
Accepted Manuscript

Title: Structural, optical and photocatalytic properties of zinc
oxides obtained from spent alkaline batteries

Authors: Marı́a V. Gallegos, Francisca Aparicio, Miguel A.
Peluso, Laura C. Damonte, Jorge E. Sambeth

PII: S0025-5408(18)30221-6
DOI: https://doi.org/10.1016/j.materresbull.2018.03.022
Reference: MRB 9903

To appear in: MRB

Received date: 20-1-2018
Revised date: 28-2-2018
Accepted date: 14-3-2018

Please cite this article as: Gallegos MV, Aparicio F, Peluso MA, Damonte
LC, Sambeth JE, Structural, optical and photocatalytic properties of zinc oxides
obtained from spent alkaline batteries, Materials Research Bulletin (2010),
https://doi.org/10.1016/j.materresbull.2018.03.022

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

https://doi.org/10.1016/j.materresbull.2018.03.022
https://doi.org/10.1016/j.materresbull.2018.03.022


1 

 

Structural, optical and photocatalytic properties of zinc oxides obtained from 

spent alkaline batteries. 

 

María V. Gallegosa, Francisca Apariciob, Miguel A. Pelusoa*, Laura C. Damontec and 

Jorge E. Sambetha 

aCentro de Investigación y Desarrollo en Ciencias Aplicadas “Dr. Jorge J. Ronco” 

(CINDECA, CONICET-FCE UNLP), 47 Nro 257, (1900) La Plata, Buenos 

Aires(Argentina) 

bInstituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, CONICET-

FCE UNLP) Diagonal 113 y 64, (1900) La Plata, Buenos Aires (Argentina)  

cInstituto de Física La Plata (IFLP, CONICET – FCE UNLP) calle 49 y 115, (1900) La 

Plata, Buenos Aires (Argentina) 

*Corresponding author. 

E-mail address: apelu@quimica.unlp.edu.ar  

 

 

 ACCEPTED M
ANUSCRIPT

mailto:apelu@quimica.unlp.edu.ar


2 

 

GRAPHICAL ABSTRACT 

 

 

Highlights 

- Zinc oxides were synthetized using spent alkaline batteries as raw materials. 

- Both prepared samples present the wurzite structure and exhibits good optical properties. 

 - The decrease in lattice parameters and the narrow band gap are associated with the 

formation of oxygen vacancies. 

- Recovered zinc oxides were active for photodegradation of methylene blue by UV irradiation. 

- The photocatalytic was correlates to the bulk/surface defects ratio. ACCEPTED M
ANUSCRIPT
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ABSTRACT  

The structural, optical and photocatalytic properties of two zinc oxides prepared from 

spent alkaline batteries were analysed. After leaching the anode of alkaline batteries, 

zinc was precipitated from the leachate liquor by introducing oxalic acid (O-ZnO) or 

sodium carbonate (C-ZnO). The structure of ZnO samples were analysed by X-ray 

diffraction (XRD), scanning electron microscopy (SEM), transmission electron 

microscopy (TEM), SBET, DRS-UV-Vis spectroscopy and positron annihilation lifetime 

spectroscopy (PALS). Both oxides present the ZnO wurzite structure and similar 

morphology. C-ZnO presents a cell lower lattice parameters and bang gap energy (2.99 

eV) than O-ZnO (3.05 eV), possibly due to higher concentration of oxygen vacancies. 

The photocatalytic activity in the degradation of methylene blue (MB) of O-ZnO 

(achieving 70% MB degradation at 90 min) was superior to C-ZnO, due to its higher 

surface area and degree of crystallinity and lower bulk/surface defects ratio. 

Keywords: A. oxides; B. optical properties; C. positron annihilation spectroscopy; D. 

catalytic properties; D.defects. 

