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Abstract Inclusive and differential cross-sections for the
production of a top-quark pair in association with a photon
are measured with proton-proton collision data correspond-
ing to an integrated luminosity of 36.1 fb−1, collected by the
ATLAS detector at the LHC in 2015 and 2016 at a centre-
of-mass energy of 13 TeV. The measurements are performed
in single-lepton and dilepton final states in a fiducial vol-
ume. Events with exactly one photon, one or two leptons,
a channel-dependent minimum number of jets, and at least
one b-jet are selected. Neural network algorithms are used
to separate the signal from the backgrounds. The fiducial
cross-sections are measured to be 521±9(stat.)±41(sys.) fb
and 69 ± 3(stat.) ± 4(sys.) fb for the single-lepton and dilep-
ton channels, respectively. The differential cross-sections are
measured as a function of photon transverse momentum, pho-
ton absolute pseudorapidity, and angular distance between
the photon and its closest lepton in both channels, as well
as azimuthal opening angle and absolute pseudorapidity dif-
ference between the two leptons in the dilepton channel. All
measurements are in agreement with the theoretical predic-
tions.

1 Introduction

Measurements of top-quark properties play an important role
in testing the Standard Model (SM) and its possible exten-
sions. Studies of the production and kinematic properties of
a top-quark pair in association with a photon (t t̄γ ) probe
the tγ electroweak coupling. For instance, deviations in the
transverse momentum (pT) spectrum of the photon from the
SM prediction could point to new physics through anomalous
dipole moments of the top quark [1–3]. A precision measure-
ment of the t t̄γ production cross-section could effectively
constrain some of the Wilson coefficients in top-quark effec-
tive field theories [4]. Furthermore, differential distributions
of photon production in t t̄ events could provide insight on
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the t t̄ production mechanism, in particular about the t t̄ spin
correlation and the charge asymmetry [5].

Evidence for the production of a top-quark pair in associ-
ation with an energetic, isolated photon was found in proton-
antiproton (p p̄) collisions at the Tevatron collider at a centre-
of-mass energy of

√
s = 1.96 TeV by the CDF Collabo-

ration [6]. Observation of the t t̄γ process was reported by
the ATLAS Collaboration in proton-proton (pp) collisions at√
s = 7 TeV [7]. Recently, both the ATLAS and CMS Collab-

orations measured the t t̄γ cross-section at
√
s = 8 TeV [8,9].

In the ATLAS measurement, the differential cross-sections
with respect to the transverse momentum pT and absolute
pseudorapidity |η|1 of the photon were reported. In the CMS
measurement, the ratio of the t t̄γ fiducial cross-section to
the t t̄ total cross-section was measured.

This paper describes a measurement of the t t̄γ production
cross-section in final states with one or two leptons, electron
or muons, referred to as the single-lepton or dilepton channel,
based on a data set recorded at the LHC in 2015 and 2016
at a centre-of-mass energy of

√
s = 13 TeV and correspond-

ing to an integrated luminosity of 36.1 fb−1. The photon can
originate not only from a top quark, but also from its charged
decay products, including a charged fermion (quark or lep-
ton) from the decay of the W -boson. In addition, it can be
radiated from an incoming charged parton. In this analysis, no
attempt is made to separate these different sources of photons,
but criteria are applied to suppress those radiated from top-
quark decay products: e.g. by requiring the photon to have a
large angular distance from the lepton(s). In each channel, the
fiducial inclusive cross-section, referred to as fiducial cross-
section in the following for simplicity, is measured with a
likelihood fit to the output of a neural network trained to

1 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the z-axis
along the beam pipe. The x-axis points from the IP to the centre of the
LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ)

are used in the transverse plane, φ being the azimuthal angle around the
z-axis. The pseudorapidity is defined in terms of the polar angle θ as
η = − ln tan(θ/2).
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differentiate between signal and background events. In both
channels, differential cross-sections, normalized to unity, are
measured in the same fiducial region without performing the
likelihood fit, as a function of the photon pT, the photon
|η|, and the distance �R between the photon and its closest
lepton. The distance �R between two objects is defined as
the quadratic sum of their pseudorapidity difference �η and
azimuthal opening angle �φ. In the dilepton channel, the
normalized differential cross-sections are also measured as a
function of the absolute pseudorapidity difference |�η| and
�φ between the two leptons, the latter being sensitive to the
spin correlation of the t t̄ pair .The measured cross-sections
are compared to predictions from leading order (LO) gen-
erators. The predictions for the inclusive cross-sections are
corrected by next-to-leading order (NLO) k-factors [10] in
the strong interaction, calculated at parton level.

This paper is organized as follows. The ATLAS detec-
tor is briefly introduced in Sect. 2. The data and simulation
samples used are listed in Sect. 3. The derivation of the NLO
correction to the LO cross section is described in Sect. 4. The
object and event selection, and the neural-network algorithms
are presented in Sect. 5. The estimation of the backgrounds
are introduced in Sect. 6. The definition of the fiducial region
and the strategies to extract the fiducial and differential cross-
sections are described in Sect. 7. The evaluation of the sys-
tematics uncertainties are discussed in Sect. 8. Section 9 gives
the final results, and Sect. 10 presents the conclusion.

2 ATLAS detector

The ATLAS detector [11] consists of three main compo-
nents. The innermost component is the Inner Detector (ID),
which is used for tracking charged particles. It surrounds the
beam pipe and is located inside a superconducting solenoid,
operating with a magnetic field of 2 T. An additional sili-
con pixel layer, the insertable B-layer, was added between
3 and 4 cm from the beam line to improve b-hadron tag-
ging [12,13] for Run 2. The calorimeter outside the ID is
divided into two subsystems. The inner subsystem is the
electromagnetic calorimeter (ECAL) and the second is the
hadronic calorimeter (HCAL). The outermost layer is the
third main component of the ATLAS detector: the muon
spectrometer (MS), which is within a magnetic field pro-
vided by air-core toroid magnets with a bending integral
of about 2.5 Tm in the barrel and up to 6 Tm in the end-
caps. The ID provides tracking information from silicon pixel
and silicon microstrip detectors in the pseudorapidity range
|η| < 2.5 and from a transition radiation tracker (TRT) cov-
ering |η| < 2.0. The magnetic field of the superconducting
solenoid bends charged particles for the momentum measure-
ment. The ECAL uses lead absorbers and liquid argon (LAr)
as active medium and is divided into barrel (|η| < 1.475)

and end-cap (1.375 < |η| < 3.2) regions. The HCAL is
composed of a steel/scintillating-tile calorimeter, segmented
into three barrel structures within |η| < 1.7, and two cop-
per/LAr hadronic endcap calorimeters, that cover the region
1.5 < |η| < 3.2. The solid angle coverage is completed with
forward copper/LAr and tungsten/LAr calorimeter modules,
optimised for electromagnetic and hadronic measurements
respectively, and covering the region 3.1 < |η| < 4.9. The
MS measures the deflection of muon tracks within |η| < 2.7
using multiple layers of high-precision tracking chambers in
toroidal fields of approximately 0.5 T and 1 T in the central
and end-cap regions, respectively. The MS is instrumented
with separate trigger chambers covering |η| < 2.4.

Data are selected from inclusive pp interactions using a
two-level trigger system [14]. A hardware-based trigger uses
custom hardware and coarser-granularity detector data to ini-
tially reduce the trigger rate to approximately 100 kHz from
the original 40 MHz LHC proton bunch crossing rate. Next,
a software-based high-level trigger, which has access to the
full detector granularity, is applied to further reduce the event
rate to 1 kHz.

3 Data and simulation samples

The data used for this analysis were recorded by the ATLAS
detector in 2015 and 2016 at a centre-of-mass energy
of 13 TeV, corresponding to an integrated luminosity of
36.1 fb−1. Only the data-taking periods in which all detector
systems were operating normally are considered. Candidate
events were collected using single-lepton triggers, designed
to select events with at least one isolated high-pT electron or
muon.

The signal and background processes were modelled using
Monte Carlo (MC) generators and passed through a detec-
tor simulation using Geant 4 [15,16]. The simulated events
were reconstructed with the same software algorithms as
data. To account for overlapping pp collisions (pile-up), mul-
tiple interactions were simulated with the soft QCD processes
of Pythia v8.186 [17] using the set of tuned parameters
called A2 [18] and the MSTW2008LO parton distribution
functions (PDF) set [19].

