
Accepted Manuscript

The first non-aristonectine elasmosaurid (Sauropterygia; Plesiosauria) cranial material
from Antarctica: New data on the evolution of the elasmosaurid basicranium and
palate

José P. O'Gorman, Rodolfo A. Coria, Marcelo Reguero, Sergio Santillana, Thomas
Mörs, Magalí Cárdenas

PII: S0195-6671(17)30509-8

DOI: 10.1016/j.cretres.2018.03.013

Reference: YCRES 3833

To appear in: Cretaceous Research

Received Date: 22 November 2017

Revised Date: 10 March 2018

Accepted Date: 15 March 2018

Please cite this article as: O'Gorman, José.P., Coria, R.A., Reguero, M., Santillana, S., Mörs, T.,
Cárdenas, Magalí., The first non-aristonectine elasmosaurid (Sauropterygia; Plesiosauria) cranial
material from Antarctica: New data on the evolution of the elasmosaurid basicranium and palate,
Cretaceous Research (2018), doi: 10.1016/j.cretres.2018.03.013.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.cretres.2018.03.013


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 1 

The first non-aristonectine elasmosaurid (Sauropterygia; Plesiosauria) cranial material from 

Antarctica : new data on the evolution of theelasmosaurid basicranium and palate  

  

José P. O'Gormana, b,*, Rodolfo A., Coriab,c, Marcelo Regueroa,b,d, Sergio Santillanad, Thomas 

Mörse, Magalí Cárdenas.f 

 

aDivisión Paleontología Vertebrados, Museo de La Plata, Universidad Nacional de La Plata, 

Paseo del Bosque s/n., B1900FWA, La Plata, Argentina. joseogorman@fcnym.unlp.edu.ar; 

regui@fcnym.unlp.edu.ar 

bCONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina; 

cMuseo Carmen Funes, Av. Córdoba 55 (8318), Plaza Huincul, Neuquén, Argentina. 

rcoria@unrn.edu.ar  

dInstituto Antártico Argentino, 25 de Mayo 1143, B1650HMK San Martín, Buenos Aires, 

Argentina. ssantillana@dna.gov.ar 

eDepartment of Palaeobiology, Swedish Museum of Natural History, P.O. Box 50007, SE-104 

05 Stockholm, Sweden. thomas.moers@nrm.se 

fInstituto de Investigaciones en Paleobiología y Geología, Universidad Nacional de Río Negro, 

Av. Roca 1242 (8332), Gral. Roca, Río Negro Province, Argentina. mcardenas@unrn.edu.ar  

 

RH: O'Gorman et al.—Elasmosaurid cranium from Antarctica 

 

 

*Corresponding author: O'Gorman J.P. 

 

 

ABSTRACT— Elasmosaurids are a monophyletic group of cosmopolitan plesiosaurs 

with extremely long necks. Although abundant elasmosaurid material has been collected 
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from the Upper Cretaceous of Antarctica, skull material is extremely rare. Here, new 

elasmosaurid cranial material from the lower Maastrichtian levels of the Cape Lamb 

Member (Snow Hill Island Formation) on Vega Island, Antarctica is described. The 

studied specimen (MLP 15-I-7-6) is a non-aristonectine elasmosaurid but shows a palate 

morphology characterized by the absence of a posterior interpterygoid symphysis and a 

posterior plate-like extension of the pterygoids, features previously associated with the  

aristonectine palatal structure. The specimen MLP 15-I-7-6 thus provides an indication 

that these palatal features are also present in non-aristonectine Weddellian 

elasmosaurids, and makes available additional evidence of the close phylogenetical 

relationship between the aristonectines and some Weddellian non-aristonectine 

elasmosaurids. 

 

1. Introduction 

 

Elasmosaurids are a monophyletic group of plesiosaurs with extremely long 

necks. The biochron of this clade extends from the Early Cretaceous up to the 

Maastrichtian/Danian boundary (Ketchum and Benson, 2010, 2011; Benson and 

Druckenmiller, 2014). With a cosmopolitan distribution, it is one of the most frequently 

recorded groups of marine reptiles in the Late Cretaceous (Welles, 1962; Brown, 1981; 

Carpenter, 1999). 

Remains of Antarctic Cretaceous elasmosaurids comprise tens of specimens 

spanning between the lower Campanian and the K/T limit (O'Gorman, 2012). With the 

remarkable exception of the holotype of Morturneria seymouriensis, the Antarctic 

plesiosaur specimens collected so far have not preserved any informative cranial 
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material (Chatterjee and Small, 1989; Gasparini et al., 2003; Martin et al., 2007; 

O'Gorman et al., 2012).  

During the 2015 Antarctic fieldwork season in the outcrops of the Cape Lamb 

Member of the Snow Hill Island Formation on Vega Island (Fig.1A-C), the authors 

collected a new elasmosaurid specimen (MLP 15-I-7-6), that preserved an incomplete 

skull represented by the basicranium and portion of the palate, associated with an 

incomplete postcranium (Coria et al., 2015). In this contribution, we describe this 

specimen and provide new information about the basicranial and palatal anatomy of 

elasmosaurids.   