1. Introduction 

ZnO is widely utilized as a semiconductor material due to its optical and electronic 

properties, low cost and low toxicity. The ZnO has a wide band gap of 3.4 eV and a 

large exciton binding energy of 60 meV at room temperature and these properties, ACCEPTED M
ANUSCRIPT
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which are of considerable interest, take on added significance because they are related 

to applications such as optical and electronic devices, solar cells, gas sensors [1,2]. 

In order to obtain high-quality zinc oxide powders with fine particle size, narrow size 

distribution and special morphology,  different  techniques for preparing  ZnO  have 

been investigated such as sol-gel process, chemical coprecipitation, thermal 

decomposition, precipitation, microemulsion, etc. [3–5]. The different preparation 

methods are analyzed to create vacancies and defects, which are important parameters 

for electronic and optoelectronic applications. These synthetic routes require high 

temperature, sophisticated equipment and long time. For a large scale ZnO production, 

cheaper and quicker methods are needed [6]. 

According to Raj et al. [7], the synthesis of ZnO by using precipitation methods has a 

low cost, and the production of nano oxides with different sizes and shapes is 

reproducible.  

In the last decades, the consumption of alkaline and Zn-C batteries has increased and 

the final disposal of spent batteries represents an increasing environmental problem.  

Batteries  are dangerous waste, mainly due to the presence of  heavy metals and, in 

many countries, alkaline and spent zinc-carbon batteries are still land filled  or 

incinerated [8,9]. The anode of the alkaline batteries is composed of a mixture of zinc 

oxide and hydroxide and it could be a used as raw material for the synthesis of ZnO 

[10]. 
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The recycling of zinc constitutes not only an environmental benefit, but also an 

economic one. According to the London Metal Exchange (LME), the zinc price in July 

2017 was $2.8 / kg-1 (US). 

Several processes have been proposed for the recycling of batteries, such as 

pyrometallurgical and hydrometallurgical methods. Hydrometallurgy has some benefits 

such as low cost requirements, possible recovery of leachants, and decrease of air 

pollution as there are no particles produced [11]. The experimental results indicated that 

in the case of Zn, the efficiency of the hydrometallurgical method is between 73% and 

100% [12–14]. 

Synthetic dyes, widely used in the textile industry, are the major industrial pollutants 

and water contaminants [15,16]. In particular, methylene blue (MB) is a heterocyclic 

aromatic chemical compound that in drinking water causes several health damages.  

Among different techniques employing for removing dyes from water, photocatalysis is 

a promising and emerging process for the purification of water [17–20].  

Among different semiconductors used as photocatalysts, TiO2 is the most widely oxide 

studied. Nevertheless, ZnO is considered an alternative of TiO2 due its comparable band 

gap energy, lower cost and in some cases; the photoactivity of ZnO is superior to that of 

TiO2 [21]. 

In this work we report a facile and eco-friendly method to fabricate zinc oxides, using a 

Zn2+ solution as precursor obtained by dissolving the anode of spent alkaline batteries 

with a bio-generated sulfuric acid fabricated in our laboratory.  

ACCEPTED M
ANUSCRIPT



6 

 

Structural and morphological properties of the oxides were investigated by powder x- 

ray diffraction (XRD) and scanning and transmission electron microscopy (SEM and 

TEM), the textural properties were analysed by means of nitrogen isotherms and the 

optical absorption properties by DRS-UV-visible absorption spectroscopy. Also, the 

study of the defects in the prepared ZnO were analysed by positron annihilation lifetime 

spectroscopy (PALS), which is one of the best techniques for probing vacancy defects 

in semiconductors [22,23]. PALS technique is a sensitive technique to correlate size 

effects and surface defects of nanoparticles with their electronic and optical properties.  

The photocatalytic properties of the prepared zinc oxides were investigated in the 

degradation of MB under UV light.  

2. Materials and Methods 

2.1 Synthesis of ZnO 

Spent alkaline batteries of different sizes were collected. Batteries were manually 

dismantled and then, the anode and cathode were separated. The anodic paste, 

containing Zn, ZnO and KOH, was first washed with distilled water, dried at 120 ºC for 

12 h and dissolved using a biogenerated sulfuric acid of pH= 0.8, for 2 h at 60 ºC using 

a solid/liquid ratio of 0.04 g mL-1. 