The t t̄γ signal sample was simulated as a 2 → 7 process
for the semileptonic and dileptonic decay channels of the
t t̄ system at LO by MadGraph5_aMC@NLO v2.33 [20]
(denoted as MG5_aMC in the following) interfaced with
Pythia v8.212 [21], using the A14 set of tuned parameters
[22] and the NNPDF2.3LO PDF set [23]. The photon could
be radiated from an initial charged parton, an intermediate
top quark, or any of the charged final state particles. The top-
quark mass, top-quark decay width, W -boson decay width,
and fine structure constant were set to 172.5 GeV, 1.320 GeV,
2.085 GeV, and 1/137, respectively. The five-flavour scheme
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was used where all the quark masses are set to zero, except
for the top quark. The renormalization and the factorization

scales were set to 0.5×�
i

�
m2

i + p2
T,i , where the sum runs

over all the particles generated from the matrix element cal-
culation. The photon was requested to have pT > 15 GeV
and |η| < 5.0. At least one lepton with pT > 15 GeV was
required, with all the leptons satisfying |η| < 5.0. The �R
between the photon and any of the charged particles among
the seven final-state particles were required to be greater than
0.2. The resulting total cross-section of the sample was calcu-
lated to be 4.62 pb. The NLO k-factors, introduced in Sect. 4,
were applied to correct the fiducial cross-sections and accep-
tances to NLO.

The inclusive t t̄ sample [24] was generated withPowheg-
Box v2 [25] using the NNPDF3.0NLO PDF set [26], and
interfaced with Pythia v8.210 using the A14 tune set and the
NNPDF2.3LO PDF set. The hdamp parameter, which controls
the pT of the first additional parton emission beyond Born
level in Powheg, was set to 1.5 times the top-quark mass.
The production of a vector boson (V = W, Z ) in associa-
tion with a photon (V γ ) was simulated with Sherpa v2.2.2
[27], and the inclusive production of V+jets [28] was sim-
ulated with Sherpa v2.2.1, both using the NNPDF3.0NLO
PDF set. The s-channel single top quark and tW samples
[24] were produced with Powheg- Box v1 using the CT10
(NLO) PDF set [29], interfaced with Pythia v6.428 using the
Perugia 2012 tune set [30] and the CTEQ6L1 PDF set [23].
The t-channel single top quark was produced with the same
generator and parton shower, with the four-flavour scheme
and the corresponding CT104fs PDF set [23]. The dibo-
son samples of WW , WZ and Z Z [31] were generated by
Sherpa v2.1, using the CT10 (NLO) PDF set. The t t̄V sam-
ples [32] were generated with MG5_aMC v2.2 using the
NNPDF3.0NLO PDF set, interfaced with Pythia v8.210
using the NNPDF2.3LO PDF set. For all samples without
photon radiation in the matrix element calculation, the radia-
tion was simulated by the corresponding parton shower. The
EvtGen program [33] was used to simulate the decay of bot-
tom and charm hadrons, except for the Sherpa samples. All
these samples were generated with NLO precision in QCD
and, in the case of Sherpa samples, the NLO calculations
were performed for up to one or two additional partons.

To assess the effects of initial- and final-state radiation
(ISR and FSR), alternative signal samples were produced
with the relevant Pythia 8 A14 Var3c tune parameters [22]
varied to increase or decrease the parton radiation. The effect
of the choice of parton shower algorithm for the signal is
evaluated with a sample generated using Herwig v7.0.1 [34]
instead of Pythia v8.212. An alternative t t̄ sample was gen-
erated to enhance the parton shower radiation, with the renor-
malization and factorization scales varied down by a factor
of two, the high radiation variation of the A14 Var3c tune

parameter and the hdamp value increased by a factor of two.
A corresponding t t̄ sample with reduced parton shower radi-
ation was generated with the renormalization and factoriza-
tion scales multiplied by a factor of two and the low radiation
variation of the A14 Var3c tune parameter. The uncertainty
arising from the choice of t t̄ generator is evaluated using a
Sherpa v2.2 sample. An alternative Zγ sample, generated
by MG5_aMC v2.33 interfaced with Pythia v8.212, is used
to evaluate the modelling uncertainty of the Zγ background
estimate.

The t t̄ and V+jets samples contain events already
accounted for by the t t̄γ and V γ samples. Based on truth
information, the overlap is removed by vetoing the events
where the selected photon originates from the hard interac-
tion in the t t̄ and V+jets samples.

4 Next-to-leading order k-factor for t t̄γ

Calculations at NLO precision in QCD are available for the
t t̄γ process at a centre-of-mass energy of

√
s = 14 TeV [10],

extending results performed using the approximation of sta-
ble top quarks [35]. A dedicated calculation at

√
s = 13 TeV

has been performed for both single-lepton and dilepton chan-
nels, by the authors of Ref. [10]. The renormalization and
factorization scales are both set to the top-quark mass, while
the rest of the parameters are set to the same values used
by the MG5_aMC t t̄γ MC sample, as described in Sect. 3.
These calculations are used to derive corrections at parton
level to the normalization of the LO t t̄γ MC sample.

The NLO calculation is performed at parton level in a
phase space very close to the fiducial region defined in
Sect. 7.1. The lepton (at least one lepton) is required to have
pT > 25 GeV for the single-lepton (dilepton) channel, and
all leptons must have |η| < 2.5. The photon is required to
have pT > 20 GeV and |η| < 2.37. Jets are reconstructed
from quarks and gluons using the anti-kt algorithm [36] with
a radius parameter of R = 0.4, and they are required to have
pT > 25 GeV and |η| < 2.5. At least four (two) jets are
required for the single-lepton (dilepton) channel. All jets are
required to be separated from the photon by �R(γ, jet) >

0.4. Leptons are required to be separated from the photon
by �R(γ, �) > 1.0. The leptons in the dilepton channel are
required to be separated from the jets by �R(jet, �) > 0.4.

The LO cross-sections are calculated using theMG5_aMC
LO sample at particle level in the same phase space as above
to derive the NLO k-factors for the single-lepton and dilep-
ton channels. Since the kinematic properties of all the objects
used in the NLO theoretical calculation are taken from par-
ton level, the photons, leptons, and jets of the LO MC sample
must be defined carefully to correspond to those at the par-
ton level. This is achieved by requiring the photon and the
leptons to be produced from the matrix element rather than
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from the parton shower and adding the QED radiation sim-
ulated by the parton shower back to the leptons. The anti-kt
algorithm with R = 0.4 is used for jet clustering, using all
the final state particles, excluding the above photon, leptons,
and their corresponding neutrinos.

The calculated NLO cross-sections are 120 fb and 31 fb
for the e+jets and eμ channels, while the calculated LO
cross-sections are 92 fb and 21 fb for the same channels,
respectively, resulting in NLO k-factors of 1.30 and 1.44.
These k-factors are applied to other single-lepton or dilepton
channels. Statistical uncertainties are negligible. Systematic
uncertainties of the k-factors receive contributions from two
sources. For the NLO theoretical cross-section, the relative
uncertainty due to the QCD scale and PDF choices are 14%
(13%) for the single-lepton (dilepton) channel, with the QCD
scale uncertainty dominating. For the LO MC cross-section,
the non-perturbative effects in the parton shower model are
studied by turning off the multiple parton interaction and
hadronization of Pythia 8 separately, resulting in an uncer-
tainty of 8% (4%) for the single-lepton (dilepton) channel.
In addition, the jet cone size is varied from 0.4 to 0.3 or 0.5
separately to evaluate the impact of additional QCD radiation
on the reconstruction of the particle-level jet. The resulting
uncertainties are 11% (6%) for the single-lepton (dilepton)
channel. Summing up the components in quadrature, the total
relative uncertainty on the k-factor is 20% (15%) for the
single-lepton (dilepton) channel.

5 Object and event selection

The object and event selection at the detector level are intro-
duced in Sects. 5.1 and 5.2 respectively. The neural-network
algorithms used in the analysis are described in Sect. 5.3. In
Sect. 7.1, the fiducial region at particle level is defined.

5.1 Object selection

Electron candidates are reconstructed from energy deposits in
the central region of the ECAL associated with reconstructed
tracks from the ID [37] and are required to have a pT >

25 GeV and an absolute calorimeter cluster pseudorapidity
|ηcluster| < 2.47, excluding the transition region between
the barrel and endcap calorimeters (|ηcluster| /∈ [1.37, 1.52]).
“Tight” likelihood-based identification criteria are applied,
which correspond to an efficiency between 80% and 90% for
electrons in different pT and η ranges measured in Z → ee
events [37]. Muon candidates are reconstructed by an algo-
rithm that combines the track segments in the various layers
of the MS with the tracks in the ID [38] and are required to
have a pT > 25 GeV and |η| < 2.5. “Medium” cut-based
identification criteria are required, which correspond to an
average efficiency around 96% in t t̄ events for muons in dif-

ferent pT and η ranges [38]. Isolation criteria are applied to
both the electron and muon candidates using calorimeter- and
track-based information to obtain 90% efficiency for leptons
with pT = 25 GeV, rising to 99% efficiency at pT = 60 GeV
in Z → �� events. The transverse impact parameter divided
by its estimated uncertainty |d0|/σ(d0) is required to be
lower than five for electron candidates and three for muon
candidates. The longitudinal impact parameter must satisfy
|z0 sin(θ)| < 0.5 mm for both. The lepton reconstruction
and identification efficiencies in simulation are corrected to
match the corresponding values in data [37,38].