Institutional Abbreviations. CD, Chordata collection, National Paleontological 

Collection, GNS Science, Lower Hutt, New Zealand;  CM, Canterbury Museum, 

Christchurch, New Zealand; DM, Museum of New Zealand Te Papa Tongarewa, 

Wellington, New Zealand; MLP, Museo de la Plata, Buenos Aires Province, Argentina; 

MML PV, Museo Municipal de Lamarque, Río Negro Province, Argentina;; OU, 

Otago Museum, Dunedin, New Zealand; SGO.PV., Área Paleontología, Museo 

Nacional de Historia Natural, Santiago, Chile; UCMP, University of California 

Museum of Paleontology, California, USA; SMNS, Staatliches Museum fur 

Naturkunde, Stuttgart, Germany; SMPSMU, Shuler Museum of Paleontology, Southern 

Methodist University, Dallas, Texas, U.S.A. 

Anatomical Abbreviations. atc, atlantal cup; atrf, atlas rib facet; bo, basioccipital; 

bot, basioccipital tuberosity; bps, basiparasphenoid; cf, carotid foramina; ct, crista 

trabecularis ; ds, dorsum sellae; epi, epipterygoid; exo, exoccipital; lk, lateral keel; oc, 

occipital condyle; pa, parapophysis; pf, pedicellar facet; piv, posterior interpterygoid 

vacuity; pk, parasphenoid keel; plp, posterior plate-like extension of pterygoid; pop, 

paraoccipital process; pt, pterygoid; qpp, quadrate pterygoid process; q, quadrate; sq, 
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squamosal; st, sella turcica; vf, ventral foramen; vn, ventral notch; VI, foramen for VI 

cranial nerve. 

 

2. Geological Setting 

 

The specimen MLP 15-I-7-6 was collected from the eastern side of Cape Lamb, 

on the southern shore of Vega Island, in levels corresponding to the middle part of the 

Cape Lamb Member of the Snow Hill Island Formation (Fig. 1), Marambio Group 

(Olivero, 2012). At Vega Island, these levels are represented by a coarsening upward 

column about 217 m thick, comprising levels of highly fossiliferous, bioturbated sandy 

mudstones and muddy sandstones and medium grained cross-bedded sparsely 

fossiliferous sandstones (Marenssi et al., 2001). This succession of sediments was 

deposited in a shallow environment characterized by basalmost offshore mudstones, and 

very fine-grained silty sandstones that pass gradationally upwards into proximal, 

nearshore marine, clean sandstone beds (Fig. 2; Pirrie et al., 1991; Olivero et al., 1992, 

2008; Marenssi et al., 2001). The Cape Lamb Member transitionally overlies the 

Herbert Sound Member of the Snow Hill Island Formation and it is separated by an 

unconformity from the overlying Sandwich Bluff Member of the López de Bertodano 

Formation (Marenssi et al., 2001; Crame et al., 2004; Olivero, 2012). 

The fossil fauna recognized from this member includes ammonoids genera  

Gunnarites, Diplomoceras, and Jacobites the nautiloid Eutrephoceras, the bivalves 

Pinna and Lahillia, annelids and decapods such as Hoploparia (Pirrie et al., 1991; 

Olivero et al., 1992), plesiosaurs (Martin et al., 2007; O'Gorman et al., 2012, 2015) and 

dinosaurs (Hooker et al., 1991; Coria et al., 2015; Rozadilla et al., 2016). Based on the 

ammonite fauna, Olivero (2012) placed the Snow Hill Island Formation within the 
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upper Campanian–lower Maastrichtian NG Sequence. The specimen MLP 15-I-7-6 

comes from the Ammonite Assemblange 10 sensu Olivero and Medina (2000) and 

Olivero (2012), and is early Maastrichtian in age (Olivero and Medina, 2000; Crame et 

al., 2004; Olivero, 2012). 

 

3. Methods 

 

The fossil was prepared using Micro Jack and ME 9100 jackhammers. Linear 

measurements were taken using a digital caliper. The indices considered are those 

proposed by Welles (1952), which take into account the length (L), the height (H)-

length centrum ratio (HI = 100 * H / L), and the breadth (B)-length centrum ratio (BI = 

100 * B / L). Also, the breadth-height centrum ratio (BHI = 100 * B / H) was 

considered. Both breadth and height were measured on the posterior articular face. Also, 

the degree of vertebral elongation (Vertebral Length Index, Brown, 1981) is used (VLI 

= L / (0.5 * (H + B))).  

In ordet to describe the basisphenoid anatomy the following therms are used. The 

sella turcica is that part of the basisphenoid that sustains the hypophysis (pituitary). The 

sella turcica contains a central recess, bounded laterally by the crista trabecularis and 

posteriorly by the dorsum sellae, forming a recess called “pituitary fossa” (Edinguer, 

1942). Following Zverkov et al. (2017) the size of the sella turcica is represented as the 

area of an ellipse in which the length and width of the sella turcica are considered as 

major and minor axes. In order to quantify the shape and relative size of the sella 

turcica, the ratios sella turcica length /sella turcica width; 100* sella turcica 

length/basicranium length and 100*(sella turcica surface)1/2/basicranial length were 

considered. 
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The ontogenetic developmental categories proposed by Brown (1981), based on 

the fusion of the neural arch to the vertebral centrum, were considered to to differentiate 

the ‘adult’ from the ‘juvenile’ growth stages. 