The production of the biogenerated sulfuric acid was described in a previous paper 

[24,25]. Briefly, Acidithiobacillus thiooxidans (At) bacteria produce an acid-reducing 

medium by oxidation of sulfur in an air-lift reactor. After leaching, zinc was ACCEPTED M
ANUSCRIPT
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precipitated from the leachate liquor by introducing a precipitation agent. Then, 100 mL 

of H2C2O4 0.100M (Anhydrous 99%) or Na2CO3 0.100M  (Anhydrous 99%) was added 

to 100 mL of the solution containing Zn2+, and the suspension was stirred at 30 ºC for 1 

h. The product was filtered, washed with distilled water, and dried at 120 ºC for 24 h. 

Finally, the solid was calcined in air at 500 ºC for 2 h. The solids obtained were called 

O-ZnO (oxalic acid) and C-ZnO (sodium carbonate).  

Fig. 1 shows the flow-sheet of the production of different zinc oxides from spent 

alkaline batteries. 

ACCEPTED M
ANUSCRIPT



8 

 

 

Fig. 1. Flow-sheet of the preparation of the recovered ZnO samples for spent alkaline batteries. 
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2.2 Characterization 

The purity of the samples was measured by means of atomic absorption spectroscopy 

(AAS), in a Varian AA 240 spectrophotometer after dissolving the oxides in aqua regia. 

The samples were characterized by X-ray diffraction (XRD) method using a Philips 

diffractometer. The diffraction patterns were recorded at room temperature from 15 to 

80º of 2θ using Cu Kα (λ = 1.5406 Å) radiation at 0.02º min-1 scanning speed and a 

counting time of 2 s per step.  

The BET specific areas were measured by N2 adsorption at the liquid nitrogen 

temperature (77 K) in a Micromeritics Accusorb 2100 D sorptometer.  

The surface morphology of the samples was studied using scanning electron microscopy 

(SEM) in a Philips SEM 505 microscope. TEM measurements were performed with a 

JEOL 100 CXII microscope operated at 100 kV.  

Optical characterizations were carried out by measuring the diffuse reflectance 

spectroscopy. All spectra were taken in the range of 200-800 nm using a Perkin Elmer 

Lambda 35 UV-vis spectrophotometer with integrating sphere attachment and 

spectralon reflectance standard. 

Positron annihilation lifetime measurements were collected in a conventional fast–fast 

coincidence system with two scintillator detectors (one BaF2 and one plastic BURLE), 

which provided a time resolution (FWHM) of 260 ps using a 57Co source and 

previously setting the energy windows for 22Na. The radioactive source, 22NaCl (10 

μCi), was deposited onto a Kapton foil (1.42 g cm-3) and sandwiched between two ACCEPTED M
ANUSCRIPT
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sample specimens. The source contribution and the response function were evaluated 

from a reference sample (Hf metal) using the RESOLUTION code [26]. The lifetime 

spectra (2–3x106 counts), acquired at room temperature, consist of various exponential 

decays: 
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the relative intensities Ii, normalized, being Σi Ii =1. After background subtraction and 

convolution with the resolution function, the parameters that characterized each positron 

state, λi annihilation rate (λi =1/σi) and its intensity Ii, were obtained by means of 

POSITRONFIT program [26]. 

 

2.3 Photocatalytic activity 

The photocatalytic activity of ZnO samples was investigated by degradation of 

methylene blue (MB) in an aqueous solution under UV irradiation. Experiments were 

carried out at room temperature under stirring in a RPR-100 Rayonet reactor equipped 

with 8RPR-3500 lamps with emission centered at λ= 350 nm. 