A photon could convert into an electron positron pair when
it traverses the material before entering the active volume of
the ECAL. Photon candidates are reconstructed from energy
deposits in the central region of the ECAL [39] and classified
as unconverted if there is no matching track or reconstructed
conversion vertex or as converted if there is a matching recon-
structed conversion vertex or a matching track consistent
with originating from a photon conversion. They must have
a pT > 20 GeV and |ηcluster| < 2.37, excluding the transi-
tion region between the barrel and endcap. “Tight” cut-based
identification criteria, based on discriminating variables and
corresponding to an efficiency around 85% at 40 GeV, are
applied [39]. Cut-based pT-dependent isolation criteria are
applied using calorimeter- and track-based information and
correspond to an efficiency between 75% and 90% for prompt
photons (photons not from hadron decays) in Z → ��γ

events. The photon reconstruction and identification efficien-
cies in simulation are corrected to match the corresponding
values in data [39].

Jets are reconstructed using the anti-kt algorithm with
a radius parameter of R = 0.4 from topological clusters
of energy deposits in the calorimeter [40]. The jet energy
scale and jet energy resolution are calibrated using energy-
and η-dependent calibration schemes resulting from simula-
tion and in situ corrections based on data [41]. The jets are
required to have a pT > 25 GeV and |η| < 2.5. Jets likely
to originate from pile-up are suppressed by using the output
of a multivariate jet-vertex-tagger (JVT) [42]. Scale factors
are used to correct the selection efficiency in simulation to
match data. Jets containing b-hadrons (b-jets) are identified
with a b-tagging algorithm using a multivariate discriminant
that combines information about secondary vertices and track
impact parameters (MV2c10) [43,44]. The operating point
used corresponds to an overall 77% b-tagging efficiency in
t t̄ events, with a corresponding rejection of c-jets (light-jets)
by a factor of 6 (134). Efficiencies to tag b-, c-, and light-jets
in the simulation are scaled by pT- and η-dependent factors
[43] to match the efficiencies in data.

The transverse energy carried by the neutrinos is accounted
for in the reconstructed missing transverse momentum Emiss

T
[45], which is computed as the transverse component of the
negative vector sum of all the selected electrons, muons, pho-
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Table 1 Summary of the event selection. “OS” means the charges of the two leptons must have opposite signs

tons, and jets, as well as ID tracks associated with the primary
vertex but not with any of the above objects, which is called
track-based soft term.

An overlap removal procedure is applied to avoid the same
calorimeter energy deposit or the same track being recon-
structed as two different objects. Electrons sharing their track
with a muon candidate are removed. Jets within a �R = 0.2
cone of an electron are removed. After that, electrons within a
�R = 0.4 cone of a remaining jet are removed. When a muon
and a jet are close, the jet is removed if it has no more than
two associated tracks and is within �R < 0.2 of the muon,
otherwise the muon is removed if it is within �R < 0.4 of the
jet and the jet has more than two associated tracks. Photons
within a �R = 0.4 cone of a remaining electron or muon
are removed. Finally, the jets within a �R = 0.4 cone of a
remaining photon are removed.

5.2 Event selection

The events must have at least one primary vertex with at least
two associated tracks, each with pT > 400 MeV. Primary
vertices are formed from reconstructed tracks spatially com-
patible with the interaction region. The primary vertex with
the highest sum of p2

T over all associated tracks is chosen.
Events are categorized into the single-lepton channel if their
final state contains exactly one lepton (electron or muon),
and into the dilepton channel if they contain two electrons,
two muons, or one electron and one muon, with each pair
required to be of opposite charge. The lepton (at least one
of the leptons) must be matched to a fired single-lepton trig-
ger for the single-lepton (dilepton) channel. The pT of the
electron (muon) that fired the trigger has to be larger than
27 (27.5) GeV in order to match the higher lepton pT trigger
threshold in 2016. The selected events must have at least four
(two) jets in the single-lepton (dilepton) channel, at least one
of which is b-tagged, and exactly one photon. A Z -boson veto

is applied in the single electron channel by excluding events
with invariant mass of the system of the electron and the pho-
ton around the Z -boson mass (|m(e, γ ) −m(Z)| < 5 GeV),
where m(Z) = 91.188 GeV. In the dilepton channel when
the two leptons have the same flavour, events are excluded
if the dilepton invariant mass or the invariant mass of the
system of the two leptons and the photon is between 85 and
95 GeV, and Emiss

T is required to be larger than 30 GeV. The
dilepton invariant mass is required to be higher than 15 GeV
to suppress events from J/ψ , ϒ and γ ∗ decays. Finally, to
suppress photons radiated from lepton(s), the �R between
the selected photon and lepton(s) must be greater than 1.0.
The event selection is summarized in Table 1.

There are four types of backgrounds to the selected t t̄γ
candidates, three of which are events with a misidentified
object. The contribution from events in which the selected
photon candidate originates from a jet or a non-prompt
photon from hadron decays, referred to as hadronic-fake
background, is estimated following the method outlined in
Sect. 6.1. The contribution from events in which the selected
photon candidate originates from an electron, referred to as
electron-fake background, is estimated following the method
outlined in Sect. 6.2. The contribution from events in which
the selected lepton candidate originates from a jet or a non-
prompt lepton from heavy-flavour decays, referred to as fake-
lepton background, is estimated following the method out-
lined in Sect. 6.3. Finally, the contribution from events with
a prompt photon (excluding the t t̄γ signal and the fake-
lepton background with prompt photon radiation), referred
to as prompt-photon background, is estimated following the
method outlined in Sect. 6.4. In the single-lepton channel, the
main backgrounds are from events with a hadronic-fake or
electron-fake photon and Wγ production, while in the dilep-
ton channel, Zγ production and events with a hadronic-fake
photon are the dominant backgrounds.
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Table 2 The observed data and the expected event yields for the signal
and backgrounds in the single-lepton and dilepton channels. All data-
driven corrections and systematic uncertainties are included. The signals
are scaled by the NLO k-factors. The fake-lepton background in the
dilepton channel is negligible, represented by a “-”. The Zγ (Wγ )
background in the single-lepton (dilepton) channel is included in “Other
prompt”. The uncertainty of the Wγ background in the single-lepton
channel is not given since the normalization of this background is a free
parameter in the likelihood fit

Channel Single lepton Dilepton

t t̄γ 6 490 ± 420 720 ± 34

Hadronic-fake 1 440 ± 290 49 ± 27

Electron-fake 1 650 ± 170 2 ± 1

Fake lepton 360 ± 200 –

Wγ 1 130

Zγ 75 ± 52

Other prompt 690 ± 260 18 ± 7

Total 11 750 ± 710 863 ± 78

Data 11 662 902

A total number of 11 662 and 902 candidate events are
selected for the single-lepton and dilepton channels, respec-
tively, with expected numbers of 6490 ± 420 and 720 ± 34
signal events, where the corresponding NLO k-factors are
applied and the uncertainties include the simulation statis-
tical uncertainty and all systematic uncertainties introduced
in Sect. 8. Table 2 summarizes the observed data and the
expected event yields for the signal and background pro-
cesses. Figures 1 and 2 show comparisons of the data with the
expected simulated distributions. The simulation is corrected
with data-driven corrections. The statistical uncertainty of
data and systematic uncertainties are included. The signals
are scaled by the NLO k-factors.

5.3 Multivariate analysis

To discriminate the t t̄γ signal from backgrounds, a neural-
network algorithm, called the event-level discriminator
(ELD), is trained separately for the single-lepton and dilepton
channels. Given the significant contribution of hadronic-fake
photons in the single-lepton channel, a dedicated neural net-
work, referred to as the prompt-photon tagger (PPT) in the
following, is trained to discriminate between prompt pho-
tons and hadronic-fake photons. The PPT is used as one of
the inputs to the ELD in the single-lepton channel.

Both neural-network algorithms are feedforward binary
classifiers that have been trained using Keras [46] and evalu-
ated using lwtnn [47]. Theano [48] is used as backend. The
input variables are normalized to have a standard deviation
of 1 and a mean of 0. To reduce the risk of over-training,
regularization methods such as dropout [49] and batch nor-

malization [50] layers are used. Additionally, k-fold cross-
validation is performed.