 

4, Systematic Paleontology 

 

Sauropterygia Owen, 1860 

Plesiosauria de Blainville, 1835 

Plesiosauroidea Welles, 1943 

Elasmosauridae Cope, 1869 

Weddellonectia O'Gorman and Coria, 2017 

Weddellonectia indet. 

Fig. 3-7  

Material. MLP 15-I-7-6, partial skull comprising caudal half of pterygoids, 

basisphenoid, basioccipital, squamosal, exoccipital-opisthotic (Figs 3, 4); cervical, 

dorsal, sacral and caudal centra; cervical and dorsal ribs, partially preserved coracoid, 

two partially preserved propodials (Figs. 5, 6). 

Locality and Horizon. Cape Lamb, Vega Island, Antarctic Peninsula, James Ross 

Archipelago; Cape Lamb Member of the Snow Hill Island Formation. Assemblage 10 

of Olivero and Medina (2000), lower Maastrichtian. 

 

5. Description 

5.1. General Features  

The specimen MLP 15-I-7-6 was collected almost disarticulated over a distance of 

six meters. Most of the disarticulation was produced by recent solifluction weathering. 
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Some sectors show articulated centra, indicating that the original condition was sub-

articulated (Fig. 6F, I, L). 

5.2. Skull  

The preserved sector of the skull comprises part of the posteroventral zone of the 

cranium, which encompasses basioccipital, basiparasphenoid (basisphenoid + 

parasphenoid) and exoccipital-opisthotic, posterior part of the pterygoids and squamosal 

(Figs 3A, B). The basiparasphenoid and pterygoids maintain their relative natural 

position but the basioccipital was found caudally displaced and rotated, suggesting it 

was not solidly fused. This condition could be attributed to the juvenile condition of the 

specimen. However, the absence of complete synostotic articulation between these 

elements has been recorded in adult elasmosaurids such as the holotype of Libonectes 

morgani and Tuarangisaurus keyesi (Carpenter, 1997; O'Gorman et al., 2017). 

Squamosal. Only the caudal part of the left squamosal is preserved. It shows two 

lateral projections separated by an unossified area. The posterior margin bears an 

inflexion and a longitudinal sulcus on its dorsalmost part (Fig. 5I, J).  

Pterygoid. The pterygoids are represented only by the caudal halves of both 

elements (Fig. 4). Each pterygoid delimits cranially and laterally the cultriform process 

of the basiparasphenoid, although no suture is visible (Fig. 4). Caudally, the pterygoids 

form the lateral limits of the posterior interpterygoid vacuity (piv hereafter). Caudally to 

the piv, the pterygoids articulate medially with the basioccipital through a medially 

directed small lip. They do not meet in the midline and no posterior interpterygoid 

symphysis is present (Fig. 4). Each pterygoid forms a plate located laterally to the piv. 

These plates are divided into a relatively flat, medially located area and a strongly 

latero-ventrally inflected zone that projects caudally. The caudal projection of 

pterygoids forms a posterior plate-like expansion almost at the level of the tip of the 
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occipital condyle in which the ventral surface become progressively medially  oriented 

(Fig. 4). The presence of this pterygoid plate-like expansion has been observed only 

among aristonectine elasmosaurids. However, the condition recorded in Aristonectes 

quiriquinensis, Kaiwhekea katiki and Alexandronectes zealandiensis shows differences 

as the ptyerygoid posterior extension extends far posterior the occipital condyle (Otero 

et al., 2016). 

Epipterygoid. Only the left epipterygoid is preserved (Fig. 3, 5A). It is a medio-

laterally compressed plate with a rounded end located laterally to the sella turcica (Fig. 

5A).  

Basioccipital. The basioccipital forms the entire occipital condyle, which is 17.2 

mm wide and 14.7 mm high (Fig. 5C-G). The condyle is strongly convex and does not 

show a well-defined neck. The basioccipital tuberosities project laterally and bear 

distally a concave surface facing antero-laterally. The dorsal surface is almost flat with 

two poorly defined exoccipital facets. The basioccipital body tapers cranially and its 

anterior end is elliptical. 

Basiparasphenoid complex. The parasphenoid and basisphenoid are completely 

fused constituting a basiparasphenoid complex. The parasphenoid contributes to the 

complex with the ventral area of it, forming a sharp ventral keel and a ventral projection 

that contacts with the basioccipital (Fig. 34). In dorsal view, the lateral margins of the 

basisphenoid are concave. The anterior margin, which forms the dorsum sellae, is also 

strongly concave, forming an open “U” shaped notch, limited by two anterolateral rami 

(Fig. 4). The clinoid processes are absent. On the dorsal surface of the basisphenoid no 

facets for the prootic or ventral margin of fenestra ovalis are observed. The 

basipterygoid process is lateroventrally directed. The floor of the sella turcica is a 

concave area that ends cranially in a marked V-shaped notch. The crista trabecularis is 
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a convex area but not as marked as in Tuarangisaurus keyesi and Libonectes morgani 

(O'Gorman et al., 2017; Serratos et al., 2017: fig. S5). The anterior exit for the VI 

cranial nerve is located laterally to the internal carotid foramen, in a deep caudal 

excavation of the sella turcica, (Fig. 5A, B).  

