
Normal projections in Krein spaces

Alejandra Maestripieri∗and Francisco Mart́ınez Peŕıa†

Abstract

Given a complex Krein space H with fundamental symmetry J , the
aim of this note is to characterize the set of J-normal projections

Q = {Q ∈ L(H) : Q2 = Q and Q#Q = QQ#}.

The ranges of the projections in Q are exactly those subspaces of H which
are pseudo-regular. For a fixed pseudo-regular subspace S, there are in-
finitely many J-normal projections onto it, unless S is regular. Therefore,
most of the material herein is devoted to parametrizing the set of J-normal
projections onto a fixed pseudo-regular subspace S.
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1 Introduction

It is well-known that a (linear, bounded) projection Q, acting on a Hilbert space
H, is normal (QQ∗ = Q∗Q) if and only if it is selfadjoint (Q = Q∗). Therefore,
there is a one-to-one correspondence between the closed subspaces of H and the
normal projections acting on H.

On the other hand, if K is a Krein space with fundamental symmetry J , it
is easy to find J-normal projections which are not J-selfadjoint (see Example
1 in Section 3). For a fixed Krein space K with fundamental symmetry J , the
purpose of this work is to describe those projections acting on K which are
J-normal, i.e. those Q = Q2 ∈ L(K) satisfying

QQ# = Q#Q,

where Q# is the J-adjoint of Q.

If Q is J-normal, observe that E = QQ# is a J-selfadjoint projection whose
range, hereafter denoted by R(E), is contained in R(Q). Thus, R(Q) contains
a regular subspace of K. On the other hand, P = Q(I − Q#) is a projection
with R(P ) = R(Q)∩R(Q)[⊥] = R(Q)◦, i.e. R(P ) is the isotropic part of R(Q).
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0435.
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Also, since EP = PE = 0 it follows that Q = E + P and

R(Q) = R(E)[u]R(P ) = R(E)[u]R(Q)◦,

that is, R(Q) is a pseudo-regular subspace of K, see [9] for the terminology.
Conversely, it will be shown that every pseudo-regular subspace of K admits a
J-normal projection onto it. However, it is not hard to prove that a pseudo-
regular subspace may admit infinitely many J-normal projections onto it (see
Example 2 in Section 4).

The importance of pseudo-regular subspaces lies in the fact that they enable
to generalize some Pontryagin spaces arguments to general Krein spaces, see
[9]. They have also been used as a technical tool for the study of spectral
functions (and distributions) for particular classes of operators in Krein spaces
[10, 11, 13, 14] and to extend the Beurling-Lax theorem for shifts in indefinite
metric spaces [4, 5].

Along this work, different characterizations of J-normal projections will be
developed. Furthermore, for a fixed pseudo-regular subspace S, we will present
a parametrization for the set of J-normal projections onto S.

In the next section we introduce the basic notations and terminology used in
the paper. Section 3 is devoted to describe J-normal projections. In particular,
it is shown that every J-normal projection Q admits a unique decomposition
Q = E + P where E is J-selfadjoint and P is a J-normal projection with J-
neutral range. Then, the main consequences of this decomposition are discussed.

In Section 4 it is shown that a (closed) subspace S is the range of a J-normal
projection if and only if it is pseudo-regular, i.e. if S + S [⊥] is closed. Then,
although there is not a unique J-normal projection onto an arbitrary pseudo-
regular subspace S, a formula for a particular J-normal projection onto S is
presented (depending only on the fundamental symmetry J and the orthogonal
projections onto S and S◦).

Section 5 deals with J-normal projections onto J-neutral subspaces. It will
be shown that there are infinitely many J-normal projections onto a prescribed
J-neutral subspace (and their nullspaces can be arbitrarily close). Then, for a
fixed J-neutral subspace N , a parametrization for the set of J-normal projec-
tions onto N is presented.

Finally, the aim of Section 6 is to present an explicit description of the set of
J-normal projections onto a pseudo-regular subspace S. First, it is shown that
this set can be decomposed in a disjoint union of decks. Then, considering the
projections as block-operator matrices according to an appropriate orthogonal
decomposition, each deck is parametrized.

2 Preliminaries

Notation and terminology Along this work H denotes a complex (sepa-
rable) Hilbert space. If K is another Hilbert space then L(H,K) is the alge-
bra of bounded linear operators from H into K and L(H) = L(H,H). The
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group of linear invertible operators acting on H is denoted by GL(H). Also,
L(H)+ denotes the cone of positive semidefinite operators acting on H and
GL(H)+ = GL(H) ∩ L(H)+.

If T ∈ L(H,K) then T ∗ ∈ L(K,H) denotes the adjoint operator of T , R(T )
stands for its range and N(T ) for its nullspace.

Given two closed subspaces S and T of a Hilbert space H , S u T denotes
the direct sum of them. On the other hand, S ⊕ T stands for their (direct)
orthogonal sum and S 	 T := S ∩ (S ∩ T )⊥. If H = S u T , there exists a
(unique) bounded projection with range S and nullspace T . Hereafter, it is
denoted by PS//T . If PS and PT stand for the orthogonal projections onto S
and T , respectively, PS//T can be represented as:

PS//T = PS(PS + PT )−1, (2.1)

see [2, Lemma 3.1].
Given two closed subspaces S and T of a Hilbert space H, the cosine of the

Friedrichs angle between S and T is defined by

c(S, T ) = sup{| 〈x, y 〉 | : x ∈ S 	 T , ‖x‖ = 1, y ∈ T 	 S, ‖y‖ = 1}.

It is well known that

c(S, T ) < 1 ⇔ S + T is closed ⇔ c(S⊥, T ⊥) < 1.

Furthermore, if PS and PT are the orthogonal projections onto S and T , re-
spectively, then c(S, T ) < 1 if and only if (I − PS)PT has closed range.

On the other hand, the Dixmier (or minimal) angle between S and T is
defined by

c0(S, T ) = sup{| 〈x, y 〉 | : x ∈ S, ‖x‖ = 1, y ∈ T , ‖y‖ = 1}.

It is clear that c(S, T ) ≤ c0(S, T ), and if S ∩ T = {0} then c(S, T ) = c0(S, T ).
Remark 2.1. If PS and PT are the orthogonal projections onto S and T , re-
spectively, then

c0(S, T ) = ‖PSPT ‖.
Also, H = S u T if and only if ‖PS⊥PT ⊥‖ < 1. See [8] for further details.

Krein spaces

In what follows we present the standard notation and some basic results on
Krein spaces. For a complete exposition on the subject see [6, 12, 1].

Given a Krein space (H, [ , ]) with a fundamental decomposition H = H+ u
H−, the direct (orthogonal) sum of the Hilbert spaces (H+, [ , ]) and (H−,−[ , ])
is denoted by (H, 〈 , 〉).

Observe that the indefinite metric and the inner product of H are related by
means of a fundamental symmetry, i.e. a unitary selfadjoint operator J ∈ L(H)
which satisfies:

[x, y ] = 〈 Jx, y 〉 , x, y ∈ H.
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If H and K are Krein spaces, L(H,K) stands for the vector space of linear
transformations which are bounded with respect to the associated Hilbert spaces
(H, 〈 , 〉H) and (K, 〈 , 〉K). Given T ∈ L(H,K), the J-adjoint operator of T is
defined by T# = JHT

∗JK, where JH and JK are the fundamental symmetries
associated to H and K, respectively. An operator T ∈ L(H) is J-selfadjoint if
T = T#.