20 mg of ZnO sample powder was mixed in 200 ml of 5 ppm aqueous MB solution. In 

degradation experiments, prior to irradiation, the aqueous solution was stirred 

continuously in the dark for 30 min to ensure adsorption/desorption equilibrium. The 

equilibrium concentration of MB was used as the initial value for the ACCEPTED M
ANUSCRIPT
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photodecomposition processes. The decomposition of methylene blue was monitored at 

different times by measuring the absorbance of 5 mL aliquot solution using UV–vis 

spectrophotometer (at 665 nm) in liquid cuvette configuration with deionized water as 

reference. 

3. Results and Discussion 

 

3.1 Structural and morphological characterization 

The component of the anodic paste, metallic zinc and zinc oxide can be fully leached by 

sulfuric acid media according to the following equations: 

Zn + H2SO4→ Zn2+ + SO42- + H2      (2) 

ZnO + H2SO4→ Zn2+ + SO42- + H2O   (3) 

After leaching, a 0.4 M Zn2+ solution was obtained. Two solids were prepared by 

precipitation of the Zn2+ from the leached solution with Na2CO3 or H2C2O4, and further 

calcination. 

EDS analysis showed that the samples obtained after precipitation the Zn2+ present in 

the leacheate liquor, O-ZnO and C-ZnO, contain 2.6 and 4.0 % w/w of sulfur, 

respectively. No manganese was detected in the samples. 

The X-ray diffraction (XRD) patterns of the recovered zinc oxides are shown in Fig. 2. 

In both samples, C-ZnO and O-ZnO, all the diffraction peaks observed where those ACCEPTED M
ANUSCRIPT
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corresponding to the planes (100), (002), (101), (102), (110), (103), (200), (112), (201) 

and (202) of the ZnO wurtzite phase (JCPDF # 36-1451). No other diffraction peaks are 

observed, indicating the completely transformation of the precursors into pure ZnO. 
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Fig. 2. X-ray diffraction patterns of the ZnO samples: (a) C-ZnO and (b) O-ZnO. 

The intensity of the peak assigned to the (101) plane of the O-ZnO is higher than that of 

C-ZnO, indicating that the last sample has a lower degree of crystallinity [27,28]. 

The average crystal size (D) of the samples was estimated using the Scherrer formula: 

βcosθ

0.9λD      (4) ACCEPTED M
ANUSCRIPT
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where  is the X-ray wavelength,  is Bragg's diffraction angle and  is the angular line 

width of half maximum intensity of the diffraction peak corresponding to plane (101).  

The crystallite sizes calculated using Eq. (4) were 13 and 15 nm for C-ZnO and O-ZnO, 

respectively. 

The lattice parameters obtained from Rietveld refinements are listed in Table 1. The 

values obtained are lower than those of lattice constants 3.249 Å and 5.206 Å of wurzite 

ZnO (JCPDF # 36-1451). Furthermore, it can be seen that the representative peak of the 

(101) plane in the diffraction patterns of the recovered oxides slightly shifts to higher 2θ 

values compared to the pure ZnO (36.2º) possibly due to the reduction in the lattice 

parameters. According to Dutta et al. [29] the change in peak position is consequence of 

the different kind of structural defects such as oxygen and zinc vacancies. Additionally, 

Li et al. [30], suggested that the oxygen vacancies reduce the c-parameter (the defects in 

the prepared ZnO samples will be discussed in the Section 3.3). 

 

Table 1. XRD peak position and crystallite size of the studied ZnO samples. 

Sample 

(1 0 1)  

Peak  

position (º) 

 

FWHM 

XRD  

crystallite  

size  (nm) 



 

a=b  

(Å) 

 

c  

(Å) 

 

c/a 

O-ZnO 36.4 0.5782 +/- 0.0038 15.1 +/- 0.1 0.6 3.20 5.17 1.61 

C-ZnO 36.7 0.6849 +/- 0.0034 12.8 +/- 0.06 0.7 3.18 5.15 1.62 
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 The SEM study (Fig. 3a and 3d) revealed that both C-ZnO and O-ZnO solids have 

platelet-shape morphology. According to different authors [7,31], the formation of 

platelets is due to the inhibition of the polar (001) face by sorption of SO42- anion, 

which consists of dipoles of positively charged Zn2+ and negatively charged O2-.  