Exocipital-opistootic. The left exoccipital and opisthotic are completely fused. 

The paraoccipital process is thin and shows no expanded end (Fig. 5H).  

 

5.3. Axial Skeleton The axial skeleton recovered is represented mostly by vertebral 

centra without neural arches or ribs fused. Only a few fragments of girdles and limb 

elements are preserved. 

Cervical region. There are twenty-nine recovered cervical vertebrae, including the 

atlas and axis. The atlas-axis complex lacks the neural arch and the atlas hypocentrum 

(Fig. 6A-E). The dorsal surface shows the pedicellar bases of the atlas pedicels and the 

pedicellar facets for the axial neural arch (Fig. 6B). The ventral surface bears a ventral 

keel that is not complete because of the lack of the atlas hypocentrum (Fig. 6D). 

Posterior to the ventral keel, there are two ventral foramina. The posterior articular face 

is rectangular in shape. The parapophysis for the axial rib is formed by the contribution 

of both atlas and axis centra (Fig. 6C).   

 Almost all of the post atlas-axis centra are longer than high, and broader than long 

(Table I). In dorsal view, the pedicellar facets of the anterior centra are cranio-caudally 

elongated (Fig. 6M). On the floor of the neural canal there are two foramina (Fig. 6M). 

The lateral faces of some vertebrae show a lateral keel (Fig. 6I). The articular faces 

show a ventral notch (Fig. 6G, H). In ventral view, a pair of ventral foramina are visible 

(Fig. 6F, J, N). The prezygapophyses and postzygapophyses are confluent in the midline 

and strongly medially inclined.  
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Pectoral region. Only fragments of the pectoral region are preserved. However, 

they are too incomplete  for a detailed description.  

Dorsal region. Eight dorsal centra are well preserved. The articular faces have a 

circular outline. The lateral sides are cranio-caudally concave. The pedicellar facets are 

cranio-caudally elongate and concave. The dorsal centra are pierced by two to three 

ventral foramina located on the ventral to ventro-lateral surface of the centra (Fig. 6O-

R). 

Sacral region. Only the last sacral centrum is preserved. It is wider than high, and 

higher than long. On the ventral surface there is one ventral foramen (Fig. 7A-C). 

Caudal region. Only the first caudal vertebra and another from the middle part of 

the tail are preserved. They are broader than high, and higher than long. The first caudal 

vertebrae shows no haemal arch, whereas the other preserved centrum bear slightly 

developed haemal facets (Fig. 7F). Both centra show a single ventral foramen (Fig. 7C, 

F). 

5.4. Appendicular Skeleton 

Pectoral girdle. Only fragments of the girdles are preserved, including part of the 

coracoids that preserved a mid ventral process.  

Propodials. Two propodial elements are preserved (Fig. 7G-M), although their 

certain identification is not possible. Towards the proximal ends, there is a partially 

preserved muscle scar that allows a determination of the ventral margin of the bones. 

On the mid shaft, there are few and relatively large foramina (Fig. 7H, J). Both elements 

bear a slightly convex and rugose area almost on the anterior margin of the ventral 

surface. The pattern of fracture in the propodial permits a view of the clear separation 

between perichondral and endochondral ossification (Fig. 7I, M).  
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6. Discussion 

 

6.1. Ontogenetic stage and systematic affinities of MLP 15-I-7-6 

The juvenile ontogenic stage of MLP 15-I-7-6 is suggested by the following 

features: 1) the neural arches are not fused with the vertebral centra; 2) the cervical and 

caudal ribs are not fused with their corresponding vertebral centra, and 3) the way in 

which the propodials are broken indicates that the limit between the perichondral and 

endochondral bone was not affected by secondary remodeling (Brown, 1981; O'Gorman 

et al., 2017).  

The specimen MLP 15-I-7-6 shows unquestionable elasmosaurid affinities based 

on the dumbbell shape of the articular faces on cervical centra (Benson and 

Druckenmiller, 2014; Otero et al., 2014; Otero, 2016; O'Gorman, 2016). In turn, the 

presence of flat articular faces on cervical centra, cervical centra with zygapophyses 

fused in the midline, and zygapophyses narrower than the centra, are features shared by 

all elasmosaurids and independently acquired in other plesiosaurs such as 

Muraenosaurus leedsi (Benson and Druckenmiller, 2014).  

The specimen MLP 15-I-7-6 is here considered a non-aristonectine elasmosaurid 

because the values of the HI and BI indexes of the posterior cervical centra differ from 

those of juvenile aristonectines (O'Gorman et al., 2013, 2014a, b, Fig. 8) but also differd 

from the tipical proportions of adult non-aristonectines (Fig. 9). In addition, the 

posterior extension of the pterygoid of MLP 15-I-7-6 is shorter than previously recorded 

among aristonectines (Otero et al., 2016).  