Five variables which characterize the photon candidate
shower shape in the transverse and lateral directions utilizing
the energy deposits in the first and second layer of the ECAL,
Rη, Rφ , wη2 , ws3, and Fside, and one variable which char-
acterizes the energy leakage fraction into the HCAL, Rhad,
are used in the PPT. These are the standard discriminating
variables used in ATLAS for photon identification [39] and
their definitions are given in the Appendix. Prompt photons
from simulated QCD-Compton processes and hadronic-fake
photons from simulated dijet events are used as signal and
background photons in the training and testing of the PPT.
Photons are required to pass the Tight identification and have
pT > 25 GeV and |ηclu| < 2.37, excluding the calorimeter
transition region. The PPT shape of the prompt photons in
simulation is corrected to match data in photon pT-η bins.
The correction factors for each bin are extracted from the
ratio between the PPT output distribution in data and that
of simulation, using photons in a Z → ��γ control region.
The control region is defined by requiring exactly one photon
and two opposite-sign leptons, with the invariant mass of the
lepton pair between 60 and 100 GeV. The resulting correc-
tion factors range from 0.5 to 2.0 and are in general around
unity. PPT systematic uncertainties are evaluated separately
for prompt photons and fake photons and are discussed in
Sect. 8.3. The PPT output distribution after event selection
in the single-lepton channel is shown in Fig. 3. The shape
difference between data and prediction of the PPT is caused
by the shape difference between data and simulation of the
input discriminating variables and is covered by the assigned
systematic uncertainties.

Simulated signal and background events passing the event
selection are used for the training and testing of the ELD,
except for the fake-lepton background in the single-lepton
channel which is taken from data as described in Sect. 6.3.
In the dilepton channel, the selection criteria on the Emiss

T ,
the invariant masses, and the jet multiplicity are removed to
increase the sample size for training. The training takes 15
(7) variables as input for the single-lepton (dilepton) chan-
nel, which are summarized in Table 3. The b-tagging related
variables are important for the ELD training in both channels,
because of their discriminating power against background
without real heavy flavour jets. which have significant con-
tributions. The use of the PPT as input to ELD improves the
discrimination power against hadronic-fake background.

Variables like the dilepton invariant mass and missing
transverse energy are useful for the ELD training in the dilep-
ton channel, due to the dominant background of Zγ . The
distributions of the ELD after event selection are shown in
Fig. 4 for the single-lepton and dilepton channels. The shapes
of the ELD are compared between signal and total back-
ground in Fig. 5 for the single-lepton and dilepton channels.
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Fig. 1 Distributions of the a photon pT, b photon |η|, and c �R(γ, �) in the single-lepton channel after event selection and before likelihood fit.
All data-driven corrections and systematic uncertainties are included. Overflow events are included in the last bin

In the single-lepton channel, the kinematic properties and jet
flavour compositions are similar between the t t̄γ signal and
the dominating background, which is t t̄ production with a
hadronic-fake or electron-fake photon. In the dilepton chan-
nel, this is not the case since Zγ production is dominant.
Thus the ELD is more discriminating in the dilepton channel
than in the single-lepton channel. The ELD is used in the
likelihood fit to data to extract the fiducial cross-sections.

6 Background estimation

6.1 Hadronic-fake background

The hadronic-fake background is an important background
in this analysis. Its main source is the t t̄ process, where one of
the final state jets is reconstructed and identified as a photon.
In addition, there are small contributions from W+jets and
single top processes to the single-lepton channel and from
Z+jets events to the dilepton channel.
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Fig. 2 Distributions of the a
photon pT, b photon |η|, c
minimum �R(γ, �), d
|�η(�, �)|, and e �φ(�, �) in
the dilepton channel after event
selection and before likelihood
fit. All data-driven corrections
and systematic uncertainties are
included. Overflow events are
included in the last bin. In
particular, events with
|�η(�, �)| > 2.5 are included in
the last bin of d
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Fig. 3 Distributions of the output of the prompt-photon tagger in the
single-lepton channel after event selection and before likelihood fit. All
data-driven corrections and systematic uncertainties are included

The hadronic-fake background is estimated using all the
simulation samples by requiring that the selected photon is a
hadron or from a hadronic decay at generator level. A data-
driven method, called the ABCD method, is applied to derive
a set of scale factors, based on the ratio of hadronic-fake back-

ground estimated by the method over the one from simula-
tion. This set of scale factors is derived in the single-lepton
channel and applied to both the single-lepton and dilepton
channels to calibrate the simulation to match data.

In the ABCD method, the isolation selection and part
of the Tight identification criteria of the photon, which are
assumed to be uncorrelated, are inverted to define three
regions enriched with hadronic-fake photons. These regions
are orthogonal to one another, and to the signal region. Region
A uses photons that pass the isolation selection defined in
Sect. 5.1 but fail at least two out of the four identification
requirements on the discriminating variables Fside, ws3, �E ,
and Eratio (defined in the Appendix), while passing all other
Tight identification criteria. These four variables describe
the shower shape in the first layer of ECAL and are cho-
sen for their small correlation with the photon isolation but
strong discrimination power between prompt and hadronic-
fake photons. Region B uses photons that fail the identifi-
cation criteria as in region A and do not pass the isolation
selection. Additionally, the sum of the pT of all tracks within
�R = 0.2 around the photon is required to be larger than
3 GeV to further suppress the prompt-photon contribution.
Region C selects photons that fail the isolation requirements
as in region B but pass the Tight identification. Region D is
the signal region.

The hadronic-fake background in the signal region can be
expressed as:

Table 3 Input variables for the event-level discriminator for the single-lepton and dilepton channels. For events without the 5th jet, the pT( j5) is
set to zero

Variable Description Single lepton Dilepton

PPT Prompt-photon tagger output �
HT Scalar sum of the pT of the leptons and jets �
m(γ, �) Invariant mass of the system of the photon and the lepton �
Emiss

T Missing transverse energy � �
mT

W Reconstructed transverse mass of the leptonically decaying W -boson �

=
�

2 × pT(�) × Emiss
T × (1 − cos(�φ(�, Emiss

T )))

Njets Jet multiplicity �
pT( j1) pT of the leading jet (ordered in pT) � �
pT( j2) pT of the sub-leading jet � �
pT( j3) pT of the third jet �
pT( j4) pT of the fourth jet �
pT( j5) pT of the fifth jet �
Nb-jets b-jet multiplicity � �
b1( j) highest b-tagging score of all jets � �
b2( j) second highest b-tagging score of all jets � �
b3( j) third highest b-tagging score of all jets �
m(�, �) Invariant mass of the system of the two leptons �
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Fig. 4 Distributions of the ELD for the a single-lepton and b dilepton channels after event selection and before likelihood fit. All data-driven
corrections and systematic uncertainties are included
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Fig. 5 Comparison of the shape of the ELD between signal and total background in the a single-lepton and b dilepton channels after event selection.
All data-driven corrections are included

N h-fake
D, est. = N h-fake

A, data × N h-fake
C, data

N h-fake
B, data

× θMC,

θMC =
Nh-fake

D, MC/Nh-fake
C, MC

Nh-fake
A, MC/Nh-fake

B, MC

,

where N h-fake
A, data, N h-fake

B, data and N h-fake
C, data are the numbers of

hadronic-fake events in regions A, B, and C, estimated by
subtracting the events with prompt photons and other back-

grounds from the number of data events in these regions,
and N h-fake

A, MC, N h-fake
B, MC, N h-fake

C, MC and N h-fake
D, MC are the numbers of

hadronic-fake events predicted by simulation in regions A,
B, C, and D. The factor θMC corrects for possible bias caused
by residual correlation between the isolation variables and
the four discriminating variables used to define the regions.

The ABCD method is applied to photons in different pT-η
bins, separately for converted and unconverted photons. The
resulting scale factors range from 0.8 to 3.2, with typical
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values around 1.5 and large statistical and systematic uncer-
tainties of more than 0.5. These scale factors are applied to
the MC-based hadronic-fake background prediction.

6.2 Electron-fake background

Dilepton events where an electron is mis-identified as a pho-
ton contribute to the electron-fake background in the single-
lepton channel. Its main source is the t t̄ dileptonic decay pro-
cess. When the lepton is an electron, there is also some con-
tribution from the Z → ee process. A data-driven method is
applied to derive a set of scale factors to correct the electron-
to-photon fake rate in simulation to match data.