A vector x ∈ H is J-positive if [x, x ] > 0. A subspace S of H is J-positive if
every x ∈ S, x 6= 0, is a J-positive vector. J-nonnegative, J-neutral, J-negative
and J-nonpositive vectors and subspaces are defined analogously.

Given a subspace S of a Krein space H, the J-orthogonal complement to S
is defined by

S [⊥] = {x ∈ H : [x, s ] = 0, for every s ∈ S}.

Usually, S◦ := S ∩S [⊥] (the isotropic part of S) is a non-trivial subspace. Then,
a subspace S of H is J-non-degenerated if S ∩ S [⊥] = {0}. Otherwise, it is a
J-degenerated subspace of H.

Definition. A subspace S of a Krein space H is a regular subspace if it is the
range of a J-selfadjoint projection, i.e. if there exists E ∈ L(H) such that
E = E2 = E# and R(E) = S.

Given a regular subspace S, observe that S [⊥] is the nullspace of the J-
selfadjoint projection E onto S. Furthermore, if P is the orthogonal projection
onto S, the orthogonal projection onto S [⊥] coincides with J(I − P )J . Thus,
by (2.1), it follows that

E = P (P + I − JPJ)−1, (2.2)

see [3] for another formula for E.

Proposition 2.2 ([3]). A closed subspace S is regular if and only if

‖PJ(I − P )‖ < 1,

or equivalently (I − P )JPJ(I − P ) ≤ (1 − ε)I for some ε > 0, where P is the
orthogonal projection onto S.

The following result seems to be well known, however its proof is included
for the sake of completeness.

Lemma 2.3. Let Q ∈ L(H) be a projection acting on a Krein space H with
fundamental symmetry J . Then, the following conditions are equivalent:

1. Q#Q = 0;

2. R(Q) is a J-neutral subspace;

3. PJP = 0, where P is the orthogonal projection onto R(Q);
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4. the orthogonal projection P onto R(Q) admits the representation (accord-
ing to the fundamental decomposition H = H+ ⊕H−)

P =
1
2

(
V ∗V V ∗

V V V ∗

)
,

where V ∈ L(H+,H−) is a partial isometry.

Proof. The equivalences 1.↔ 2.↔ 3.↔ 4. and the implication 5.→ 1. are easy
to check. On the other hand, if S = R(Q) is a J-neutral subspace of H then its
angular operator V ∈ L(H+,H−) is a partial isometry. Therefore

S = {(x+, V x+) ∈ H+ ⊕H− : x+ ∈ P+(S) = N(V )⊥}

= {(V ∗V u, V u) ∈ H+ ⊕H− : u ∈ H+} = R

([
V V ∗

V

])
,

see [12, Ch. 1, §8]. Then, since V is a partial isometry, the operator

P =
1
2

(
V ∗V V ∗

V V V ∗

)
,

satisfies P 2 = P = P ∗, i.e. P is the orthogonal projection onto S.

3 Decompositions of a J-normal projection

Every normal projection acting on a Hilbert space is selfadjoint. However,
the following example shows that there are J-normal projections acting on a
Krein space (i.e. projections that commute with its J-adjoint) which are not
J-selfadjoint.
Example 1. If C3 is endowed with the indefinite inner product [x, y ] = x1y1 +
x2y2−x3y3, where x = (x1, x2, x3), y = (y1, y2, y3) ∈ C3, consider the projection
Q whose matrix representation in the canonical basis is given by

Q =

 1 0 0
0 1

2
1
2

0 1
2

1
2

 .

Then, it is easy to see that

Q# =

 1 0 0
0 1

2 − 1
2

0 − 1
2

1
2

 6= Q and QQ# =

 1 0 0
0 0 0
0 0 0

 = Q#Q.

In what follows, the basic properties of J-normal projections are developed.

Theorem 3.1. Given a projection Q ∈ L(H), Q is J-normal if and only if there
exist a J-selfadjoint projection E ∈ L(H) and a projection P ∈ L(H) satisfying
PP# = P#P = 0 such that

Q = E + P. (3.1)

The projections E and P are uniquely determined by Q.
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Proof. If Q ∈ L(H) is a J-normal projection, then E = QQ# is a J-selfadjoint
projection. Notice that P := Q(I −Q#) is also a projection and, since I −Q is
also J-normal, it holds that

PP# = Q(I −Q#)(I −Q)Q# = Q(I −Q)(I −Q#)Q# = 0.

In the same way, P#P = 0.
Conversely, suppose that Q = E + P where E is J-selfadjoint and P is

a projection satisfying PP# = P#P = 0. Since Q2 = Q, it follows that
EP + PE = 0. Notice that R(E) ∩R(P ) = {0}. In fact, if x ∈ R(E) ∩R(P ) it
is easy to see that 0 = (EP +PE)x = 2x. So, x = 0. Therefore, EP = PE = 0
(and EP# = P#E = 0).

Thus, recalling that PP# = P#P = 0 it follows easily that QQ# = Q#Q =
E, i.e. Q is J-normal. Notice that P = Q − E = Q(I − Q#). The uniqueness
of this decomposition follows from the last part of the proof.

If Q ∈ L(H) is a J-normal projection, notice that the (uniquely) determined
projections in the decomposition of Theorem 3.1 are

E = QQ# and P = Q(I −Q#). (3.2)

Throughout this paper, E and P will be refered as the regular part and the
neutral part of Q, respectively.

Corollary 3.2. Let Q ∈ L(H) be a J-normal projection. Then, Q is J-
selfadjoint if and only if R(Q)◦ is trivial.

Proof. Observe that Q is J-selfadjoint if and only if Q = QQ#, or equivalently,
P = Q(I − Q#) = 0. But R(P ) = R(Q) ∩N(Q#) = R(Q)◦. So, P = 0 if and
only if R(Q)◦ = {0}.

Corollary 3.3. Given a projection Q ∈ L(H), Q is J-normal if and only if

Q = GH,

where G ∈ L(H) is a J-selfadjoint projection and H ∈ L(H) is a J-normal pro-
jection with J-neutral kernel contained in R(G). Furthermore, this factorization
is unique and the projections G and H commute.

Proof. If Q is J-normal, then G = I− (I−Q)(I−Q)# and H = I− (I−Q)Q#

satisfy the desired properties.
Conversely, if Q = GH for a pair of projections G and H satisfying the

assumptions, notice that (I −G)(I −H) = 0, or equivalently, I +GH = G+H.
Thus,

I −Q = I −GH = (I −G) + (I −H),

I−G is J-selfadjoint and I−H satisfies (I−H)(I−H)# = (I−H)#(I−H) = 0.
Then, by Theorem 3.1, Q is J-normal.

The uniqueness of the factorization and the commutativity of G and H also
follow from the above theorem.
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Corollary 3.4. If Q ∈ L(H) is a J-normal projection and Q = E + P is the
decomposition given by Theorem 3.1, then there exists a unique J-selfadjoint
projection F ∈ L(H) such that

I −Q = F + P#. (3.3)

Moreover, EF = 0.

