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Ground-state-to-ground-state two-neutrino double beta (2νββ) decays and single beta (EC and β−)
decays are studied for the A = 100 (100Mo–100Tc–100Ru), A = 116 (116Cd–116In–116Sn) and A = 128
(128Te–128I–128Xe) nuclear systems by using the proton–neutron quasiparticle random-phase approxima-
tion exploiting realistic effective interactions in very large single-particle bases. The aim of this exercise is
to see if both the single-beta and double-beta decay observables related to the ground states of the initial,
intermediate and final nuclei participant in the decays can be described simultaneously by changing the
value of the axial-vector coupling constant gA. In spite of the very different responses to single and 2νββ

decays of the considered nuclear systems, the obtained results point consistently to a quenched effective
value of gA that is (slightly) different for the single and 2νββ decays.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Nuclear double beta decays constitute an important issue in the
present-day nuclear and neutrino physics due to their connections
to many fundamental issues of particle physics. The neutrino prop-
erties are closely tied with the neutrinoless (0νββ) modes of these
decays [1–3]. A massive amount of experimental effort has been,
and continues to be invested to determine the corresponding half-
lives in many nuclear systems. The aim is a reliable prediction of
e.g. the electron–neutrino masses once the nuclear properties, in
the form of nuclear matrix elements (NMEs), are under control.
Unfortunately, the situation with the NMEs is still rather confusing
[4,5], but definite steps forward in this respect have been taken [5].
Central issues in the calculations of the NMEs are many: (a) the
effects of the chosen single-particle valence space and orbital oc-
cupancies [6–8], (b) a proper account of the shell-closure effects
[5,9], (c) deformation effects [10–12] and (d) the effective value of
the axial-vector coupling constant gA of weak interactions [13,14].

In the present Letter we want to address the issue (d) of the
above list of important issues of nuclear-structure calculations by
using the theoretical framework of the proton–neutron quasiparti-
cle random-phase approximation (pnQRPA) with G-matrix based
nuclear forces. The issue of renormalization of gA is a long-
standing one and the renormalization is believed to derive both
from truncations in the nuclear-structure calculations and from
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the interference of non-nucleonic, mainly 1 degrees of freedom.
The renormalization stemming from the truncations in the nuclear-
structure calculations has been discussed widely in the community
involved in the nuclear shell-model calculations [15]. The effects of
non-nucleonic degrees of freedom were examined e.g. in Ref. [16],
where it was found that the 1 degrees of freedom quench gA
roughly by a factor of

√
0.6 ≈ 0.77 in the case of the Gamow–

Teller (p,n) strength of nuclei.
A consistent formalism to address the renormalization problem

of the matrix elements of various operators is the nuclear field the-
ory (NFT) [17]. In the NFT there are two channels through which
the renormalization can be achieved, namely (a) by renormaliza-
tion of the initial and final states on the single-(quasi)particle level
by a series of interactions of the P-space states (in the calculational
model space) with the Q-space states (states left out of the active
model space) mediated by the interaction Hamiltonian [18], and
(b) by the particle–hole (two-quasiparticle) channel by involving
the (collective) phonons of the system [17]. In particular, follow-
ing the steps outlined in [18], i.e. including both the quasiparticle
and phonon degrees of freedom in the renormalization, one finds
for the renormalized matrix element

h f |MGT|iirenormalized = h f |MGT|iibare
¡
1 − F (ωGT)

¢
, (1)

where the function F (ωGT) reduces to the usual polarization
function [17] if the energy of the giant Gamow–Teller mode
is much larger than the energy difference between initial (|ii)
and final (| f i) state. In this limit the renormalized strength of
the low-energy single beta decay amounts to approximately 66
per cent of the bare value [18]. In the present context, this
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overall renormalization can be included in the effective value of
gA which we try to extract by comparison with the available
data.