However, the comparison of MLP 15-I-7-6 with the non-aristonectine taxa from 

the Weddellian Biogeographic Province (hereafter WBP): Tuarangisaurus keyesi 

Wiffen and Moisley, 1986, Kawanectes lafquenianum (Gasparini and Goñi) O'Gorman, 
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2016, and Vegasaurus molyi O'Gorman, Salgado, Olivero, Marenssi, 2015 is limited 

mainly for two reasons. First, the juvenile ontogenic stage of MLP 15-I-7-6 contrasts 

with the adult condition of the holotype specimens of the above-mentioned species, and 

second, the virtually total lack of postcranial material in the holotype of Tuarangisaurus  

keyesi (NPC CD 425 and NPC CD 426), and the unknown skulls of both Kawanectes 

lafquenianum and Vegasaurus molyi. 

The available skull material of Tuarangisaurus keyesi overlaps with almost all of 

the elements present in MLP 15-I-7-6 with the exception of the occipital condyle. The 

pterygoids of T. keyesi and MLP 15-I-7-6 show almost no differences. Even both show 

a triradiate cross section of pterygoid at the level of the basiparasphenoid and 

basioccipital suture (Fig. 10C). However, as this feature is also present in other 

elasmosaurids such as Libonectes morgani (see Carpenter, 1997:fig.5A)and therefore  

this feature seems to be not diagnostic at genus level. The absence of posterior 

pterygoid symphysis in MLP 15-I-7-6 cannot be contrasted with T. keyesi due to the 

deficient preservation in that area. The basisphenoid of T. keyesi shows a small anterior 

exit for the VI cranial nerve on the anterior surface of the dorsum sellae, whereas in 

MLP 15-I-7-6, the VI cranial nerve exits on the back of the sella turcica through two 

large foramina. In addition, the sella turcica of MLP 15-I-7-6 ends in a marked notch, 

which is absent in T. keyesi (O'Gorman et al., 2017). Recently the specimen CM Zfr 115 

was referred to Tuaragisaurus sp. and therefore it should be compared with MLP 15-I-

7-6. The dorsal surfaces of the basioccipitals of MLP 15-I-7-6 and CM Zfr 115 share 

the relatively wide separation between the exoccipital facets that differ from the 

observed in Alexandronectes zealandiensis. The cervical centra of MLP 15-I-7-6 are 

less elongated that the ones of CM Zfr 115, however this could be related with the 
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different growth stage as CM Zfr 115 is adult whereas MLP 15-I-7-6 belong to a 

juvenile individual (Fig. 9). 

With regard to the postcranial anatomy, cervical vertebrae bearing lateral keels are 

frequently present among elasmosaurids but they are absent in Aristonectes parvidens; 

Kaiwhekea katiki and Nakonanectes bradti (Cruckshank and Fordyce, 2002; O'Gorman, 

2016; Serratos et al., 2017). The proportions of the cervical centra of elasmosaurids 

(Fig. 9) vary during the ontogeny as the relative length of vertebral centra changes. Such 

changes generate an increment of VLI, and a decline of BI and HI values (O'Keefe and 

Hiller, 2006). Thus, MLP 15-I-7-6 is more similar to Vegasaurus molyi than to any 

other Weddellian elasmosaurids and part of the differences could be related to 

ontogenetic variation. However, as the general proportions of the vertebral centra 

should be taken with caution as diagnostic feature, the specimen here is regarded as 

Weddellonectia indet. The caudal vertebrae of MLP 15-I-7-6 show parapophyses that 

are not as laterally projected as in Kawanectes lafquenianum (O'Gorman, 2016). 

 

6.2. Palate Structure 

The palate area of MLP 15-I-7-6 (Fig. 10C) shows no posterior interpterygoid 

symphysis, and pterygoids extended until the level of the occipital condyle unlike the 

condition present in the non-aristonectine elasmosaurids Libonectes morgani and 

Callawayasaurus colombiensis (see Fig. 10A, B) where the pterygoid quadrate ramus 

shows a stick like morphology. In contrast, the posterior plate-like expansion of the 

pterygoid is similar to the condition present in the aristonectines Alexandronectes 

zealandiensis and Aristonectes quiriquinensis (Otero et al., 2016: fig. 9D; Fig 10D, Fig. 

11). However, the plate-like posterior expansion of the pterygoids in those taxa is 

extended far posterior the occipital condyle .   
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Although the juvenile condition of MLP 15-I-7-6 certainly affects the degree of 

ossification in several skull elements, the pterygoids show well-defined sutures. Thus, it 

is possible to expect no major ontogenetic variation between the specimen MLP 15-I-7-

6 and its adult stage. Consequently, the presence of a posterior plate-like extension of 

the pterygoid (although different in its posterior extension) in the specimen MLP 15-I-

7-6 indicates that it can be considered a feature present in both aristonectine and non-

aristonectine elasmosaurids . This raises the question about the aristonectine affinities of 

Alexandronectes, which were based on the posterior plate-like extension of the 

pterygoid (Otero et al., 2016). However as has been stated the posterior extension is less 

developed in MLP 15-I-7-6 and therefore it could represent an intermediate stage in the 

change between the pterygoid morphology of aristonectine and non-aristonectine 

elasmosurids. Additionally, the posterior interpterygoid symphysis could be also absent 

in T. keyesi, although there is no certainty about this point, due to the poor preservation 

of this area in the T. keyesi holotype (O'Gorman et al., 2017, Fig. 10E) and the CM Zfr 

115, referred to Tuarangisaurus sp. (Hiller et al., 2017).. 