Proof. Applying Theorem 3.1 to I − Q it follows that its J-selfadjoint part is
F = (I −Q)(I −Q)# and

(I −Q)− F = (I −Q)− (I −Q)(I −Q)# = (I −Q)Q# = P#.

Furthermore, E = QQ# = Q#Q and then it is obvious that EF = 0.

Lemma 3.5. Let Q ∈ L(H) be a J-normal projection and consider the neutral
part P ∈ L(H) of Q. Then,

R(P ) = R(Q)◦ and R(P#) = N(Q)◦. (3.4)

Therefore, R(Q)◦ and N(Q)◦ have the same dimension and codimension.

Proof. Indeed, if Q is J-normal then P = Q(I −Q#) = (I −Q#)Q and

R(P ) = R(Q) ∩N(Q#) = R(Q) ∩R(Q)[⊥] = R(Q)◦.

The assertion on R(P#) follows analogously. Finally, notice that

dimR(Q)◦ = dimR(P ) = dimN(P )⊥ = dimR(P ∗) = dimR(P#)
= dimN(Q)◦,

and codimR(Q)◦ = dimN(P ) = dimR(P )⊥ = dimN(P ∗) = dimN(P#) =
codimN(Q)◦.

Remark 3.6. Let Q ∈ L(H) be a J-normal projection with decompositions
Q = E +P and I −Q = F +P#. From the J-normality of Q and the formulas

E = QQ#, P = Q(I −Q#), F = (I −Q)(I −Q)# and PE = PF = 0,

the following facts are easily deduced:

1. R(E) = R(Q) ∩R(Q#) and R(F ) = N(Q) ∩N(Q#). Moreover,

R(Q) = R(E) [u] R(P ) and N(Q) = R(F ) [u] R(P#).

2. Also, since PP# = P#P = 0, observe that P + P# is a J-selfadjoint
projection with range R(Q)◦ u N(Q)◦. Therefore, R(Q)◦ u N(Q)◦ is
regular.

7



3. Finally, by the items above, notice that

H = R(Q) uN(Q) = (R(E)[u] R(P )) u (R(F )[u] R(P#)).

Then, if Q is J-normal, H can be decomposed as

H = R(Q) ∩R(Q#) [u] (R(Q)◦ uN(Q)◦) [u] N(Q) ∩N(Q#). (3.5)

In fact, (3.5) is equivalent to the J-normality of Q.

Proposition 3.7. Let Q ∈ L(H) be a projection. Then, Q is J-normal if and
only if

H = R(Q)∩R(Q#)uR(Q)∩N(Q#)uN(Q)∩R(Q#)uN(Q)∩N(Q#). (3.6)

Proof. If Q is J-normal, the decomposition follows from item 3. in the above
remark. Conversely, suppose that (3.6) holds. Given x ∈ H there exist (unique)
x1 ∈ R(Q) ∩ R(Q#), x2 ∈ R(Q) ∩ N(Q#), x3 ∈ N(Q) ∩ R(Q#) and x4 ∈
N(Q) ∩N(Q#) such that x = x1 + x2 + x3 + x4. Then,

Q#Qx = Q#(x1 + x2) = x1 = Q(x1 + x3) = QQ#x.

Therefore, Q#Qx = QQ#x for every x ∈ H, i.e. Q is J-normal.

4 The range of a J-normal projection

The aim of this section is to characterize the ranges of the family of J-normal
projections acting on a Krein space. The main result in this direction addresses
the fact that a (closed) subspace is the range of a J-normal projection if and
only if it is a pseudo-regular subspace. Thus, the first paragraphs are devoted to
recall the definition of pseudo-regularity and to state some well known equivalent
conditions. Throughout this section, H denotes a Krein space with fundamental
symmetry J .

Definition. A closed subspace S of H is called pseudo-regular if the algebraic
sum S + S [⊥] is closed.

The following proposition compiles several conditions which are equivalent to
pseudo-regularity. These facts are well known but they are scattered throughout
the literature and different research papers, e.g. see [12, 5, 9, 13].

Proposition 4.1. Let S be a closed subspace of H and consider its Gramian
operator GS = PSJ |S : S → S. Then, the following conditions are equivalent:

1. S is pseudo-regular.

2. (S◦)[⊥] = S + S [⊥].

3. There exists a regular subspace M such that S = S◦[u]M.
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4. If S = T u S◦, then T is regular.

5. There exists a regular subspace N ⊇ S such that S◦ = N ∩ S [⊥].

6. S/S◦ is a Krein space.

7. 0 is an isolated point of σ(GS).

Proposition 4.2 (T. Ando). Given a (closed) subspace S of H, consider its
isotropic part S◦. Let P and P0 denote the orthogonal projections onto S and
S◦, respectively. Then, S is pseudo-regular if and only if

‖(P − P0)J(I − P )‖ < 1.

Proof. Observe that J(I − P )J is the orthogonal projection onto S [⊥]. By
definition, S is pseudo-regular if

S + S [⊥] is closed.

But S+S [⊥] is closed if and only if c(S,S [⊥]) < 1. Also, notice that c(S,S [⊥]) =
c0(S 	 S◦,S [⊥]) = ‖(P − P0)J(I − P )J‖ (see the Preliminaries). Hence, S is
pseudo-regular if and only if

‖(P − P0)J(I − P )‖ < 1.

Theorem 4.3. Let S be a closed subspace of H. Then, S is the range of a
J-normal projection if and only if S is a pseudo-regular subspace of H.

Proof. If S is the range of a J-normal projection Q then, by Remark 3.6, S =
R(E)[u]S◦ where E = QQ#. Furthermore, R(E) is regular because E is a
J-selfadjoint projection. Thus, S is a pseudo-regular subspace.

Conversely, suppose that S is a pseudo-regular subspace and let P be the
orthogonal projection onto the isotropic subspace S◦. Since R(P ) is J-neutral,
it follows by Lemma 2.3 that PJP = 0. Then, PP# = P#P = 0.

Consider the subspace T = S 	 S◦. Since S = T [u]S◦, Proposition 4.1
assures that T is a regular subspace of H. Thus, there is a (unique) J-selfadjoint
projection E with R(E) = T .

Furthermore, PE = EP = 0 because T ⊂ (S◦)⊥ and S◦ ⊂ S [⊥] ⊂ T [⊥].
Then Q = E + P is also a projection with

R(Q) = R(E) +R(P ) = T u S◦ = S.

Finally, the J-normality of Q follows from Theorem 3.1.

Recall that if κ = min{dimH+,dimH−} <∞, the Krein space with funda-
mental decomposition H = H+uH− is called a Pontryagin space and is denoted
by Πκ. In a Pontryagin space Πκ, a closed subspace S is regular if and only if it
is J-non-degenerated (see e.g. [12]). Thus, every J-non-degenerated subspace
of Πκ admits a (unique) J-selfadjoint projection onto it. Furthermore,
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Corollary 4.4. If Πκ is a Pontryagin space, then every closed subspace S of
Πκ admits a J-normal projection onto it.