The TEM image of the samples (Fig. 3b and 3e) showed the formation of spherical 

shaped particles with the diameter of about 20 nm in both oxides, C-ZnO and O-ZnO, 

consistent with XRD results. Similar morphologies observed by TEM were reported by 

Ahmad et al. [16] over ZnO nanoparticles.  

The N2 adsorption/desorption isotherms of the prepared zinc oxides are presented in 

Fig. 4. The N2 adsorption/desorption isotherms are all type IV isotherm, accompanied 

by a type H3 hysteresis loop, according to the IUPAC classifications, which correspond 

to material with mesoporous structure. 
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Fig. 3. SEM images, TEM micrographs and size distribution of (a,b,c) C-ZnO and 

(d,e,f) O-ZnO. ACCEPTED M
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Fig. 4. Nitrogen adsorption-desorption isotherms of zinc oxide samples. 

 

The BET surface area and average pore volume of the samples are shown in Table 2. 

Compared with other ZnO reported in bibliography [27] obtained also by precipitation 

with oxalic acid (17-22 m2g-1), the surface area of the ZnO prepared in this work by 

precipitation with oxalic acid is higher. 

 

3.2 Optical characterization 

Optical characterization was carried out by measuring the diffuse reflectance 

spectroscopy. The absorption spectra showed in Fig. 5 is characterized by broad and 
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strong absorptions profile in the UV region of electromagnetic spectrum, characteristic 

of the band edge absorption of wurtzite ZnO [32]. 

 

Table 2. Textural properties of the zinc oxides. 

Sample 

SBET 

(m2g-1) 

Vp 

(cm3g-1) 

Dp 

(A) 

Eg 

(eV) 

O-ZnO 31 0.22 191 3.05 

C-ZnO 9 0.05 181 2.99 

 

The absorption edge of C–ZnO shifted to higher wavelengths compared to O-ZnO. 

According to Tauc−Mott, the photon energy (Ef) dependence of the absorption 

coefficient (α) can be described as [33]:  

 

n
gff EEBE )(       (5) 

 

where B is a constant, Eg is the band gap of the material and n is an index that 

characterizes the optical absorption process (for direct band gap semiconductor material 

such as ZnO,  n = ½). Therefore, the band gap energy of the as-prepared ZnO powders 

can be estimated from a plot of (αEf)2 versus Ef, extrapolating the linear part of the 

graph (Fig. 6) until it meets the x-axis.  
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Calculated Eg values for C-ZnO and O-ZnO were 3.05 eV and 2.99 eV, respectively. 

Band gap of different ZnO reported in literature measured by Tauc procedure are in the 

range 3.09-3.24 eV [32,34–36]. 

Fig. 5. Optical absorbance spectra for the different ZnO samples. 

 

It is reported that the red shift in the UV-vis spectra is due to size difference and 

formation of crystal defects, and the greater the red shift in the UV–vis spectra, the 
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higher the concentration of defects [37]. Additionally, Peng et al. [36] indicate that the 

presence of defect sites contributes also to a decrease in the band gap values. 

Furthermore, Bhatia and Nerma [38] show that the variation in band gap is associated 

with structural parameter, grain size, and induced defects. 

The color of the samples (inset of Fig. 5) could also be associated with the band gap 

energy. The light-yellow color of C-ZnO sample is in accord with its narrow band gap, 

in agreement with Peng et al. [36] and Wolski et al [27].  

2,9 3,0 3,1 3,2 3,3 3,4

 C-ZnO

 O-ZnO

(A
h

)2

h (eV)

 Fig. 6. Plot (αEf)2 vs Ef for the ZnO samples. 
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Apart from the band gap, the band tail parameter (E0) can give important hint towards 

the disorder present in the samples. E0 is defined as  











0
0 exp)( E

E
αEα f

f    (6) 

where 0 is a constant and E0 is the band tail parameter.  