6.3. Braincase comparison 

Basioccipital. The dorsal surface of the basioccipital of MLP 15-I-7-6 is 

anteriorly inclined (about 30°) as in other elasmosaurids such as Callawayasaurus 

colombiensis (J.P.O'G pers. obs. UCPM 38349), T. keyesi and A. zealandiensis (Otero et 

al., 2016; O'Gorman et al. 2017).  

The specimen MLP 15-I-7-6 shows an unossified area between the basioccipital 

and the basiparasphenoid like in adult specimens of Libonectes morgani and 

Tuarangisaurus keyesi (Carpenter, 1999; O'Gorman et al., 2017). In other plesiosaurs, 

like the polycotylid Edgarosaurus muddy, the basioccipital and basiparasphenoid 

remain unfused (Druckenmiller, 2002).  On the other hand, a similar although larger 
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unossified zone is recorded for Pliosaurus almanzaensis (O'Gorman et al., 2018). The 

occipital condyle of MLP 15-I-7-6 lacks a well-defined neck, unlike Libonectes 

morgani, Callawayasaurus colombiensis and Alexandronectes zealandiensis and the 

polycotylid Trinacromerum bentonianum (Carpenter, 1997; O'Keefe, 2004; Otero et al., 

2016).  

Basiparasphenoid. The Basiparasphenoid embraces ventrally the basioccipital 

condyle through a ventral projection. This condition has been observed in 

Tuarangisaurus keyesi (adult specimen) and in the pliosaurid Pliosaurus almanzaensis, 

although in the latter, a pair of ventrolateral projections is also present (O'Gorman et al., 

2018). 

The anterior limit of the floor of the sella turcica shows a V-shaped notch. This 

notch is also present in the Elasmosauridae indet SGU 251/1 from the lower Campanian 

of Saratov Province, Russia (Zverkov et al., 2017). This feature is absent in 

Dolichorhynchops sp., Brancasaurus brancai, Edgarosaurus muddi (Sato et al., 2011; 

Druckenmiller, 2002; Wegner, 1914) and Tricleidus seeleyi (Andrews, 1910 fig. 73), 

but is present as a small notch in Plesiopterys wildi (O'Keefe, 2004). Therefore, the 

anterior well developed notch seems to be a feature only observed in elasmosaurids.  

The specimen MLP 15-I-7-6 shows a keeled parasphenoid, which is a feature 

present in Tuarangisaurus keyesi, Callawayasaurus colombiensis, Libonectes morgani 

among other elasmosaurids (Benson and Druckenmiller, 2014; O'Gorman et al., 2017). 

A similar keeled parasphenoid is also present in the polycotylids Edgarosaurus muddi, 

Nichollssaura borealis, and Pahasapasaurus haasi (Druckenmiller, 2002; Schumacher, 

2007; Sato et al., 2011), but differs from what is observed in Trinacromerum 

bentonianum, Dolychorhynchops osborni, D. bonneri and D. herschelensis, which bear 

a keel with bean-shaped cross section (Sato et al., 2011).  
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The internal carotid foramen of MLP 15-I-7-6 could pierce the caudal limit of the 

pituitary fossa as in the elasmosaurids A. zealandiensis, T. keyesi and L. morgani and is 

unlike the polycotylid Dolychorynchops (floor of pituitary fossa, Sato et al., 2011) and 

the pliosaurid Thalassiodracon hawkinsi (between the back and floor of the pituitary 

fossa, Benson et al., 2013; Benson and Druckenmiller, 2014). The internal carotids 

exiting  in the pituitary fossa are paired in MLP 15-I-7-6 as in T. keyesi, but there is 

only a single medial foramen in A. zealandiensis and L. morgani (Serratos et al., fig. S5; 

Otero et al., 2016). In L. morgani both conditions are observed: as a single medial 

foramen as recorded in the SMU SMP 69120 (holotype), or as two separate foramina in 

the referred specimen SMNK-PAL 3978 (Serratos et al., 2017: fig. S5; Allemand et al., 

2017). 

The foramen for the exit of the VI cranial nerve on the back of the pituitary fossa 

in MLP 15-I-7-6 differs from A. zealandiensis, L. morgani and T. keyesi, in which the 

nerve exits laterally to the pituitary fossa through the anterior limit of the lateral process 

of the dorsum sellae (Otero et al., 2016; O'Gorman et al., 2017; Serratos et al., 2017: 

fig. S5). The foramen for the VI cranial is as large as each carotid foramen in MLP 15-I-

7-6 contrasting with the relatively small opening, smaller than the internal carotid 

foramen of A. zealandiensis and T. keyesi. (O'Gorman et al., 2017; Otero et al 2016). 

The case of L. morgani is complex because the foramen for the VI cranial nerve is as 

large as or larger than the confluence of the carotid foramina in the holotype specimen 

(SMU SMP 69120), but is clearly smaller in the referred specimen SMNK-PAL 3978 

(Serratos et al., 2017: fig. S5; Allemand et al., 2017 fig. 5C). The specimen SGU 251/1 

(Zverkov et al., 2017) shows a condition that resembles that of SMU SMP 69120 

(holotype). 
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The paraoccipital process of MLP 15-I-7-6 is long and not distally expanded as in 

Tuarangisaurus keyesi and Aristonectines quiriquinensis (Otero et al., 2014; O'Gorman 

et al., 2017). On the other hand, a paraoccipital process with expanded distal end is 

present in Libonectes morgani, Callawayasaurus colombiensis and Alexandronectes 

zealandiensis (Welles, 1962; Carpenter, 1997; Otero et al., 2016).  