Proof. Since S◦ is a closed subspace of S, S can be written as

S = S◦ ⊕ (S 	 S◦).

Furthermore, T := S	S◦ is J-orthogonal to S◦. Hence, S = S◦[u]T . It is easy
to see that T is a J-non-degenerated subspace of H and therefore, T is regular
because Πκ is a Pontryagin space. Thus, S is the direct sum of its isotropic
part and a regular subspace and, by Theorem 4.3, S is the range of a J-normal
projection.

The last paragraphs of this section are devoted to discussing the non-uniqueness
of J-normal projections associated to a pseudo-regular subspace. First of all,
observe the following example.

Example 2. As in Example 1, consider the Minkowski space (C3, [ , ]). Fix S
by S = span{(1, 0, 0), (0, 1, 1)}. Given a vector v = (x, y, z) ∈ C3 \ S, let Qv
be the projection onto S along the subspace spanned by v. According to the
canonical basis of C3, its matrix representation is

Qv =
1

z − y

 z − y x −x
0 z −y
0 z −y

 .

A few calculations show that

Q#
v =

1
z − y

 z − y 0 0
x z −z
x y −y

 .

Then, it is easy to see that

Q#
v Qv =

1
|z − y|2

(
|z − y|2 x(z − y) −x(z − y)
x(z − y) |x|2 −|x|2

x(z − y) |x|2 −|x|2

)
and

QvQ
#
v =

1
|z − y|2

(
|z − y|2 x(z − y) −x(z − y)
x(z − y) |z|2 − |y|2 −|z|2 + |y|2

x(z − y) |z|2 − |y|2 −|z|2 + |y|2

)
.

Therefore, Qv is a J-normal projection onto S if and only if |z|2 = |x|2 + |y|2.

The above example also shows that, for a fixed projection Q ∈ L(H), the
idempotency of the J-selfadjoint operators QQ# and Q#Q is not a sufficient
condition for the J-normality of Q. In fact, notice that Q#

v Qv and QvQ
#
v are

projections for every v ∈ C3 \ S, even if |z|2 6= |x|2 + |y|2.

Although there is not a unique J-normal projection onto a fixed arbitrary
pseudo-regular subspace S, it is possible to present a particular J-normal pro-
jection onto S in terms of the orthogonal projections onto S and S◦. Observe
that this particular J-normal projection onto S is the one discussed in Theorem
4.3.
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Corollary 4.5. Given a (closed) pseudo-regular subspace S of H, let P and P0

denote the orthogonal projections onto S and S◦, respectively. Then,

Q = (P − P0)(P − P0 + I − J(P − P0)J)−1 + P0, (4.1)

is a J-normal projection onto S.

Proof. Since S 	 S◦ is a regular subspace of H, the J-selfadjoint projection E
onto S 	 S◦ can be written as

E = (P − P0)(P − P0 + I − J(P − P0)J)−1,

see (2.2). Furthermore, by Theorem 3.1, Q = E + P0 = (P − P0)(P − P0 + I −
J(P − P0)J)−1 + P0 is a J-normal projection onto S.

5 J-normal projections with J-neutral range

From now on, every subspace considered is assumed to be closed.

As it was shown in the previous section, a pseudo-regular subspace may
admit infinitely many J-normal projections onto it. In order to provide a
parametrization of the set of J-normal projections onto a prescribed pseudo-
regular subspace, consider the simplest case first, i.e. a J-neutral subspace.
This section is devoted to studying J-normal projections onto J-neutral sub-
spaces, i.e. those projections P ∈ L(H) satisfying PP# = P#P = 0.

It is obvious that every J-neutral subspace N of a Krein spaceH is a pseudo-
regular one, since N = N ◦. In particular,

Lemma 5.1. If N is a J-neutral subspace then the orthogonal projection P :=
PN ∈ L(H) is J-normal. Furthermore, PP# = P#P = 0.

Proof. By Lemma 2.3, the assumption on N is equivalent to PJP = 0. Thus,

PP# = PJP · J = 0 and P#P = J · PJP = 0.

Proposition 5.2. Let N1 and N2 be (closed) J-neutral subspaces of H such
that N1 ∩N2 = {0}. Then, the following conditions are equivalent:

1. there exists a J-normal projection P ∈ L(H) such that R(P ) = N1 and
R(P#) = N2;

2. N1 +N2 is regular;

3. N1 uN [⊥]
2 = H.

Proof. 1. ⇒ 2. follows from item 2. of Remark 3.6.
2. ⇒ 3.: Suppose that M = N1 +N2 is regular. Then, M[⊥] = N [⊥]

1 ∩N [⊥]
2 is

also regular and

H =MuM[⊥] = N1 u (N2 uN [⊥]
1 ∩N [⊥]

2 ) ⊆ N1 +N [⊥]
2 ,
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because N2 is J-neutral. Analogously, H = N [⊥]
1 +N2 and N1∩N [⊥]

2 = (N [⊥]
1 +

N2)[⊥] = {0}. Thus, H = N1 uN [⊥]
2 .

3. ⇒ 1.: If N1 u N [⊥]
2 = H, consider the projection P := PN1//N [⊥]

2
. Then,

P# = PN2//N [⊥]
1

and it is easy to see that PP# = P#P = 0. Therefore, P is a

J-normal projection with R(P ) = N1 and R(P#) = N2.

As a consequence of the above proposition, if P is a J-normal projection
onto a J-neutral subspace, the subspaces R(P ) and R(P#) are skewly linked
(see [12, Def. 1.29]). Moreover, in a Pontryagin space Πκ, a pair of J-neutral
subspaces N1, N2 of Πκ is skewly linked if and only if there exists a J-normal
projection P ∈ L(H) such that R(P ) = N1 and R(P#) = N2.

Remark 5.3. If N is a J-neutral subspace then N +J(N ) is regular. In fact, by
Lemma 5.1, the orthogonal projection P onto N is a J-normal projection and
R(P#) = J(N ). So, by the above proposition, N + J(N ) is regular.

Proposition 5.4. Let Q ∈ L(H) be a projection such that R(Q)◦ + N(Q)◦ is
regular. Then, there exist projections E,P ∈ L(H) such that PP# = P#P = 0
and

Q = E + P.

Proof. By Proposition 5.2, H can be decomposed as H = R(Q)◦ + (N(Q)◦)[⊥]

and P = PR(Q)◦//(N(Q)◦)[⊥] is J-normal. Since R(P ) ⊆ R(Q), it follows that
QP = P . Also, PQ is a projection and R(PQ) = R(P ). Furthermore,

N(PQ) = N(Q) +R(Q) ∩N(P ) = N(Q) +R(Q) ∩ (N(Q)◦)[⊥]

⊆ (N(Q)◦)[⊥] = N(P ).

Thus, PQ = P and E := Q− P is a projection because of

E2 = Q−QP − PQ+ P = Q− P − P + P = Q− P = E.

Notice that PE = EP = 0 and therefore Q = E + P .

Following the notation of the above proof, observe that E = Q − P =
Q(I − P ) = (I − P )Q. Hence, R(E) = R(Q) ∩N(P ) = R(Q) ∩ (N(Q)◦)[⊥] and
N(E) = R(P ) +N(Q) = R(Q)◦ +N(Q). Therefore,

E = PR(Q)∩(N(Q)◦)[⊥]//R(Q)◦+N(Q).