The band tail region (lower energy part just below the band edge, Eg) of the ZnO 

samples is shown in Fig. 7. E0 has been estimated from the reciprocal of the slope by 

fitting the linear part of the ln () vs. Ef curves (just below Eg) of the respective ZnO 

samples.  

The obtained E0 value for C-ZnO and O-ZnO were 670 and 250 meV, respectively. The 

enhancement of E0 indicates the increase of disorder in the system. In addition, an 

increase of E0 is due to an increase in the number of oxygen vacancies [29]. These 

observations are in agreement with the results of XRD on the samples. 
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Fig.7. Plots of ln() with photon energy, where  is the absorption coefficient. The 

vertical lines represent the band gap value (red line O-ZnO and black line C-ZnO).  

 

3.3 Positron annihilation spectroscopy analysis 

The defects in the prepared ZnO samples were studied by positron annihilation lifetime 

measurements. The positron lifetime spectra were decomposed into three exponential 

decays without source correction, each one characterized by a positron lifetime τi of 

intensity Ii. Three components are choose based on probable positron annihilation sites 

in nanocrystalline systems and also for getting a 2 close to 1.0 [39]. 
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In semiconductors, the presence of two lifetimes is a usual feature, as predicted by the 

two-state trapping model. The first one corresponding to free positrons annihilated in 

the interstitial region and the second one senses trapped positrons at defects [40]. 

Table 3 listed the resulting annihilation positron parameters for the studied samples. The 

third and longer lifetime corresponds to ortho-positronium annihilation formed in large 

voids present in the material. The intensity of this third component in all the studied 

samples is low so it has not been considered in the following discussion.   

The bulk lifetime of ZnO (b) represents the annihilations from a perfect crystal and has 

been reported different values for b ranging from 151 ps to 180 ps [41]. In general, if 

there is only one type of defects, 1 will be less than b. Nevertheless, 1 could be higher 

thanb if there are two or more types of defects. 

The high first lifetime value for C-ZnO is probably due to the presence of new positron 

traps whose associated lifetime value are similar and cannot be distinguished. In 

nanocrystalline materials, monovacancies or grain boundaries frequently act as positron 

annihilation sites with similar values to bulk lifetime [22]. 

The second lifetime2 is sensing positrons trapped at larger size defects such as vacancy 

clusters (nanovoids) or at intersection interfaces (i.e. triple lines). 

The relation 2/b is used to characterize the defect. The values obtained for C-ZnO and 

O-ZnO using b = 180 ps, were 2.2 and 2.12, respectively. It is known that for 

monovacancies this relation is around 1.5 [42, 43], therefore, the higher value for this 
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parameter constitutes other evidence that the second lifetime represents positron 

annihilation at large vacancy clusters in the prepared samples. 

 

Table 3. Positron Lifetime and Relative intensities of the ZnO samples. 

Sample 1 (ps) 2 (ps) 3 (ps) I1 (%) I2 (%) I3 (%) I1/I2 

C-ZnO 199 396 1572 41 53 6 0.77 

O-ZnO 171 383 1634 29 67 4 0.43 

 

Apart from positron lifetimes, its relative intensity provides information on the relative 

concentration of defects.  The intensity ratio (I1/I2) is higher in C-ZnO than in O-ZnO. 

This indicates that C-ZnO has more monovacancies and fewer high size defects 

(divacancies or agglomeration of vacancies) than O-ZnO. In other words, C-ZnO has a 

higher relative concentration ratio of bulk defects-surface defects (Cb/Cs). Positron 

lifetimes originating from oxygen vacancies (VO) and zinc vacancies (VZn) in ZnO have 

been experimentally found to be 180 ps and 230 ps, respectively. In view of this and our 

results, it may be concluded that the dominant defects in C-ZnO samples are VO, while 

O-ZnO has a greater number of larger size defects clustered near the grain boundary that 

acts as positron traps. The present results are in good agreement with those reported by 

Dutta et al. [29] for ZnO nanoparticles obtained by mechanical milling. 