In the case of the two-neutrino double-beta (2νββ) decay we
are dealing with a perturbative expression of the NME with a sep-
arable structure, unlike in the case of the 0νββ decay where the
intermediate neutrino propagator makes the NME non-separable.
The separable structure means that the decay involves one nucleon
at a time and the decay vertices can be separately renormalized
by the above-described procedures. From this point of view the gA
of single beta and 2νββ decays renormalize in a similar fashion.
However, we still leave open the question of the similar or differ-
ent renormalizations of these two decay variants and discuss the
renormalization of gA without prejudices by the two methods out-
lined below.

For the present investigations of the effective value of gA we
have harnessed nuclear systems where both single-beta (EC and
β−) and 2νββ half-lives (see [19]) have been measured for transi-
tions between ground states of the participant nuclei. These sys-
tems number precisely three, namely the A = 100 system con-
taining the triple 100Mo–100Tc–100Ru of nuclei, the A = 116 sys-
tem with the triple 116Cd–116In–116Sn and the A = 128 system of
128Te–128I–128Xe nuclei. In the following we investigate how the
changes in the effective value of gA, geff

A , affect the computed 2νββ

half-lives and the comparative half-lives (log f t values) of single
beta decays. This study will be accomplished by resorting to the
following two methods:

• Method MI: In the first method we assume that the gA of
single β and 2νββ decays renormalize in the same way. We
then go through the following steps; step (i): we start from
a given value of geff

A , say geff
A = 0.8, and then extract, by us-

ing this value of geff
A , the experimental value of the 2νββ

NME, NME(2ν,exp) (the value of NME(2ν,exp) is propor-
tional to (geff

A )−2 as shown below, in Eq. (2)). Step (ii): we
fix the value of the particle–particle strength parameter gpp
of the pnQRPA [20] by reproducing the value of NME(2ν,exp).
Step (iii): we calculate, by using this extracted value of gpp and
the given geff

A , the log f t values of the EC and β− transitions
corresponding to the decays from the first 1+ state of the in-
termediate nucleus to the initial and final nuclei of the 2νββ

decay, respectively. Step (iv): finally we compare the computed
log f t values with the corresponding experimental ones to see
how closely they correspond to each other. In an ideal case
there would be one value of geff

A (and the corresponding gpp)
with which both the NME(2ν,exp) and the two log f t values
can be simultaneously reproduced. Such a match for the three
observables and for the three different isobaric chains would
be highly non-trivial and would point to a common geff

A for
both the single and double beta decays.

• Method MII: In the second method we relax the above-
discussed idea of a common geff

A for both the single and 2νββ

decays and proceed as follows: step (i): we take both gpp

and geff
A to be independent parameters and try to fix their

values by reproducing the experimental log f t values of both
the EC and β− branches of decay. This is also quite non-
trivial if it can be achieved for all the three chains of isobars.
Step (ii): by using the gpp value extracted in step (i) we com-
pute the value of the theoretical 2νββ NME. Step (iii): we
determine a new value of geff

A such that we can fit the ex-
perimental 2νββ half-life using the theoretical NME computed
in step (ii). Now we can compare the two values of geff

A , ex-
tracted in steps (i) and (iii), to see how close they are to
each other, i.e. are the geff

A values of single and 2νββ decays
the same? In an ideal case the two values of geff
A would be

the same and we would regain the result of the method MI
above.

In summary, we want to explore by the above-discussed two meth-
ods whether simultaneous description of single-beta and 2νββ ob-
servables is at all possible or can be achieved by one single value
or two different values of geff

A . It is an other matter whether the
present results, obtained within the pnQRPA formalism, can be in-
terpreted as generally valid or are just characteristic of the QRPA
formalism. We make an attempt to elucidate also this point in this
Letter by comparing our results with those extracted from other
theory frameworks that are quite different from the pnQRPA.

2. Brief outline of the theoretical framework

Here we present briefly the formalism that we use to compute
the double-beta nuclear matrix elements as well as the Gamow–
Teller EC and β− decay amplitudes and the associated log f t val-
ues.