The electron-to-photon fake rate is measured with a tag-
and-probe method using two control regions (CR), exploit-
ing the Z → ee process. For the first CR, Z → ee event
candidates are selected in which one of the electrons fulfills
the photon selection criteria, i.e. contributes to the electron-
fake background, and the electron-photon pair should have
an invariant mass in the range [40, 140] GeV and an open-
ing angle greater than 2.62 rad. The electron is called the tag
electron and the electron-fake photon candidate is referred to
as probe photon. Non-Z -boson backgrounds are subtracted
with a sideband fit of the invariant mass distribution. The fit-
ted signal contains Z → eeγ contributions with one of the
electrons not reconstructed or identified which is subtracted
using simulation. For the second CR, events with an electron-
positron pair satisfying the same requirements as in the first
CR are selected and the same procedure is applied. The fake
rate is calculated as the ratio of the number of probe photons
over the number of probe electrons. To avoid a trigger bias,
the tag electron in both CRs must match the single-lepton
trigger. A set of pT-η binned fake-rate scale factors is deter-
mined by taking the ratio between the fake rate in data and
in the simulation. The values of the scale factors range from
0.8 to 2.1 and are in general consistent with unity within their
uncertainties.

The electron-fake background in the single-lepton channel
is validated in a control region selected by replacing the pho-
ton in the signal region event selection with an electron. This
region is dominated by t t̄ events and Z+jets events in the sin-
gle electron channel with negligible contribution from other
processes. The ratio of data over prediction in this region is
0.98 ± 0.01, where the uncertainty is due to the sample size.
This overall correction is applied to the electron-fake back-
ground predicted by simulation in the single-lepton channel
signal region, in addition to the fake-rate scale factors.

The electron-fake background in the dilepton channel is
very small. Simulation is used to predict its contribution.
No dedicated control region is selected to validate this back-
ground.

6.3 Fake-lepton background

In the single-lepton channel, the fake-lepton background is
dominated by multi-jet processes with an additional photon
which could either be a prompt or a fake photon. It is esti-
mated directly from data by using a matrix method [51]. The
number of background events in the signal region is eval-
uated by applying efficiency factors (fake lepton and real
lepton efficiencies) to the number of events satisfying a tight
(identical to the signal selection) as well as a looser lepton
selection. The fake-lepton efficiency is measured using data
in control regions dominated by multi-jet background with
the real lepton contribution subtracted using simulation. The
real lepton efficiency is extracted from a tag-and-probe tech-
nique using leptons from Z boson decays. The efficiencies
are parametrized as a function of the lepton η and mT

W (the
lepton pT and mT

W ) when the lepton is an electron (muon).
In the dilepton channel, the contamination of background

processes with at least one fake lepton is estimated by select-
ing same-sign dilepton events in data, after subtracting events
with two same-sign prompt leptons, using simulation. The
fake-lepton background in the dilepton channel is found to
be negligible.

6.4 Prompt-photon background

All background processes to t t̄ production are also back-
ground to t t̄γ production when accompanied by prompt-
photon radiation. These processes include Wγ , Zγ , and
associated production of a photon in single top, diboson, and
t t̄V productions. In the single-lepton channel, Wγ is the
dominant prompt-photon background, and Zγ and the oth-
ers are grouped together as “Other prompt”. In the dilepton
channel, Zγ is dominant, with all others grouped as “Other
prompt”. Background from t t̄ production with a photon pro-
duced in an additional pp interaction in the same bunch cross-
ing has been studied and is found to be negligible.

Validation regions are selected to check the modelling of
Wγ in the single-lepton channel and Zγ in the dilepton chan-
nel. The Zγ validation region is selected by requiring exactly
one b-tagged jet and the invariant mass of the system of the
two leptons in a mass window of [60, 100] GeV. The Wγ val-
idation region is selected with the same event selection as for
the signal region of the single-lepton channel, with the fol-
lowing modifications: the number of jets must be either two
or three; exactly one b-jet is required; the Emiss

T is required to
be larger than 40 GeV; the ELD value must be smaller than
0.04; and the invariant mass of the system of the lepton and
photon is required to be smaller than 80 GeV if the lepton is
an electron. The modelling of Wγ is also checked in a light-
flavour validation region requiring zero b-jet and without the
ELD cut.
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The normalization of the Wγ background is treated as a
free parameter of the likelihood fit in the single-lepton chan-
nel, since this background is well separated from the t t̄γ
signal by the ELD and the uncertainty of its theoretical pre-
diction is large. The shape of Wγ is taken from simulation
and checked in the validation region to ensure good mod-
elling. The normalization and shape of the Zγ background
in the dilepton channel as well as other prompt backgrounds
in both channels are predicted by simulation.

7 Analysis strategy

The analysis is performed in two parts, one being the mea-
surement of the fiducial cross-section and the other the mea-
surement of normalized differential cross-sections in the
same fiducial region. Both parts share the same strategy for
the estimation of backgrounds and systematic uncertainties.
In the fiducial cross-section measurement, the ELD is fit-
ted and the post-fit background yields and systematic uncer-
tainties are used. In the normalized differential cross-section
measurements, no fit is performed, except for the determi-
nation of the Wγ contribution in the single-lepton channel,
where a systematics-free ELD fit is performed.

7.1 Fiducial region definition

The fiducial region of the analysis is defined at particle level
in a way that mimics the event selection in Sect. 5.2. Leptons
must have pT > 25 GeV and |η| < 2.5 and must not orig-
inate from hadron decays. Photons not from hadron decays
and in a �R = 0.1 cone around a lepton are added to the
lepton before the lepton selection. Photons are required to
have pT > 20 GeV and |η| < 2.37 and must not origi-
nate from hadron decays or be used for lepton dressing. The
photon isolation computed from the ratio of the scalar sum
of the transverse momentum of all stable2 charged particles
around the photon over its transverse momentum must be
smaller than 0.1. Jets are clustered using the anti-kt algo-
rithm with R = 0.4 using all final state particles excluding
non-interacting particles and muons that are not from hadron
decays. Jets must have pT > 25 GeV and |η| < 2.5. A ghost
matching method [52] is used to determine the flavour of
the jets, with those matched to b-hadrons tagged as b-jets. A
simple overlap removal is performed: jets within �R < 0.4
of a selected lepton or photon are removed. For events in
the single-lepton (dilepton) channel, exactly one photon and
exactly one lepton (two leptons) are required. At least four
(two) jets are required with at least one of them b-tagged.
Events are rejected if there is any lepton and photon pair sat-

2 A stable particle is a particle with c×τ > 10 mm, where c is the speed
of light and τ is the lifetime of the particle.

isfying �R(γ, �) < 1.0. The acceptance for the generated
signal events to pass the fiducial selection of the single-lepton
(dilepton) channel is 8.2% (0.96%).

7.2 Fiducial cross-section

The fiducial cross-section is extracted using a profile likeli-
hood fit to the ELD distribution. The parameter of interest,
the fiducial cross-section σfid, is related to the number of
signal events in bin i of the ELD as

Ns
i = L × σfid × C × f ELD

i ,

where L is the integrated luminosity, C is the correction fac-
tor for the signal efficiency and for migration into the fidu-
cial region, and f ELD

i is the fraction of signal events falling
into bin i of the ELD. The correction factor C is defined as
Ns,sel.

MC /Ns,fid
MC , where Ns,sel.

MC is the simulated number of sig-
nal events passing the event selection described in Sect. 5.2
and Ns,fid

MC is the corresponding number of signal events gen-
erated in the fiducial region defined in Sect. 7.1. The value
of C is 0.36 (0.30) for the single-lepton (dilepton) channel,
with negligible statistical uncertainty.

A likelihood function is defined from the product over all
bins of the ELD distribution:

L =
�

i

P

�

N obs
i |Ns

i (θ) +
�

b

Nb
i (θ)

�

×
�

t

G(0|θt , 1),

where N obs
i , Ns

i , and Nb
i are the observed number of events

in data, the predicted number of signal events, and the esti-
mated number of background events in bin i of the ELD,
which form a Poisson term P in that bin. Nuisance parame-
ter θt is to parameterize a systematic uncertainty t , which is
constrained by a GaussianG(0|θt , 1), so that when it changes
from zero to ±1, the quantities affected by this systematics
in the likelihood change by ±1 standard deviation. The col-
lection of all the systematic uncertainties is denoted as θ . For
systematic uncertainties related to the finite number of MC
events, the Gaussian terms in the likelihood are replaced by
Poisson terms. Each systematic uncertainty affects Ns

i and
Nb
i in each bin of the ELD. The cross-section is measured

by profiling the nuisance parameters and maximizing this
likelihood.

7.3 Normalized differential cross-sections

An unfolding procedure is applied to the observed detector-
level distribution of a given observable, with backgrounds
subtracted, to derive the true distribution of the signal at
particle level, from which the differential cross-section as
a function of the observable is calculated. The differential
cross-section is normalized to unity.
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Fig. 6 The a efficiency and outside fraction and b migration matrix for the photon pT in the single-lepton channel

The differential cross-section is given by

σk = 1

L
× 1

k
×

�

j

M−1
jk ×

�
N obs

j − Nb
j

	
× 


1 − fout, j
�
.