 

3.4 Photocatalytic activity ACCEPTED M
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The photocatalytic properties of the as prepared zinc oxides were evaluated in the 

photodegradation of MB under UV light. The photodegradation efficiency as a function 

of time was represented as C/C0, where C0 and C are the initial and actual concentration 

of MB, respectively. 

The photocatalytic degradation profiles of MB over ZnO samples are presented in Fig. 

8a. In the absence of photocatalyst, MB exhibit poor degradation, reflecting the high 

stability of MB under UV irradiation. In the presence of O-ZnO about 70% degradation 

of MB was observed at 90 minutes, while in the case of C-ZnO, at the same time the 50 

% degradation of MB was observed. 

Furthermore, the degradation kinetics of the MB solution was also investigated, and the 

results are shown in Fig. 8b. The degradation rates of MB solution match well with 

pseudo-first- order reaction according to the simplified Langmuir-Hinshelwood model:  

 

ktC
C 









0
ln    (7) 

 

where k is the reaction rate constant (min−1) and C0 and C are the initial and actual 

concentration of MB at time t, respectively. O-ZnO shows the highest photocatalytic 

activity with a rate constant of 0.0061 min−1, which is larger than that of C-ZnO (0.0036 

min−1). 

It is accepted that the photocatalytic activity depends on the recombination rate of 

photo-generated electrons (e-) and holes (h). If the e-h separation is low, the rate of ACCEPTED M
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recombination is high and electrons and holes recombine instead of reaching the 

surface. Thus increasing the e-h separation conducts to and enhanced photocatalytic 

activity. There are several that affect the rate of charge carrier recombination such as the 

surface area, the crystalline structure, degree of crystallinity and the size and shape of 

the photocatalyst particles [35,44]. 

Both prepared zinc oxides, O-ZnO and C-ZnO, presents the same crystalline structure, 

with rather similar particle size, but O-ZnO presents a higher surface area and a higher 

degree of crystallinity than C-ZnO. 
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Fig. 8. (a) Photocatalytic degradation (C/C0) and (b) degradation kinetics of the MB 

solution over C-ZnO and O-ZnO with increasing UV-light irradiation time. 

 

The higher photocatalytic conversion of MB exposure to UV light of O-ZnO sample 

could be associated to its higher surface area and crystallinity. 

Additionally, it was reported that a decrease in the Cb/Cs ratio leads to an increase in the 

e-h separation efficiency [45–47]. In our work, O-ZnO with a lower Cb/Cs ratio than C-

ZnO, exhibits the highest photoactivity in the degradation of MB. 
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Finally, as the oxygen vacancies results in band gap narrowing and strong absorption of 

visible light, the as-prepared zinc oxides could be potential materials for degradation of 

contaminants under visible light and solar energy conversion devices. 

 

4. Conclusions 

Spent alkaline batteries can be harmful for the environment, and could be a source of 

materials. Battery recycling therefore promises significant environmental and economic 

benefits. The preparation of zinc oxides from spent alkaline batteries and their use in 

environmental applications has been proposed in this work. 

ZnO nanoparticles were synthesized by dissolving the anode of spent alkaline batteries 

and further precipitation with sodium carbonate and oxalic acid and calcination in air at 

500 ºC. The prepared zinc oxides were uses as photocatalysts for MB degradation under 

Uv light. Both prepared samples present the wurzite structure and exhibits good optical 

properties. The decrease in lattice parameters and the narrow band gap are associated 

with the formation of oxygen vacancies.  

The results of photocatalytic experiments showed that the photocatalytic activity 

increased with the increase of surface area, the high degree of crystallinity and the lower 

ratio of bulk defects-surface defects. 

Spent alkaline batteries could be used as raw materials for the preparation of effective 

photocatalyst materials and potential solar energy devices. 
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