 

6.4. Sella turcica (pituitary fossa) proportions 

Recent works on the proportions of the braincases of Plesiosauria show an 

unexpected diversity. Indeed, Sato et al. (2011) comment that the ratio between the 

length of the pituitary fossa and the basicranium floor varies between 1/6 and 1/3. 

Recently, Sverko et al. (2017) quantified the size of the pituitary fossa and described its 

correlation with the complete basicranial length. Figure 12F shows the plot of ratio 

values of sella turcica length/basicranial length vs sella turcica length/sella turcica 

width. The figure 12F shows two groups of elasmosaurids: one group formed by 

Libonectes morgani and Elasmosauridae indet (SGU 251/1); the other group formed by 

the other considered elasmosaurids T. keyesi; Ar. quiriquinensis and MLP 15-I-7-6. 

Figure 12G shows a proxy of the ratio between the relative surfaces occupied by the 

sella turcica (see Material and Methods). The specimen MLP 15-I-7-6 shows the higher 

values along with Aristonectes quiriquinensis. Although the taxon sampling is limited, 

the available data both comparisons (Fig. 12 F, G)seems to indicate similarities between 

the MLP 15-I-7-6 and the aristonectine Weddellonectia. These similarities could be 

related to phylogenetical affinities within Weddellonectia, or they could be related to 

the juvenile condition of the MLP 15-I-7-6, and the pedomorphic condition present in 

adult aristonectines (O'Gorman et al., 2014a; Araujo et al., 2015).  

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 18 

7. Conclusions 

 

The specimen MLP 15-I-7-6 is a juvenile non-aristonectine elasmosaurid plesiosaur. 

The palate shows one  feature previously recorded only in Aristonectes quiriquinensis 

and Alexandronectes zealandiensis: the absence of a posterior interpterygoid symphysis. 

Additionally a posterior plate like extension of the pterygoid of MLP 15-I-7-6 is similar 

to the one recorded in aristonetines although less posterior extended. This indicates that 

the changes in the palatal morphology started previously to the development of other 

aristonectine features. 
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FIGURE CAPTIONS 

 

Fig. 1. A, B Maps of Cape Lamb, Vega Island, Antarctica. The star shows the locality 

where the MLP 15-I-7-6 was collected (Modifed from Marenssi et al., 2001). C, 

schematic sketch showing the recovered material shaded in grey. 
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Fig. 2. Sedimentary log showing location of the site where MLP 15-I-7-6 was collected. 

Other relevant vertebrates collected in the vicinity are also indicated (modified from 

Pirrie at al., 1991; O'Gorman et al., 2015). 

 

Fig. 3. MLP 15-I-7-6, Elasmosauridae indet. Cranium in dorsal view. A, photo and B, 

interpretative diagram. . Scale bar = 20mm. Abbreviations: bo, basioccipital; bps, 

basiparasphenoid; oc, occipital condyle; epi, epypterigois;  plp, posterior plate-like 

extension of pterygoid; pt, pterygoid; sq, squamosal; st, sella turcica. Scale bar = 20 

mm. 

 

Fig. 4. MLP 15-I-7-6, Elasmosauridae indet. Cranium in ventral view. A, photo and B, 

interpretative diagram. Scale bar = 20mm. Abbreviations: bo, basioccipital; bps, 

basiparasphenoid; oc, occipital condyle; piv, posterior interpterygoid vacuity;  plp, 

posterior plate-like extension of pterygoid; pt, pterygoid; pk, parasphenoid keel; sq, 

squamosal. Scale bar = 20 mm. 

 

Fig. 5. MLP 15-I-7-6, Elasmosauridae indet. Basisphenoid in A, anterior and B, dorsal 

views. C-G basioccipital in C, dorsal, D, ventral, E, posterior, F, right lateral views, G, 

anterior views. H, exoccipital-opistothic, I-J, left squamosal in I, lateral and J, posterior 

views.  bot, basioccipital tuberosity; cf, carotid foramina; ct, crista trabecularis; ds, 

dorsum sellae; exo, exoccipital; oc, occipital condyle; pop, paraoccipital process; sq, 

squamosal; st, sella turcica; VI, foramen for VI cranial nerve. Scale bars = 20mm. 