The indices j and k indicate the bin of the observable at
detector and particle levels, respectively. The variables N obs

j

and Nb
j are the number of observed events and of estimated

background events in bin j at detector level, respectively.
The efficiency k is the fraction of signal events generated
at particle level in bin k of the fiducial region to be recon-
structed and selected at detector level and have the objects,
that are used to define the observable to be unfolded, matched
between reconstruction and particle-levels with �R < 0.1.
The migration matrix Mkj expresses the probability for an
event in bin k at particle level to end up in bin j at detec-
tor level, calculated from events passing both the fiducial
region selection and the event selection, as well as the above
matching procedure. The outside-migration fraction fout, j is
the fraction of signal events generated outside the fiducial
region but reconstructed and selected in bin j at detector
level or events failing the above matching. The signal MC
sample is used to determine k , fout, j , and Mkj , the values
of which are illustrated in Fig. 6, using the photon pT in
the single-lepton channel as an example. The normalization
and the corresponding uncertainty of the Wγ contribution
in the single-lepton channel are taken from the likelihood fit
introduced in Sect. 7.2 but without systematic uncertainties
included. The normalized differential cross-section is

σ norm
k = σk

�
k σk

,

where the sum is over all the bins of the observable.

The inversion of the migration matrix Mkj is approxi-
mated using the iterative Bayesian method [53] implemented
in the RooUnfold package [54]. The method relies on the
Bayesian probability formula to invert the migration matrix,
starting from a given prior of the particle-level distribution
and iteratively updating it with the posterior distribution.
The binning choices of the unfolded observables take into
account the detector resolution and the expected statistical
uncertainty, with the latter being the dominating factor. Three
iterations are chosen which give a good convergence of the
unfolded distribution and a statistically stable result. Tests
are performed, using simulation, to verify that the unfolding
procedure does not bias the results while the estimated uncer-
tainties are still reasonable. The results are cross-checked
with other unfolding methods, which give consistent results.

The chosen observables to unfold are the photon pT and
|η| and the �R between the photon and the closest lepton
for both single-lepton and dilepton channels and the �φ and
|�η| between the two leptons for the dilepton channel. These
are all lepton or photon observables, therefore the migration
matrices are almost diagonal, making the unfolding simple
and converging fast. The kinematic properties of the photon
are sensitive to the tγ coupling, while the dilepton �φ is sen-
sitive to the t t̄ spin correlation. The normalized differential
cross-sections are measured, since the overall signal normal-
ization is given by the measured fiducial cross-section.

8 Systematic uncertainties

Signal and background modelling and experimental uncer-
tainties in the analysis are described in this section, as well as
the PPT systematic uncertainty. They affect the normaliza-
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tion of signal and background and/or the shape of their corre-
sponding distributions, such as the ELD and the observables
to be unfolded. Each of the signal and background modelling
uncertainties is correlated between different channels for the
relevant signal or background process. Each of the experi-
mental uncertainties is correlated between signal and simu-
lated backgrounds and between different channels. The PPT
systematic uncertainty is separately studied for the prompt,
electron-fake, and hadronic-fake photons. Table 5 gives a
summary of these uncertainties and their impact to the fidu-
cial cross-section measurements.

8.1 Signal modelling uncertainties

The signal modelling uncertainties include the uncertainties
due to the choice of the QCD scales, the parton shower, the
amount of ISR and FSR, and the PDF set. Their effects on
the corrections defined in Sect. 7 (both for the fiducial and
normalized differential cross-section measurements) as well
as on the shape of the ELD distributions are evaluated.

To study the QCD scale uncertainty, the renormalization
and factorization scales are varied up and down by a factor
of two from their nominal choices independently or simul-
taneously. The largest variation of the corrections or the
shapes is assigned as the uncertainty. To evaluate the parton
shower uncertainty, Pythia 8 and Herwig 7 both interfaced
to MG5_aMC are compared. The ISR/FSR uncertainty is
studied by comparing the variations of the A14 tune param-
eters of Pythia 8 with its nominal values. The PDF uncer-
tainty is evaluated using the standard deviation of the distri-
bution formed by the 100 eigenvector set of the NNPDF set
[23].

8.2 Background modelling uncertainties

The systematic uncertainties on the hadronic-fake back-
ground due to background subtraction in the hadronic-fake
control regions A, B, and C are estimated by varying up and
down the signal by 100%, the other MC-based backgrounds
by 50%, and the other data-driven backgrounds by their esti-
mated uncertainties, separately. The statistical uncertainties
in the three data control regions are also considered. Sys-
tematic uncertainties arising from the correction factor θMC,
the extrapolation of the hadronic-fake scale factors, and the
shapes of the distributions of the ELD and the observables to
be unfolded are estimated using t t̄ samples rather than all of
the simulated hadronic-fake samples, since t t̄ is the dominant
source of the hadronic-fake background. The uncertainty due
to the rate of additional QCD radiation is estimated by com-
paring the samples with enhanced/reduced parton shower
radiation as described in Sect. 3 with the nominal sample,
and the uncertainty due to the modelling of the generator and

parton shower is estimated by comparing Powheg+Pythia
8 with Sherpa.

The systematic uncertainties on the electron-fake back-
ground mainly come from the sideband fit when measuring
the fake rate, which is estimated by varying the fit parameters
within their uncertainties. The uncertainty due to Z → eeγ
subtraction is also considered by replacing the Zγ MC sam-
ple by the Z+jets sample, where the photon radiation is
described by the parton shower. Uncertainties of the shapes
of the distributions are evaluated using t t̄ systematic varia-
tions MC samples as for the hadronic-fake background. In
the dilepton channel where the electron-fake background is
very small, a 50% uncertainty is assumed to cover a possible
mis-modelling in the estimate.

For evaluating the systematic uncertainty of the fake-
lepton background in the single-lepton channel, several alter-
native parameterizations of the real and fake efficiencies of
the matrix method are studied and two predicting larger and
smaller yields are selected as up and down variations. The
lepton η, b-jet multiplicity, and mT

W (the lepton η, minimum
�R between the lepton and the closest jet, and the jet pT)
parameterization is used as up (down) variation when the
lepton is an electron. The jet pT and b-jet multiplicity (the
lepton pT, η, and minimum �R between the lepton and the
closest jet) parameterization is used as up (down) variation
when the lepton is a muon. The resulting uncertainties are
around 50%, and given that this background contribution is
relatively small, no additional systematic uncertainties are
considered.

The uncertainty on the V γ background shape is studied by
varying the renormalization and factorization scales up and
down by a factor of two from their nominal values indepen-
dently or simultaneously and then choosing the maximum
shape distortions as the QCD scale uncertainties. For the Zγ

background in the dilepton channel, Sherpa is compared
withMG5_aMC+Pythia 8 to evaluate the shape uncertainty
due to the choice of generator and parton shower. No shape
modelling uncertainty is assigned to the other small prompt
backgrounds. Apart from the Wγ background in the single-
lepton channel whose normalization is a free parameter in the
likelihood fit, a normalization uncertainty of 50% is assigned
to each source of the prompt-photon background, included
in Table 2 as “Zγ ” and “Other prompt”.

8.3 Experimental uncertainties

Experimental systematic uncertainties affect the normaliza-
tion and shape of the simulated signal and background sam-
ples. For MC-based backgrounds calibrated to data using
data-driven techniques, only the shape variations are consid-
ered.

The photon identification and isolation efficiencies as well
as the efficiencies of the lepton reconstruction, identification,
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Fig. 7 The post-fit ELD distributions for the a single-lepton and b dilepton channels. All the systematic uncertainties are included

isolation, and trigger in the MC samples are all corrected as
mentioned in Sect. 5.1. These corrections, which are pT and η

dependent, are varied to study their impact on the final results.
Similarly, the corrections to the lepton and photon momen-
tum scale and resolution in simulation are varied within their
uncertainties [38,55].

The PPT systematic uncertainty is evaluated separately
for prompt photons and hadronic-fake photons. The data-
driven PPT scale factors as mentioned in Sect. 5.1 are turned
on and off to assign a PPT systematic uncertainty for the
prompt photon. The resulting uncertainty is also assigned
to the electron-fake photon PPT output distribution, since
its shape and shape difference between data and simulation
are similar to that of the prompt photons. The maximum PPT
shape difference between data and prediction in the hadronic-
fake control region C of Sect. 6.1, with the expected signal
contamination in this region varied by ±50%, is used to esti-
mate the hadronic-fake PPT uncertainty. The hadronic-fake
photons in region C are non-isolated while those of the signal
region are isolated. To account for a possible underestimation
of the systematic uncertainty caused by this difference, the
shape differences between data and prediction in the isolated
hadronic-fake control region A of Sect. 6.1 are considered
as an additional PPT systematic uncertainty. The PPT shape
uncertainties are estimated in photon pT and η bins.