Thus, the following is a sufficient condition to guarantee that the decomposition
of the above proposition is the same as in Theorem 3.1.

Corollary 5.5. Let Q ∈ L(H) be a projection such that R(Q)◦ + N(Q)◦ is
regular. Then, the following conditions are equivalent:

1. Q is J-normal;

2. R(Q) ∩ (N(Q)◦)[⊥] ⊆ R(Q) ∩R(Q#);
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3. N(Q) ∩ (R(Q)◦)[⊥] ⊆ N(Q) ∩N(Q#).

Proof. If Q is J-normal, then N(Q) is a pseudo-regular subspace. So,

(N(Q)◦)[⊥] = N(Q) +N(Q)[⊥] = N(Q) +R(Q#).

Then, if x ∈ R(Q) ∩ (N(Q)◦)[⊥], there exist u ∈ N(Q) and v ∈ H such that
x = u+Q#v. Hence,

x = Qx = Q(u+Q#v) = QQ#v,

i.e. x ∈ R(Q) ∩R(Q#). Thus, R(Q) ∩ (N(Q)◦)[⊥] ⊆ R(Q) ∩R(Q#).
Conversely, suppose that R(Q) ∩ (N(Q)◦)[⊥] ⊆ R(Q) ∩ R(Q#). Then, con-

sider the decomposition Q = E+P given by Proposition 5.4, where E,P ∈ L(H)
are projections and PP# = P#P = 0. Observe that

R(E) = R(Q) ∩ (N(Q)◦)[⊥] = R(Q) ∩R(Q#),

because N(Q)◦ ⊆ N(Q) = R(Q#)[⊥]. Also,

R(E#) = N(E)[⊥] = N(Q)[⊥] ∩ (R(Q)◦)[⊥] ⊇ R(Q#) ∩R(Q) = R(E).

Thus, E#E = E and, by Theorem 3.1, Q is J-normal.
Finally, notice that the equivalence 1.↔ 3. follows considering I−Q instead

of Q.

The following result shows that, for a fixed J-neutral subspace, there are
infinitely many J-normal projections onto it. Furthermore, the nullspaces of
these projections can be arbitrarily close.

Proposition 5.6 (T. Ando). Suppose that a (non-trivial) projection P ∈ L(H)
satisfies PP# = P#P = 0. Then, there exists a one-parameter family of (dif-
ferent) J-normal projections Pε ∈ L(H) onto R(P ) (for 0 < ε < ε0) such that

‖Pε − P‖ → 0 as ε→ 0.

Proof. Let PR (resp. PN ) be the orthogonal projection onto R(P ) (resp. N(P )).
Then, the ranges of these projections are J-neutral subspaces and, by Lemma
2.3, there is a partial isometry V ∈ L(H+,H−) such that

I − PN =
1
2

(
V ∗V V ∗

V V V ∗

)
.

Since eiεV is also a partial isometry (for every ε > 0), there is an orthogonal
projection Qε such that

I −Qε =
1
2

(
V ∗V e−iεV ∗

eiεV V V ∗

)
,

so that (I −Qε)J(I −Qε) = 0. It is clear that ‖PN −Qε‖ → 0 as ε→ 0.
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Since ‖PRPN‖ < 1 and ‖(I − PR)(I − PN )‖ < 1, there exists ε0 > 0 such
that

‖PRQε‖ < 1 and ‖(I − PR)(I −Qε)‖ < 1 for 0 < ε ≤ ε0.

Hence, there is a projection Pε ∈ L(H) with R(Pε) = R(P ) and N(Pε) = R(Qε),
see Remark 2.1. Then, by Lemma 2.3, PεP#

ε = P#
ε Pε = 0. Finally, Pε can be

represented as:
Pε = PR(PR +Qε)−1,

see (2.1). So, Pε 6= P for every 0 < ε ≤ ε0, and ‖Pε − P‖ → 0 as ε→ 0.

Corollary 5.7. Suppose that a (non-trivial) projection P ∈ L(H), satisfies
PP# = P#P = 0. Then, there exists a one-parameter family of (different)
J-normal projections Pε ∈ L(H) onto R(P ) (for 0 < ε < ε0) such that

c(N(P ), N(Pε)) −→ 1 as ε→ 0.

Proof. Consider the projections Pε obtained in Proposition 5.6. Following the
notations in the proof above, N(P ) = R(PN ) and N(Pε) = R(Qε). Then,

c(N(P ), N(Pε)) = c(R(PN ), R(Qε)) = c(R(I − PN ), R(I −Qε)),

because PN and Qε are orthogonal projections. By Remark 2.1,

c(R(I − PN ), R(I −Qε))2 =
= ‖(I −Qε)(I − PN )‖2 = ‖(I −Qε)(I − PN )(I −Qε)‖ =

=
|(1 + eiε)(1 + e−iε)|

4

∥∥∥∥∥1
2

(
V ∗V 1+e−iε

1+eiε V
∗

1+eiε

1+e−iεV V V ∗

)∥∥∥∥∥ =

=
|(1 + eiε)(1 + e−iε)|

4
=

1 + cos(ε)
2

= cos2( ε2 ).

Therefore, c(N(P ), N(Pε)) = cos( ε2 ) −→ 1 as ε→ 0.

J-normal projections with prescribed J-neutral range

Let N be a J-neutral subspace of a Krein space H with fundamental symmetry
J . Along these paragraphs, a parametrization for the set of J-normal projections
ontoN is presented. These results are generalized to an arbitrary pseudo-regular
subspace in Section 6.

According to the orthogonal decomposition H = N ⊕N⊥, the symmetry J
can be written as a block-operator-matrix

J =
(

0 a
a∗ b

)
N
N⊥ (5.1)

where a ∈ L(N⊥,N ) and b = b∗ ∈ L(N⊥) satisfy

aa∗ = IN , ab = 0 and a∗a+ b2 = IN⊥ . (5.2)
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Since a ∈ L(N⊥,N ) is a coisometry, it follows that a∗ ∈ L(N ,N⊥) is a partial
isometry with final space:

R(a∗a) = R(a∗) = J(N ).

Thus, a∗a ∈ L(N⊥) is the orthogonal projection onto J(N ).

On the other hand, if P is a projection with range N then P can be written
as a block-operator-matrix

P =
(
I x
0 0

)
,

with x ∈ L(N⊥,N ). Furthermore, P satisfies PP# = 0 if and only if

0 =
(
I x
0 0

) (
0 a
a∗ b

) (
I 0
x∗ 0

)
=
(
ax∗ + xa∗ + xbx∗ 0

0 0

)
,

or equivalently, x ∈ L(N⊥,N ) is a solution of the equation

ax∗ + xa∗ + xbx∗ = 0. (5.3)

Thus, in order to describe the set of J-normal projections onto the J-neutral
subspace N , the above equation has to be solved. The following result provides
a parametrization for the set of solutions of (5.3).

Lemma 5.8. Let N be a J-neutral subspace of H. Then, x ∈ L(N⊥,N ) is
a solution of (5.3) if and only if there exist operators A ∈ L(N ) and B ∈
L(N⊥,N ) such that A is antihermitian, J(N ) ⊆ N(B) and

x = (A− 1
2BbB

∗)a+B.