2.1. The 2νββ-decay amplitude

The 2νββ-decay half-life, t(2ν)
1/2 , for a transition from the initial

ground state, 0+
i , to the final ground state, 0+

f , can be compactly
written in the form

£
t(2ν)

1/2

¡
0+

i → 0+
f

¢¤−1 = g4
AG2ν

¯̄
M(2ν)

¯̄2
, (2)

where gA is the weak axial-vector coupling constant and G2ν

stands for the leptonic phase-space factor without including gA in
a way defined in [21]. The involved nuclear matrix element is writ-
ten as

M(2ν) =
X
mn

MF(1+
m)h1+

m|1+
n iMI(1+

n )

Dm
. (3)

The amplitudes connecting the initial ground state 0+
i and the final

ground state 0+
f to the intermediate 1+ states are

MI
¡
1+

n

¢ =
µ

1+
n

°°°°
X

k

t±
k σ k

°°°°0+
i

¶
,

MF
¡
1+

m

¢ =
µ

0+
f

°°°°
X

k

t±
k σ k

°°°°1+
m

¶
, (4)

respectively, where t±
k is the flavor-changing operator for the k-th

nucleon in the EC or β− direction. The quantity Dm is the en-
ergy denominator containing the average energy of the 1+ states
emerging from the two pnQRPA calculations, one for the initial nu-
cleus and the other for the final nucleus. The denominator can thus
be written as

Dm =
µ

1

2
1 + 1

2

£
E
¡
1+

m

¢ + Ẽ
¡
1+

m

¢¤ − Mic
2
¶

/mec2, (5)

where 1 is the nuclear mass difference of the ββ initial and fi-
nal ground states, Ẽ(1+

m) is the energy of the m-th 1+ state in a
pnQRPA calculation based on the initial ground state, E(1+

m) the
same for a calculation based on the final ground state and Mic2 is
the mass energy of the initial nucleus. The quantity h1+

m|1+
n i is the

overlap between the two sets of 1+ states [2].
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2.2. Beta transition amplitudes

Here we discuss only the Gamow–Teller type of allowed beta
decays. The allowed Gamow–Teller beta decay transitions of inter-
est in this work are of the type 1+ → 0+ . For them the log f t value
(comparative half-life) is defined as [22]

log f t = log( f0t1/2) = log

·
6147

BGT

¸
,

BGT = g2
A

3

¯̄
¯̄µ0+

°°°°
X

k

t±
k σ k

°°°°1+
¶¯̄̄

¯
2

(6)

for the EC or β− type of transitions. Here f0 is the leptonic phase-
space factor for the allowed EC or β− decays as defined in [22].

3. Calculation details

The calculations were done in large single-particle spaces us-
ing as starting point a spherical Coulomb-corrected Woods–Saxon
(WS) potential with the standard parametrization of Bohr and Mot-
telson [23], optimized for nuclei near the line of beta stability.
The calculations for all the three systems, A = 100, A = 116 and
A = 128 were no-core, containing all bound states and, in addi-
tion, a number of resonant states with small decay widths. Both
the proton and neutron single-particle orbitals numbered 25 for
the A = 100 and A = 128 systems and 26 for the A = 116 system.
In cases of need small modifications of the WS energies were done
at the vicinity of the Fermi surfaces to allow for a better repro-
duction of the one-quasiparticle type of spectra of the neighboring
odd-A nuclei. In particular, the basis set ‘EXPWS’ of Ref. [24] was
adopted for 100Mo.