The jet energy scale (JES) uncertainty is derived using a
combination of simulations, test beam data and in situ mea-
surements [56–58]. Additional contributions from jet flavour
composition, η-intercalibration, punch-through, single-
particle response, calorimeter response to different jet

Table 4 The observed data and post-fit event yields for the signal and
backgrounds in the single-lepton and dilepton channels. All data-driven
corrections and systematic uncertainties are included. The fake-lepton
background in the dilepton channel is negligible, represented by a “-”.
The Zγ (Wγ ) background in the single-lepton (dilepton) channel is
included in “Other prompt”

Channel Single lepton Dilepton

t t̄γ 7 040 ± 350 780 ± 44

Hadronic-fake 1 470 ± 180 49 ± 26

Electron-fake 1 620 ± 160 2 ± 1

Fake lepton 186 ± 68 –

Wγ 900 ± 370

Zγ 55 ± 29

Other prompt 570 ± 180 18 ± 7

Total 11 790 ± 180 906 ± 38

Data 11 662 902

flavours, and pile-up are taken into account, resulting in 21
uncorrelated JES uncertainty subcomponents. The jet energy
resolution (JER) in simulation is smeared up by the mea-
sured JER uncertainty [59]. The uncertainty associated with
the JVT cut is obtained by varying the efficiency correction
factors. The b-tagging weights used for jet flavour tagging
are corrected by data, separately for b-jets, c-jets, and light-
flavour jets [44,60]. The corrections are varied by their mea-
sured uncertainties.

The uncertainties associated with energy scales and res-
olutions of photons, leptons and jets are propagated to the
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Fig. 8 The measured fiducial
cross-sections normalized to
their corresponding NLO SM
predictions [10] for the five
individual channels and for the
single-lepton and dilepton
channels, as well as the
combination of all channels.
The statistical uncertainties are
the inner error bars, while the
total uncertainties are the outer
error bars. The NLO prediction
for the inclusive fiducial
cross-section is represented by
the dashed vertical line, and the
theoretical uncertainties are
represented by the shaded bands

Emiss
T . Additional uncertainties originate from the modelling

of its soft term [61].
The uncertainty in the combined 2015+2016 integrated

luminosity is 2.1%. It is derived, following a methodology
similar to that detailed in Ref. [62], and using the LUCID-2
detector for the baseline luminosity measurements [63], from
calibration of the luminosity scale using x-y beam-separation
scans.

The uncertainty associated to the modelling of pile-up in
the simulation is assessed by varying the reweighting of the
pile-up in the simulation within its uncertainties.

8.4 Systematic uncertainties of the measured differential
cross-section

Systematic uncertainties for unfolding arise from the detec-
tor response description, signal modelling, and background
modelling. The systematic uncertainties due to background
modelling and the detector response are evaluated by varying
the input detector-level pre-fit distributions, unfolding them
with corrections based on the nominal signal sample, and cal-
culating the difference of the resulting unfolded distributions
with respect to the nominal one. The systematic uncertain-
ties due to signal modelling are evaluated by varying the
signal corrections, i.e. the migration matrix Mkj , the effi-
ciency k and the fraction fout, j as defined in Sect. 7.3, with
which the nominal input detector-level pre-fit distributions
are unfolded, and calculating the difference of the resulting
unfolded distributions with respect to the nominal one. The
statistical uncertainties of the signal and background MC

Table 5 Summary of the effects of the groups of systematic uncer-
tainties on the fiducial cross-section in the single-lepton and dilepton
channels. Due to rounding effects and small correlations between the
different sources of uncertainty, the total systematic uncertainty is dif-
ferent from the sum in quadrature of the individual sources

Source Single lepton (%) Dilepton (%)

Signal modelling ± 1.6 ± 2.9

Background modelling ± 4.8 ± 2.9

Photon ± 1.1 ± 1.1

Prompt-photon tagger ± 4.0 –

Leptons ± 0.3 ± 1.3

Jets ± 5.4 ± 2.0

b-tagging ± 0.9 ± 0.4

Pile-up ± 2.0 ± 2.3

Luminosity ± 2.3 ± 2.3

MC sample size ± 1.9 ± 1.7

Total systematic uncertainty ± 7.9 ± 5.8

Data sample size ± 1.5 ± 3.8

Total uncertainty ± 8.1 ± 7.0

samples are also considered. The covariance matrix Ci j for
each of these systematic uncertainties is estimated as σi ×σ j ,
where σi and σ j are the symmetrized uncertainties for bin i
and bin j of the unfolded distribution. The covariance matrix
for the statistical uncertainty of data is calculated by the
unfolding algorithm [54].
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Fig. 9 The normalized differential cross-sections as a function of the
a photon pT, b photon |η|, and c �R(γ, �) in the single-lepton chan-
nel. The unfolded distributions are compared to the predictions of the
MG5_aMC+Pythia 8 together with the up and down variations of the
Pythia 8 A14 tune parameters, the MG5_aMC+Herwig 7, and the

Powheg+Pythia 8 t t̄ where photon radiation is modelled in the parton
shower. The top ratio-panel shows the ratios of all the predictions over
data. The bottom ratio-panel shows the ratios of the alternative predic-
tions and data over the nominal prediction. Overflows are included in
the last bin

9 Results

9.1 Fiducial cross-sections

The fiducial cross-section is extracted via a binned maximum
likelihood fit to the ELD distribution in data as described in
Sect. 7.2. The measured cross-sections are

σ SL
fid = 521 ± 9(stat.) ± 41(sys.) fb and

σDL
fid = 69 ± 3(stat.) ± 4(sys.) fb,

for the single-lepton and dilepton channels, respectively, and
agree well within uncertainties with the corresponding pre-
dicted cross-sections of 495 ± 99 fb and 63 ± 9 fb. The ELD
distributions after the fit (post-fit) are shown in Fig. 7 for
the single-lepton and dilepton channels. The corresponding
event yields are summarized in Table 4, including all the

123



382 Page 18 of 41 Eur. Phys. J. C (2019) 79 :382

 / 
G

eV
)γ(

T
d 

p
σd

 ⋅ σ1

4−10

3−10

2−10

1−10

Unfolded data
MG5_aMC + Pythia8
MG5_aMC + Herwig7
MG5_aMC + Pythia8 (A14 Up)
MG5_aMC + Pythia8 (A14 Down)

tPowheg + Pythia8 t
Stat.

 Syst.⊕Stat 

ATLAS
-1 = 13 TeV, 36.1 fbs

Normalized cross-section
Dilepton

P
re

d.
/D

at
a

0.5

1

1.5

) [GeV]γ(
T

p
50 100 150 200 250 300O

th
er

/N
om

.

0.5
1

1.5

(a)

)| γ(η
d 

|
σd

 ⋅ σ1

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Unfolded data
MG5_aMC + Pythia8
MG5_aMC + Herwig7
MG5_aMC + Pythia8 (A14 Up)
MG5_aMC + Pythia8 (A14 Down)

tPowheg + Pythia8 t
Stat.

 Syst.⊕Stat 

ATLAS
-1 = 13 TeV, 36.1 fbs

Normalized cross-section
Dilepton

P
re

d.
/D

at
a

0.5

1

1.5

)|γ(η|
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2O

th
er

/N
om

.

0.5
1

1.5

(b)

m
in

)l, γ
R

(
Δd

σd
 ⋅ σ1

0

0.2

0.4

0.6

0.8

1

1.2

1.4 Unfolded data
MG5_aMC + Pythia8
MG5_aMC + Herwig7
MG5_aMC + Pythia8 (A14 Up)
MG5_aMC + Pythia8 (A14 Down)

tPowheg + Pythia8 t
Stat.

 Syst.⊕Stat 

ATLAS
-1 = 13 TeV, 36.1 fbs

Normalized cross-section
Dilepton

P
re

d.
/D

at
a

0.5
1

1.5

min
)l,γR(Δ

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6O
th

er
/N

om
.

0.5
1

1.5

(c)

)|l, l(
Δη

d|
σd

 ⋅ σ1

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Unfolded data
MG5_aMC + Pythia8
MG5_aMC + Herwig7
MG5_aMC + Pythia8 (A14 Up)
MG5_aMC + Pythia8 (A14 Down)

tPowheg + Pythia8 t
Stat.

 Syst.⊕Stat 

ATLAS
-1 = 13 TeV, 36.1 fbs

Normalized cross-section
Dilepton

P
re

d.
/D

at
a

0.5

1

1.5

)|l,l(Δη|
0 0.5 1 1.5 2 2.5O

th
er

/N
om

.