 

Fig. 6. MLP 15-I-7-6, Elasmosauridae indet. A-E. atlas-axis complex in A, anterior, B, 

dorsal, C, left lateral, D, ventral and E, posterior views. F-G, anterior cervical vertebrae 
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in F, ventral and G, posterior views. H-J, middle cervical vertebrae in H, anterior, I 

right lateral and J, ventral views. K-N, posterior cervical vertebrae in K, anterior, L, 

right lateral, M, dorsal and N, ventral views. O-R dorsal vertebral centrum in O, 

anterior, P, dorsal, Q, ventral and R, lateral views. Abbreviations: atc, atlantal cup; atrf, 

atlas rib facet; lk, lateral keel, pa, parapophysis; pf, pedicellar facet; vf, ventral foramen; 

vn, ventral notch. Scale bar = 20 mm 

 

Fig. 7. MLP 15-I-7-6, Elasmosauridae indet. A-C, posteriormost sacral and first caudal 

vertebrae in A, dorsal, B, left lateral and C, ventral views. D-F, caudal vertebrae in D, 

anterior, E, dorsal and F, ventral views. G-I left propodium in G, dorsal, H, ventral and 

I, proximal views. J-M, right propodium in J, ventral, K, dorsal, L, proximal and M, 

distal views. Black arrows indicate limit between perichondral and edochondral 

ossifications. Abbreviations: pa, parapophysis; pf, pedicellar facet; vf, ventral foramen. 

Scale bars = 20 mm. 

 

Fig. 8. Plots of HI and BI of cervical centra of MLP 15-I-7-6 and juvenile 

elasmosaurids (aristonectine and non-aristonectine modified from O'Gorman et al., 

2013). 

 

Fig. 9. Plots of HI, BI and VLI of cervical centra vs the vertebral position of several 

Weddellian non-aristonectine elasmosaurids (Data taken from Wiffen and Moisley, 

1986; O'Keefe and Hiller, 2006; O'Gorman et al., 2015; O'Gorman, 2016). 

 

Fig. 10. Palatal structure of elasmosaurids. A, (UCPM 125328) Callawayasaurus 

colombiensis; B, Libonectes morgani (SMUSMP 69120), C, Elasmosauridae indet. 
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MLP 15-I-7-6 and pterygois in cross section; D, Alexandronectes zealandiensis (CM 

Zfr 91). Diagrams of area preserved in T. keyesi compared with a generalised 

Elasmosauridae palate (e.g. Libonectes). Scale bars = 20 mm. Abbreviations; bas, 

basiparasphenoid; bo, basioccipital; cf, carotid foramen; oc, occipital condyle; piv, 

posterior interpterygoid vacuity; pt, pterygoid; q, quadrate; qrp, quadrate ramus of 

pterygoid. 

 

Fig. 11. Diagram showing the different pterygoid morphologies in A, several non-

aristonectines; B, non-aristonectine MLP 15-I-7-6 and C, Aristonectines 

(Alexandronectes, Aristonectes). Based on Carpenter, 1999; Otero et al., 2016 and 

J.P.O'G per sobs. Abbreviations; bas, basiparasphenoid; bo, basioccipital; cf, carotid 

foramen; oc, occipital condyle; piv, posterior interpterygoid vacuity; pt, pterygoid; q, 

quadrate; qrp, quadrate ramus of pterygoid.  

 

Fig. 12. Schematic representation of the basisphenoid. A-B, MLP 15-I-7-6 in A, dorsal 

and B, anterior views. C-E other elasmosaurids in anterior view C, Tuarangisaurus 

keyesi; D, Alexandronectes zealandiensis; E, Libonectes morgani; F plots of sella 

turcica length/basicranium length vs 100*sella turcica wide/sella turcica length. G, 

100* (sella turcica surface)1/2 /basicranial length.(Data taken from Sverkov et al., 2017; 

Otero pers comm.). cf, carotid foramina; ct, crista trabecularis; ds, dorsum sellae; st, 

sella turcica; VI, foramen for VI cranial nerve. 
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Table I. Measurements and indeces of vertebral centra. L, length; H, height and B, 

breadth (all in mm), HI, height (H)/length (L) ratio (HI=100*H/L), BI, breadth 

(B)/length (L) ratio (BI=100*B/L), BHI, breadth/height ratio (BHI=100*B/H) and VLI, 

Vertebral Length Index [VLI=100*L/((H + B)/2)]. Approximate values in italics. 

 

Región L H B HI BI BHI VLI 
Ce 24 14 20 58 83 143 141 
Ce 19 19 26 100 137 137 84 
Ce 15 27 180 111 
Ce 18 30 167 120 
Ce 20 18 29 90 145 161 85 
Ce 35 
Ce 25 
Ce 27 23 85 235 
Ce 26 
Ce 33 
Ce 33 29 41 88 124 141 94 
Ce 35 31 43 89 123 139 95 
Ce 34 
Ce 35 
Ce 36 29 44 81 122 152 99 
Ce 39 35 46 90 118 131 96 
Ce 38 37 50 97 132 135 87 
Ce 40 36 56 90 140 156 87 
Ce 41 35 56 85 137 160 90 
Ce 41 40 57 98 139 143 85 
Ce 43 41 55 95 128 134 90 
Ce 43 41 57 95 133 139 88 
Ce 43 40 60 93 140 150 86 
Ce 43 44 67 102 156 152 77 
Ce 43 44 67 102 156 152 77 
D 42 45 68 107 162 151 74 
D 48 62 129 
D 47 51 59 109 126 116 85 
D 47 52 60 111 128 115 84 
D 45 49 62 109 138 127 81 
D 43 49 61 114 142 124 78 
Ca 32 45 57 141 178 127 63 
Ca 33 46 60 139 182 130 62 
Ca 34 62 182 
Ca 35 
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