Proof. Recall that the operators a and b considered in (5.3) satisfy the conditions
in (5.2). First, suppose that x ∈ L(N⊥,N ) is a solution of (5.3). Since a∗a +
b2 = IN⊥ , x can be written as x = x1 + x2, where x1 = xa∗a and x2 = xb2.

Observe that x2a
∗ = x1b = 0. Thus, 0 = ax∗ + xa∗ + xbx∗ = ax∗1 + x1a

∗ +
x2bx

∗
2. In other words,

2 Re(x1a
∗) = ax∗1 + x1a

∗ = −x2bx
∗
2.

So, the antihermitian operator A = i Im(x1a
∗) ∈ L(N ) satisfies

x1 = x1a
∗a = (A− 1

2x2bx
∗
2)a.

Then, considering B = x2 = x(IN⊥ − a∗a) ∈ L(N⊥,N ) it follows that J(N ) ⊆
N(B) and

x = (A− 1
2BbB

∗)a+B.

Conversely, given an antihermitian operator A ∈ L(N ) and B ∈ L(N⊥,N ) such
that J(N ) ⊆ N(B), consider

x := (A− 1
2BbB

∗)a+B.
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Then, it is easy to see that xa∗ = A− 1
2BbB

∗ and xbx∗ = BbB∗. Therefore,

xa∗ + ax∗ + xbx∗ = (A− 1
2BbB

∗) + (−A− 1
2BbB

∗) +BbB∗ = 0,

i.e. x ∈ L(N⊥,N ) is a solution of (5.3).

Proposition 5.9. Let N be a J-neutral subspace of H. Then, P ∈ L(H) is a
J-normal projection onto N if and only if there exist A = −A∗ ∈ L(N ) and
B ∈ L(N⊥,N ) with J(N ) ⊆ N(B) such that

P =
(
I (A− 1

2BbB
∗)a+B

0 0

)
,

according to the orthogonal decomposition H = N ⊕N⊥.

6 A parametrization for the set of J-normal pro-
jections

Let S be a pseudo-regular subspace of a Krein space H with fundamental sym-
metry J , and denote

QS = {Q ∈ L(H) : Q2 = Q, QQ# = Q#Q and R(Q) = S}.

The aim of this section is to present an explicit parametrization of QS . First,
notice that there are as many projections in QS as in QS◦ .

Lemma 6.1. Suppose that S is a pseudo-regular subspace of H. If P is a J-
normal projection onto S◦ then there is a unique J-normal projection Q onto S
such that P is the neutral part of Q, i.e. P = Q(I −Q)#.

Proof. Suppose that S is a pseudo-regular subspace of H and consider T = S ∩
N(P ). Since P is a projection onto S◦ ⊆ S, given s ∈ S, (I−P )s ∈ S+S◦ = S.
So that, (I − P )s ∈ S ∩N(P ). Therefore,

S = S◦ u T .

Then, by Proposition 4.1, T is a regular subspace of H. Let E be the J-
selfadjoint projection onto T .

Notice that EP = 0 because S◦ ⊆ S [⊥] ⊆ T [⊥]. On the other hand,
R(E) = T ⊆ N(P ). So, PE = 0 and, since E is J-selfadjoint, the follow-
ing commutativity relations have been established:

EP = PE = 0 and EP# = P#E = 0.

Now, define Q = E+P . Then, by Theorem 3.1, Q is a J-normal projection and
P = Q− E = Q−QQ# = Q(I −Q#).

Finally, suppose that there is another J-normal projection Q′ ∈ L(H) onto
S such that P = Q′(I −Q′)#. Then, E′ = Q′ − P = Q′(Q′)# is a J-selfadjoint
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projection onto a subspace of S. Notice that R(E′) ⊆ N(P ) because PE′ = 0.
Hence, R(E′) ⊆ T . But,

R(E′) u S◦ = S = T u S◦.

Thus, R(E′) = T and, by the uniqueness of the J-selfadjoint projection onto a
regular subspace, E′ = E.

Theorem 6.2. Given a pseudo-regular subspace S of H with isotropic part S◦,
there is a (continuous) bijection between QS and QS◦ .

Proof. For a fixed pseudo-regular subspace S of H, let Φ : QS → QS◦ be defined
by

Φ(Q) = Q(I −Q#).

It follows by the above lemma that Φ is bijective, because for every P ∈ QS◦
there exists a unique Q ∈ QS such that Φ(Q) = P .

Corollary 6.3. Let S be a pseudo-regular subspace of a Krein space H with
fundamental symmetry J . Then, there is a unique J-normal projection Q onto
S if and only if S◦ = {0}. Moreover, in this case Q is J-selfadjoint.

Proof. If S◦ = {0} then S is a regular subspace and there exists a (unique)
J-selfadjoint projection onto S. Moreover, if Q is a J-normal projection onto S
then, by Theorem 3.1, Q = E+P where E is J-selfadjoint and P is a projection
onto S◦ = {0}. Thus, P = 0 and Q = E.

On the other hand, if S◦ 6= {0} then, as a consequence of Theorem 6.2 and
Proposition 5.6, there are infinitely many J-normal projections onto S.

By Proposition 4.1, for a fixed pseudo-regular subspace S of H, if S◦ is the
isotropic part of S andM is a subspace of S such that S = S◦[u]M (i.e. M is
a complement of S◦ in S), then M is a regular subspace of H. Hence, consider

QS,M = {Q ∈ QS : QQ# = EM},

where EM stands for the J-selfadjoint projection onto M.
Notice that QS can be written as the disjoint union of the family QS,M, as

M varies on the complements of S◦ in S:

Lemma 6.4. If S is a pseudo-regular subspace of H, then

QS =
⋃̇
{M: S=S◦[u]M}

QS,M, (6.1)

where ∪̇ denotes a disjoint union.

Proof. It is obvious that QS =
⋃
{M: S=S◦[u]M}QS,M. Suppose that Q ∈

QS,M1 ∩QS,M2 , where M1 and M2 are regular subspaces of H. Then,

EM1 = QQ# = EM2 ,

or equivalently, M1 =M2. Hence, QS,M1 = QS,M2 .
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Parametrizing the deck QS,M for a pseudo-regular subspace
S
The following paragraphs are devoted to studying those J-normal projections
onto S which have a fixed regular part. Along this section operators are treated
as block-operator matrices according to the orthogonal decomposition

H = S◦ ⊕ (S 	 S◦)⊕ S⊥,

and PS⊥ , PS◦ and PS	S◦ denote the orthogonal projections onto S⊥, S◦ and
S 	 S◦, respectively.

If M is a regular subspace of H such that S = S◦[u]M, it is necessary to
describe the fundamental symmetry J and the J-selfadjoint projection EM onto
M as block-operator matrices.