The Bonn-A G-matrix has been used as the starting point for
the nucleon–nucleon interaction and it has been renormalized in
the standard way [25,26]: The quasiparticles are treated in the BCS
formalism and the pairing matrix elements are scaled by a com-
mon factor, separately for protons and neutrons. In practice these
factors are fitted such that the lowest quasiparticle energies ob-
tained from the BCS match the experimentally deduced pairing
gaps for protons and neutrons respectively. The wave functions
of the 1+ states of the intermediate nuclei have been produced
by using the pnQRPA with the particle–hole and particle–particle
degrees of freedom [20] included. The particle–hole and particle–
particle parts of the proton–neutron two-body interaction are sep-
arately scaled by the particle–hole (gph) and particle–particle (gpp)
parameters. The particle–hole parameter affects the position of the
Gamow–Teller giant resonance (GTGR) and its value was fixed by
the available systematics [22] on the location of the resonance.

The gpp parameter affects the β−-decay amplitudes of the first
1+ state in the intermediate nucleus [27] and hence also the decay
rates of the 2νββ decays. In e.g. [27] the value of this parame-
ter was fixed by the data on β− decays whereas in many other
works, e.g. in [28–31], it was fixed by the data on 2νβ−β−-decay
rates within the interval gA = 1.00–1.25 of the axial-vector cou-
pling constant. In these calculations the uncertainty in the value of
gA then induces an interval of acceptable values of gpp, the mini-
mum value of gpp related to gA = 1.00 and the maximum value to
gA = 1.25. This is so because the magnitude of the calculated 2νββ

NME, M(2ν) , decreases with the increasing value of gpp in a pn-
QRPA calculation [20,25,32] and this magnitude is compared with
the magnitude of the experimental NME, NME(2ν,exp) ∝ (gA)−2,
deduced from the experimental 2νββ half-life through (2).

In the present work we adopt a different philosophy and treat
both gpp and the axial-vector coupling constant gA as parameters
of the calculations. This is done by using the methods MI and MII
Fig. 1. Dependence of the values of the particle–particle parameter gpp on the
value of the axial-vector coupling constant gA for the studied nuclear systems. The
steps (i) and (ii) of method MI have been used.

explained in detail in the introduction. To have an idea of the re-
lation between geff

A and gpp we show in Fig. 1 the value of gpp

as a function of geff
A by using steps (i) and (ii) of method MI,

i.e. for a given value of gA, between gA = 0.60 and gA = 1.25,
we extract the NME(2ν,exp) from the experimental 2νββ half-
life (taken from [19]) via the relation (2) and then reproduce the
value of NME(2ν,exp) by changing the value of gpp in pnQRPA
calculations. Due to the above-described dependence of the calcu-
lated NME on gpp this parameter is an increasing function of gA,
as shown in Fig. 1 for the studied nuclear systems. From the fig-
ure one notices that for the A = 128 system the gpp vs gA curve
is rather flat whereas for the other systems the curves are steeper.
These qualitatively different behaviors stem from the different re-
sponses of the magnitude of the 2νββ NME to the increase in the
value of gpp in the region of interest. For A = 128 the 2νββ NME
is a fast decreasing function of gpp whereas for the other systems
the NME is a relatively flat function of gpp.

4. Results and discussion

To have an idea of the differences or similarities in the 2νββ

decays of the studied three isobaric chains of nuclei one can inves-
tigate how large are the contributions to the corresponding NME
and from what energy regions of 1+ states they are coming from.
For this purpose we present in Fig. 2 the corresponding cumulative
2νββ NMEs for the value gA = 0.80 of the axial-vector coupling
constant. The cumulative NMEs are very instructive with respect to
pinning down contributions appearing in various energy regions of
the 1+ spectrum of the intermediate odd–odd nucleus. It should
be noted that while the computed excitation energies of the 1+
states go beyond 50 MeV, the energy scale of the figure goes only
up to 30 MeV since all the NMEs saturate already between 20 MeV
and 30 MeV.

