International
Conference on Very Large Database Systems, 2000.
[7] P. Kalnis, N. Mamoulis, and D. Papadias, “View Selection
Using Randomized Search,” Data and Knowledge Eng.,
vol. 42, no. 1, 2002.
[8] Gupta, H. & Mumick, I., Selection of Views to
Materialize in a Data Warehouse. IEEE Transactions on
Knowledge and Data Engineering, 17(1), 24-43, 2005.
[9] Elena Baralis, Tania Cerquitelli, and Silvia
Chiusano,” I-Mine: Index Support for Item Set Mining”
IEEE Transactions on Knowledge and Data Engineering,
vol. 21, no. 4, april 2009
[10] B.Ashadevi, R.Balasubramanian,” Cost Effective
Approach for Materialized Views Selection in Data
Warehousing Environment”, IJCSNS International Journal
of Computer Science and Network Security, VOL.8 No.10,
October 2008
[11]T.Nalini,Dr.A.Kumaravel,Dr.K.Rangarajan ,” An Efficient
I-Mine Algorithm For Materialized Views In A Data Warehouse
Environment”, Ijcsi International Journal Of Computer Science

Issues, Vol. 8, Issue 5, No 1, September 2011 Issn (Online):
1694-0814
[12] M. Lee and J. Hammer, Speeding up materialized view
selection in data warehouses using a randomized algorithm,
International Journal of Cooperative Information Systems, 10(3):
327–353, 2001.
[13] Gang Gou; Yu, J.X.; Hongjun Lu., "A* search: an efficient
and flexible approach to materialized view selection Systems,"
IEEE Transactions on Man, and Cybernetics, Part C:
applications and Reviews, Vol. 36, no. 3, May 2006 pp: 411 -
425.
[14] A. Shukla, P. Deshpande, and J. F. Naughton, “Materialized
view selection for multidimensional datasets,” in Proc. 24th Int.
Conf. Very Large Data Bases, 1998, pp. 488–499.
[15] T.Nalini, S.K.Srivatsa ,K.Rangarajan” Method of
anking in indexes on materialized view for database workload” ,
International Journal of Advanced Research in
Computer Engineering(IJARCE), vol.4, No.1,pp 157-162
[16] T.Nalini,S.K.Srivatsa,K.Rangarajan,” International journal
of computer science, systems engineering and information
technology(IJCSSEIT),” Efficient methods
for selecting materialized views in a data
warehouse”Vol.3,No.2, pp 305-310
[17] R. Agrawal and R. Srikant, “Fast Algorithm for Mining
Association Rules,” Proc. 20th Int’l Conf. Very Large Data
Bases (VLDB ’94), Sept. 1994.
[18]A. Savasere, E. Omiecinski, and S.B. Navathe, “An Efficient
Algorithm for Mining Association Rules in Large Databases,”
Proc. 21st Int’l Conf. Very Large Data Bases (VLDB ’95), pp.
432-444, 1995.
[19] M. El-Hajj and O.R. Zaiane, “Inverted Matrix: Efficient
Discovery of Frequent Items in Large Datasets in the Context of
Interactive Mining,” Proc. Ninth ACM SIGKDD Int’l Conf.
Knowledge Discovery and Data Mining (SIGKDD), 2003.
[20] Frequent Pattern Growth (FP-Growth) Algorithm An
Introduction,Florian Verhein ,January 2008
[21] Jian Yang, Kamalakar Karlapalem, Qing Li,
"Algorithms for Materialized View Design in Data
Warehousing Environment", in Proceedingof the 23rd
International Conference on Very Large Data Bases, San
Francisco, CA, 1997.
[22] Yousri, N.A.R., Ahmed, K.M., El-Makky, N.M.,
"Algorithms for selecting materialized views in a data
warehouse", in proceedings of 3rd ACS/IEEE
International Conference on Computer Systems and
Applications, 2005.

JCS&T Vol. 12 No. 1 April 2012

38

	Text5: Received: November 2011. Accepted: March 2012.