Lemma 6.5. If S is a pseudo-regular subspace of H, then J is represented as
the block-operator matrix

J =

 0 0 a
0 b c
a∗ c∗ d

 S◦
S 	 S◦
S⊥

, (6.2)

where a ∈ L(S⊥,S◦), b = b∗ ∈ GL(S 	 S◦), c ∈ L(S⊥,S 	 S◦) and d = d∗ ∈
L(S⊥) satisfy the following equations:

aa∗ = IS◦

b2 + cc∗ = IS	S◦

a∗a+ c∗c+ d2 = IS⊥
bc+ cd = ad = ac∗ = 0

. (6.3)

Proof. Notice that PS◦JPS◦ = 0 because S◦ is J-neutral. Also, PS◦JPS	S◦ = 0
because S 	 S◦ ⊆ S and S◦ ⊆ S [⊥]. Then,

J =

 0 0 a
0 b c
a∗ c∗ d

 .

On the other hand, the system of equations (6.3) follows from J2 = I.
By Proposition 4.1, S 	 S◦ is a regular subspace of H. Furthermore, the

regularity of S 	 S◦ is equivalent to the range inclusion

R(c) ⊆ R(b),

see [7, Prop. 3.3]. Then, the second equation in (6.3) implies that S	S◦ ⊆ R(b).
Hence, b is an invertible selfadjoint operator in L(S 	 S◦).

Remark 6.6. Observe that the operator a ∈ L(S⊥,S◦) appearing in the above
lemma is a coisometry. Then, a∗ ∈ L(S◦,S⊥) is a partial isometry with final
space J(S◦).
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Indeed, by the block-operator matrix representation of J given in (6.2), it is
easy to see that R(a∗) = J(S◦). Hence,

R(a∗a) = R(a∗) = J(S◦). (6.4)

Thus, a∗a ∈ L(S⊥) is the orthogonal projection onto J(S◦).
The following lemma presents a block-matrix representation for the J-selfadjoint

projection EM onto a particular complementM of S◦ in S. This is a technical
tool necessary to parametrize the deck QS,M.

Lemma 6.7. Given a pseudo-regular subspace S of H, let M be a complement
of S◦ in S. Then, the J-selfadjoint projection onto M is

EM =

 0 ar∗b ar∗(c+ br)
0 I b−1c+ r
0 0 0

 , (6.5)

where r = PS	S◦EMPJ(S◦)|S⊥ ∈ L(S⊥,S 	 S◦).

Proof. Suppose that S is a pseudo-regular subspace of H. Then, by Proposition
4.1, M is regular.

Denote by EM the J-selfadjoint projection ontoM. Since R(EM) =M⊆ S
it follows that PS⊥EM = 0, so that the third row in the matrix representation
of EM is zero. Also, since S◦ ⊆ S [⊥] ⊆ M[⊥] = N(EM), it follows that
EMPS◦ = 0. So that the first column is also zero. Therefore,

EM =

 0 u v
0 p q
0 0 0

 ,

where u ∈ L(S 	 S◦,S◦), v ∈ L(S⊥,S◦), p ∈ L(S 	 S◦) and q ∈ L(S⊥,S 	 S◦)
satisfy 

up = u
uq = v
p2 = p
pq = q

.

Thus, p = PS	S◦EM|S	S◦ is a projection with

R(p) = PS	S◦EM(S	S◦) = PS	S◦EM(S) = PS	S◦(M) = PS	S◦(S) = S	S◦,

because S◦ ⊆ N(PS	S◦) ∩N(EM). Hence, p = IS	S◦ .
Furthermore, EM is J-selfadjoint if and only if

JEM =

 0 0 0
0 b bq
0 a∗u+ c∗ (a∗u+ c∗)q


is selfadjoint, or equivalently, if

a∗u+ c∗ = q∗b. (6.6)
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By (6.3), aa∗ = IS◦ and ac∗ = 0. Thus, multiplying on the left by a, it follows
that u = aq∗b. Thus,

EM =

 0 aq∗b aq∗bq
0 I q
0 0 0

 ,

where q = PS	S◦EM|S⊥ . Replacing u is (6.6), notice that q satisfies a∗aq∗b +
c∗ = q∗b, or equivalently,

q = q(a∗a) + b−1c.

Therefore, if r = q(a∗a) then aq∗b = a(c∗b−1+r∗)b = ar∗b, and (6.5) follows.

Finally, a block-matrix representation of a projection Q ∈ L(H) onto S is
needed. Since R(Q) = S, observe that PS◦QPS◦ = PS◦ , PS	S◦QPS	S◦ =
PS	S◦ and

PS◦QPS	S◦ = PS	S◦QPS◦ = 0.

Then, Q is represented as the block-operator matrix

Q =

 I 0 x
0 I y
0 0 0

 , (6.7)

where x = PS◦Q|S⊥ ∈ L(S⊥,S◦) and y = PS	S◦Q|S⊥ ∈ L(S⊥,S 	 S◦).
Furthermore, ifQ ∈ QS,M then, by Theorem 3.1, P = Q−EM is a projection

onto S◦ such that PP# = P#P = 0. Moreover, by (6.5), P has the form

P = Q− EM =

 I −ar∗b x− ar∗(c+ br)
0 0 y − b−1c− r
0 0 0

 .

But, R(P ) = S◦ if and only if

y = b−1c+ r.

Also, PP# = 0 if and only if PJP ∗ = 0, or equivalently, I −ar∗b z
0 0 0
0 0 0

 0 0 a
0 b c
a∗ c∗ d

 I 0 0
−bra∗ 0 0
z∗ 0 0

 = 0,

where z = x− ar∗(c+ br). But the above equation is equivalent to

z(I − r∗bc)∗a∗ + a(I − r∗bc)z∗ + zdz∗ + ar∗b3ra∗ = 0. (6.8)

The following lemma is devoted to describe the solutions of (6.8), where a,
b, c, d and r are the operators appearing in (6.2) and in (6.5).
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Lemma 6.8. An operator z ∈ L(S⊥,S◦) is a solution of (6.8) if and only if
there exist A = −A∗ ∈ L(S◦) and B ∈ L(S⊥,S◦) with J(S◦) ⊆ N(B) such that

z = (A+ Re(Bc∗bra∗)− 1
2 (BdB∗ + ar∗b3ra∗))a+B.

Proof. Let z ∈ L(S⊥,S◦) be a solution of (6.8) and consider the operators

z1 = z(a∗a) and z2 = z(IS⊥ − a∗a).

Notice that z1(I − r∗bc)∗a∗ + a(I − r∗bc)z∗1 = z1a
∗ + az∗1 = 2 Re(z1a∗) because

ac∗ = ca∗ = 0. Also,

z2(I − r∗bc)∗a∗ + a(I − r∗bc)z∗2 = −z2c∗bra∗ − ar∗bcz∗2 = −2 Re(z2c∗bra∗),

because z2a∗ = az∗2 = 0. On the other hand, since ad = da∗ = 0 it is easy to
see that

zdz∗ = (z1 + z2)d(z1 + z2)∗ = z2dz
∗
2 .

Therefore, (6.8) is equivalent to

2 Re(z1a∗) = 2 Re(z2c∗bra∗)− z2dz∗2 − ar∗b3ra∗. (6.9)

Then, considering the antihermitian operator A = i Im(z1a∗) ∈ L(S◦), it follows
that

z1 = (z1a∗)a = (i Im(z1a∗) + Re(z1a∗))a
= (A+ Re(z2c∗bra∗)− 1

2 (z2dz∗2 + ar∗b3ra∗))a.