From Fig. 2 one perceives that the 2νββ NMEs related to
the three different nuclear systems are of three distinctive types.
Type T1: The NME for the A = 116 system is a parade example of
single-state dominance [33–35]; the final value of the NME is solely
determined by the lowest 1+ contribution to the NME. Type T2:
the NME of A = 128 behaves quite differently; there are strong,
partly canceling contributions between 5 and 10 MeV of excita-
tion. The final NME is only slightly larger than the contribution
stemming from the lowest 1+ state, so the situation appears to be
close to single-state dominance, but not due to a sole contribution
from the first 1+ state but rather due to large mutual cancella-
tions at higher energies. The large contributions to the NME in the
5–10 MeV mark the activation of the spin–orbit pairs 0g9/2–0g7/2
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Fig. 2. Cumulative values of the computed 2νββ NMEs (3) for the studied nuclear
systems with gA = 0.80. The abscissa gives the excitation energy of the 1+ states in
the intermediate nuclei of 2νββ decays.

and 0h11/2–0h9/2. Type T3: for the A = 100 system the lowest 1+
contribution is by far the dominant one but beyond that there is
a legion of counter-acting cancellations caused by the higher-lying
1+ states, in accordance with the observations in [34,35] where
smaller single-particle valence spaces were used for the calcula-
tions.

It should be noted that the above-discussed features of the cu-
mulative NMEs persist for all values of gA between gA = 0.60 and
gA = 1.25. The point in showing the three types (T1–T3) of 2νββ

NMEs is that the nuclear structures in the three discussed mass
regions are different and thus the obtained results for the renor-
malization of gA are not tied to only a certain class of nuclei.
Hence, it is plausible that the results pertain to weak decay pro-
cesses of nuclei in general.

Let us now turn to the application of the methods MI and MII
(see the end of the introduction for a detailed elaboration on the
methods) to access the renormalization of gA in the discussed
three types of nuclear system. First we present the results ob-
tained by using the method MI and its steps (i)–(iv): for a given
0.60 6 gA 6 1.25 we determine the experimental 2νββ NME and
extract the corresponding gpp in a pnQRPA calculation. By using
this gpp the log f t values corresponding to the EC and β− tran-
sitions from the 1+

1 state of the intermediate nucleus are com-
puted and compared with the available data. In Fig. 3 we show
the dependence of the resulting log f t values on gA. The dashed
lines refer to the EC transitions 100Tc → 100Mo (the A = 100 sys-
tem), 116In → 116Cd (the A = 116 system) and 128I → 128Te (the
A = 128 system), and the solid lines to the β−-decay transition
100Tc → 100Ru (the A = 100 system), 116In → 116Sn (the A = 116
system) and 128I → 128Xe (the A = 128 system). From the figure
one can see a clear improvement of the theoretical description of
the beta decay log f t values with decreasing value of gA. The best
values of these quantities are obtained when gA 6 0.80, suggest-
ing that such values of gA should be used in the calculations of
2νββ-decay and beta decay rates, at least in the framework of the
pnQRPA.

From Fig. 3 one also notices that the correspondence between
the computed and experimental log f t values is not perfect. It may
suggest that the geff

A of the single and double beta decays are in
fact different. To study this interesting option of renormalization
we resort to the method MII and its steps (i)–(iii), described at the
end of the introduction. Our calculations indicate that the step (i)
is indeed possible to accomplish in the framework of the pnQRPA,
i.e. the log f t values of both the EC and β− branches of decay
can be reproduced by unique values of gpp and gA(β), listed in
columns 2 and 3 of Table 1. Next we take steps (ii) and (iii) and
use the extracted gpp to compute the value of the theoretical 2νββ
Fig. 3. Dependence on the axial-vector coupling gA of the computed log f t values
of the electron-capture (EC) (dashed lines) and β−-decay (solid lines) ground-state-
to-ground-state transitions in the discussed nuclear systems.

NME and subsequently determine a new value gA(ββ) (listed in
the fourth column of Table 1) by using this NME to fit the experi-
mental 2νββ half-life.

From Table 1 one can see that the single-beta and 2νββ ob-
servables can be exactly fitted with two slightly different values
of geff

A and, by the method MII, with one single value of gpp. For
A = 100,128 the gA(β), extracted from the beta decays, is smaller
than the one extracted from the double beta decay, whereas for
A = 116 the reverse is true. This shows that the considered nu-
clear systems behave differently in terms of nuclear structure, as
also suggested by the running-sum analysis of the 2νββ NMEs per-
formed in Fig. 2. In all the three cases (types T1–T3 discussed in
the context of the running sums) the relative difference between
the two gA values is less than some 20 per cent. It is also inter-
esting to note that contrary to gA(β) of the single beta decay the
gA(ββ) of the 2νββ decay is a monotonously decreasing function
of the mass number A.

Concerning other calculations, a strong quenching of geff
A ∼

0.6 was reported in the shell-model calculations of the Gamow–
Teller single-beta decay strength in the mass A = 90–97 region
in Ref. [36]. This is very close to the presently obtained value
gA(β) = 0.59 for the A = 100 case in Table 1. There are also other
works where the renormalization of gA has been discussed for
double beta decays: in [13] an attempt was made to fit simulta-
neously both the single and double beta observables by a single
value of geff, i.e. the method MI of the present work was used.
A
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Table 1
Extracted values of gpp and gA for the three discussed isobaric chains by using
the method MII. For comparison are shown the effective values gA(ββ) obtained in
other model frameworks.

A gpp gA(β) gA(ββ)

Present pnQRPA [13] ISM [14] IBA-2 [14]

100 0.815 0.59 0.75 0.74 0.73 0.55
116 0.515 0.71 0.61 0.84 0.72 0.54
128 0.530 0.33 0.40 – 0.71 0.53

The system A = 128 was not included in that work. Results of
these calculations are presented in column 5 of Table 1. In [14] the
quenching of gA(ββ) was studied in the framework of IBM-2 and
the interacting shell model (ISM) (the shell-model results of [37]
were used). There the effective values geff

A = 1.269A−0.18 (IBM-2)
and geff

A = 1.269A−0.12 (ISM) were deduced, giving for the specific
mass chains the numbers cited in columns 6 and 7 of Table 1.
A decreasing trend of the value of gA with the mass number A
prevails in these calculations, though the decrease is not as fast as
in the present calculations.

Finally, it is striking that a similar type of quenching of gA is
obtained in many calculations pertaining to nuclear theory frame-
works that are apparently very different from each other: the
pnQRPA, the IBA-2 and the ISM. It is yet unclear whether the pri-
mary reason for this quenching is different in different models or
is there something universal and model-independent behind the
quenching. Also the relative share of the model-dependent and
model-independent contributions to this quenching is unknown
and necessitates further investigation in the future.

5. Summary and conclusions

The present investigation about the simultaneous theoretical
description of the 2νββ-decay, EC-decay and β−-decay half-lives
for heavy nuclei (A = 100–128) is complementary to the earlier
work of [27] which discussed the incompatibility of the pnQRPA-
computed 2νββ-decay and single-beta decay half-lives for the
same nuclei and for the typical values gA = 1.00–1.25 of the axial-
vector coupling constant. The present calculations have been done
in very large single-particle models spaces with G-matrix based
two-nucleon interactions. By examining the running sums of the
2νββ NMEs we conclude that the three discussed isobaric systems
behave differently with respect to the 2νββ decay (types T1–T3).
They also behave differently with respect to single beta decays as
visible from Table 1. In spite of the differences in nuclear structure,
by letting the value of gA vary between gA = 0.60–1.25 (method
MI) we noticed that the mentioned experimental decay observ-
ables can be brought to close correspondence with the computed
ones for all the three isobaric chains with the effective values
geff

A 6 0.80. This rather striking result is in keeping with other
recent calculations and their analyzes which yield values in the
range geff
A = 0.50–0.80. Our analysis method MII also suggests that

the geff
A of the single beta decays could be (slightly) different from

that of the 2νββ decays. How all this affects the very interesting
0νββ NMEs is an open question and is beyond the scope of the
present Letter.
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