Hence, B = z2 ∈ L(S⊥,S◦) satisfies J(S◦) ⊆ N(B) and

z = z1 + z2 = (A+ Re(Bc∗bra∗)− 1
2 (BdB∗ + ar∗b3ra∗))a+B.

Conversely, given an antihermitian operator A ∈ L(S◦) and B ∈ L(S⊥,S◦) such
that N(b)⊥ ⊆ N(d), consider

zA,B := (A+ Re(Bc∗bra∗)− 1
2 (BdB∗ + ar∗b3ra∗))a+B.

Then, it is easy to see that zA,B ∈ L(S⊥,S◦) is a solution of (6.8).

Finally, it is possible to parametrize the deck QS,M as follows:

Theorem 6.9. Let Q ∈ L(H) be a projection onto a pseudo-regular subspace S
of H. Suppose that M is a regular subspace of H such that S = S◦uM. Then,
Q ∈ QS,M if and only if

Q =
(

I 0 (A + Re(Bc∗bra∗) − 1
2 (BdB∗ + ar∗b3ra∗))a + B + ar∗(c + br)

0 I b−1c + r
0 0 0

)
, (6.10)

where r = PS	S◦EM(a∗a) ∈ L(S⊥,S 	 S◦), A = −A∗ ∈ L(S◦) and B ∈
L(S⊥,S◦) is such that J(S◦) ⊆ N(B).
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Proof. Suppose that Q ∈ QS,M, i.e. Q ∈ L(H) is a J-normal projection onto
S satisfying QQ# = Q#Q = EM. Then, P = Q− EM is a projection onto S◦
such that PP# = P#P = 0. Hence, if Q is written as in (6.7) it follows that
y = b−1c.

Then, by the discussion above,

P =

 I −ar∗b x− ar∗(c+ br)
0 0 0
0 0 0

 ,

where z = x− ar∗(c+ br) is a solution of (6.8). Thus, by Proposition 6.8, there
exist A = −A∗ ∈ L(S◦) and B ∈ L(S⊥,S◦) with J(S◦) ⊆ N(B) such that

P =

 I −ar∗b (A+ Re(Bc∗bra∗)− 1
2 (BdB∗ + ar∗b3ra∗))a+B

0 0 0
0 0 0

 .

Therefore,

Q =
(

I 0 (A + Re(Bc∗bra∗) − 1
2 (BdB∗ + ar∗b3ra∗))a + B + ar∗(c + br)

0 I b−1c + r
0 0 0

)
.

The converse follows immediately.

Given a pseudo regular subspace S of H, denote by C(S◦) the set of comple-
ments of S◦ in S. Recall that, by Lemma 6.4, the set of J-normal projections
onto S is decomposed as

QS =
⋃̇
M∈C(S◦)

QS,M.

Furthermore, for a fixedM∈ C(S◦), Theorem 6.9 states that the deck QS,M is
parametrized by the bijection ΨM : AH(S◦)×N◦ → QS,M given by

ΨM(A,B) =
(

I 0 (A + Re(Bc∗bra∗) − 1
2 (BdB∗ + ar∗b3ra∗))a + B + ar∗(c + br)

0 I b−1c + r
0 0 0

)
,

where AH(S◦) stands for the real vector space of antihermitian operators acting
on S◦ and N◦ is the set composed by those operators B ∈ L(S⊥,S◦) such that
J(S◦) ⊆ N(B).

Therefore, the set QS of J-normal projections onto S is parametrized as
follows:

Theorem 6.10. Let S be a pseudo-regular subspace of H. Then, the function
Ψ : RC(S◦)×AH(S◦)×N◦ → QS defined by

Ψ(M, A,B) =
(

I 0 (A + Re(Bc∗bra∗) − 1
2 (BdB∗ + ar∗b3ra∗))a + B + ar∗(c + br)

0 I b−1c + r
0 0 0

)
,

is one-to one.

22



Observe that in the expression defining Ψ appears the operator

r = PS	S◦EMPJ(S◦)|S⊥ ∈ L(S⊥,S 	 S◦),

given in Lemma 6.7, where PS	S◦ and PJ(S◦) are the orthogonal projections
onto S 	 S◦ and J(S◦), respectively, and EM is the J-selfadjoint projection
onto M.

An interesting particular deck: QS,S	S◦

Let S be a fixed pseudo-regular subspace of a Krein space H with fundametal
symmetry J . These paragraphs are devoted to describe the set QS,S	S◦ , i.e.
the family of J-normal projections Q ∈ L(H) onto S such that QQ# is the
J-selfadjoint projection onto the (regular) subspace S 	 S◦. In this particular
deck there is a minimal norm projection, see Remark 6.12.

First of all, since S 	 S◦ is a complement of S◦ in S, it follows by Lemma
6.7 that the J-selfadjoint projection onto S 	 S◦ (hereafter denoted by E) is
the block-operator matrix given by (6.5), where

r = PS	S◦EPJ(S◦)|S⊥ ∈ L(S⊥,S 	 S◦).

But, J(S◦) ⊆ J(S◦) + S [⊥] = J(S◦ + S⊥) = J((S 	 S◦)⊥) = N(E). Therefore,
r = 0 and the block-operator matrix representation of E is

E =

 0 0 0
0 I b−1c
0 0 0

 .

Furthermore, as a consequence of Theorem 6.9, QS,S	S◦ is parametrized as:

Proposition 6.11. Let S be a pseudo-regular subspace of a Krein space H with
fundametal symmetry J . A projection Q onto S satisfies QQ# = Q#Q = E if
and only if

Q =

 I 0 (A− 1
2BdB

∗)a+B
0 I b−1c
0 0 0

 , (6.11)

where a, b, c and d are the operators appearing in (6.2), A = −A∗ ∈ L(S◦) and
B ∈ L(S⊥,S◦) is such that J(S◦) ⊆ N(B).

Remark 6.12. In this particular case it is possible to estimate

min{‖Q‖ : Q ∈ QS,S	S◦}.

Indeed, if P0 is the orthogonal projection onto S◦ and E stands for the J-
selfadjoint projection onto S 	S◦, then Q0 = E+P0 ∈ QS,S	S◦ . Furthermore,

‖Q0‖2 = ‖Q0Q
∗
0‖ = ‖EE∗ + P0‖ = max{‖EE∗‖, ‖P0‖} = ‖EE∗‖ = ‖E‖2,
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because R(EE∗) = S	S◦ is orthogonal to R(P0) = S◦. Therefore, ‖Q0‖ = ‖E‖.
On the other hand, if Q ∈ QS,S	S◦ then there exists a (unique) P = P 2 ∈

L(H) such that PP# = P#P = 0 and Q = E + P .
Consider a sequence {xn}n≥1 in the unit ball of H such that ‖Exn‖ → ‖E‖

as n→∞. Then,

‖Q‖2 ≥ ‖Qxn‖2 = ‖Exn‖2 + ‖Pxn‖2 ≥ ‖Exn‖2 → ‖E‖2 = ‖Q0‖2.

Hence, ‖Q0‖ = min{‖Q‖ : Q ∈ QS,S	S◦}.
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