0.5
1

1.5

(d)

)l ,l(
Δφd

σd
 ⋅  σ1

0

0.2

0.4

0.6

0.8

1

1.2
Unfolded data
MG5_aMC + Pythia8
MG5_aMC + Herwig7
MG5_aMC + Pythia8 (A14 Up)
MG5_aMC + Pythia8 (A14 Down)

tPowheg + Pythia8 t
Stat.

 Syst.⊕Stat 

ATLAS
-1 = 13 TeV, 36.1 fbs

Normalized cross-section
Dilepton

P
re

d.
/D

at
a

0.5
1

1.5

)l,l(Δφ
0 0.5 1 1.5 2 2.5 3O

th
er

/N
om

.

0.5
1

1.5

(e)

Fig. 10 The normalized differential cross-sections as a function of the
a photon pT, b photon |η|, c minimum �R(γ, �), d |�η(�, �)|, and e
�φ(�, �) in the dilepton channel. The unfolded distributions are com-
pared to the predictions of the MG5_aMC+Pythia 8 together with
the up and down variations of the Pythia 8 A14 tune parameters, the

MG5_aMC+Herwig 7, and the Powheg+Pythia 8 t t̄ where photon
radiation is modelled in the parton shower. The top ratio-panel shows
the ratios of all the predictions over data. The bottom ratio-panel shows
the ratios of the alternative predictions and data over the nominal pre-
diction. Overflows are included in the last bin
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Fig. 11 The decomposed systematic uncertainties for the normalized differential cross-sections as a function of the a photon pT, b photon |η|,
and c �R(γ, �) in the single-lepton channel

systematic uncertainties. Compared to pre-fit (Table 2), the
signal event yields are higher, while some of the background
event yields are lower. Some of the systematic uncertainties
are moderately constrained, e.g. the parton shower uncer-
tainty of the t t̄γ and t t̄ modelling and the PPT shape uncer-
tainty of prompt photons.

The fiducial cross-sections in each of the individual chan-
nels (e+jets, μ+jets, ee, eμ, and μμ) as well as a combined
single-lepton and dilepton cross-section are also measured.
The former are measured by fitting the ELD distribution in
each individual channel separately, while the latter is mea-
sured by fitting them simultaneously, sharing the same signal
strength parameter μ = σt t̄γ /σNLO

t t̄γ , which scales coherently
the fiducial cross-sections of each channel. A comparison of
all measurements with the predictions is shown in Fig. 8.

All the systematic uncertainties introduced in Sect. 8 are
grouped into a smaller set of classes and summarized in
Table 5 for the single-lepton and dilepton channels. The
effect of each group of uncertainties is calculated from the
quadratic difference between the relative uncertainty in the
measured fiducial cross-section with this group of uncertain-
ties included or excluded from the fit with corresponding
nuisance parameters fixed to their fitted values. In the single-

lepton channel, the jet-related and background modelling
systematic uncertainties are dominant, followed by the PPT
and signal modelling systematic uncertainties. In the dilep-
ton channel, the data statistical uncertainty is the leading
contribution, followed by the signal and background mod-
elling systematic uncertainties. The luminosity and pile-up
uncertainties are also important in this channel.

9.2 Normalized differential cross-sections

The normalized differential cross-sections are shown in
Figs. 9 and 10, for the single-lepton and dilepton channels,
respectively. They are compared to the nominal t t̄γ sample
(MG5_aMC+Pythia 8) and the samples with variations of
the Pythia 8 A14 tune parameters and the alternative parton
shower model of MG5_aMC+Herwig 7. In addition, a com-
parison with the nominal t t̄ Powheg+Pythia 8 MC sam-
ple where prompt-photon radiation is modelled in the par-
ton shower is included. All t t̄γ samples predict very similar
shapes and describe the data well. A small deviation from the
prediction is observed in the dilepton �φ distribution, where
the leptons in the prediction are more back-to-back than in
data. The deviation of data from the prediction is 1.5 standard
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Fig. 12 The decomposed systematic uncertainties for the normalized differential cross-sections as a function of the a photon pT, b photon |η|, c
minimum �R(γ, �), d |�η(�, �)|, and e �φ(�, �) in the dilepton channel

deviations, based on the χ2 calculated according to the pro-
cedure described in what follows. The Powheg+Pythia 8
t t̄ sample gives an improved agreement with data compared
to the nominal and varied t t̄γ samples, although the overall
agreement is still poor. It can also be seen from Figs. 9(a) and
10(a) that the photons generated by Pythia 8 have a softer
pT spectrum than in data.

The systematic uncertainties of the unfolded distributions
are decomposed into the signal modelling uncertainty, exper-
imental uncertainty, and background modelling uncertainty
in both channels. In the single-lepton (dilepton) channel, the

background modelling uncertainty is split into t t̄ (Zγ ) and
the others. These decomposed uncertainties are illustrated
in Figs. 11 and 12 for the single-lepton and dilepton chan-
nels, respectively. For the single-lepton channel, the system-
atic uncertainty is dominated by the t t̄ modelling, which is
used to model the shapes of the hadronic-fake and electron-
fake backgrounds. For the dilepton channel, the systematic
uncertainty is dominated by the Zγ modelling, mostly from
the comparison between Sherpa and MG5_aMC+Pythia 8
generators. Because the unfolding is performed with the dis-
tributions before the fit, the background modelling uncertain-
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Table 6 The correlation matrix for the normalzed differential cross-section as a function of �φ(�, �) in the dilepton channel, accounting for the
statistical and systematic uncertainties

Bin 0.0–0.35 0.35–0.7 0.7–1.05 1.05–1.4 1.4–1.75 1.75–2.1 2.1–2.45 2.45–2.8 2.8–3.14

0.0–0.35 1.00 −0.07 0.05 −0.36 −0.18 −0.08 −0.19 −0.13 − 0.24

0.35–0.7 1.00 0.29 0.21 0.09 0.11 0.21 0.02 0.32

0.7–1.05 1.00 0.12 0.05 0.10 0.14 0.05 0.23

1.05–1.4 1.00 0.26 0.18 0.29 0.20 0.41

1.4–1.75 1.00 0.15 0.16 0.14 0.21

1.75–2.1 1.00 0.17 0.15 0.23

2.1–2.45 1.00 0.12 0.33

2.45–2.8 1.00 0.18

2.8–3.14 1.00

Table 7 χ2/ndf values and p-values between the measured normalized differential cross-sections and predictions from several generators in the
single-lepton channel

pT (γ ) |η(γ )| �R(γ, �)

Predictions χ2/ndf p-value χ2/ndf p-value χ2/ndf p-value

MG5_aMC + Pythia8 3.2/8 0.92 0.7/7 1.0 5.0/8 0.76

MG5_aMC + Herwig7 2.3/8 0.97 0.9/7 1.0 4.8/8 0.78

MG5_aMC + Pythia8 (A14 Up) 3.3/8 0.91 0.8/7 1.0 4.9/8 0.77

MG5_aMC + Pythia8 (A14 Down) 2.6/8 0.96 0.9/7 1.0 4.6/8 0.80

POWHEG + Pythia8 t t̄ 25.4/8 < 0.01 2.8/7 0.9 8.7/8 0.37

Table 8 χ2/ndf values and p-values between the measured normalized differential cross-sections and predictions from several generators in the
dilepton channel

pT (γ ) η(γ ) �R(γ, �) |�η(�, �)| �φ(�, �)

Predictions χ2/ndf p-value χ2/ndf p-value χ2/ndf p-value χ2/ndf p-value χ2/ndf p-value

MG5_aMC + Pythia8 1.7/8 0.99 7.4/7 0.39 6.9/8 0.55 3.0/7 0.89 14.4/8 0.07

MG5_aMC + Herwig7 2.0/8 0.98 7.4/7 0.39 6.6/8 0.58 3.1/7 0.88 14.4/8 0.07

MG5_aMC + Pythia8 (A14 Up) 1.6/8 0.99 8.4/7 0.30 7.4/8 0.49 3.4/7 0.85 14.0/8 0.08

MG5_aMC + Pythia8 (A14 Down) 1.6/8 0.99 7.9/7 0.34 7.5/8 0.48 3.2/7 0.87 14.4/8 0.07

POWHEG + Pythia8 t t̄ 20.1/8 0.01 10.8/7 0.15 8.6/8 0.38 4.5/7 0.72 9.8/8 0.28

ties are not constrained as in the case of fiducial cross-section
measurement where a fit to ELD distribution is performed,
and thus they have a much larger impact on the result.

The differences between the unfolded and the predicted
distributions are quantified by the chi-squared per degree of
freedom χ2/ndf, where the χ2 is

χ2 =
�
σ norm
j,data − σ norm

j,pred.

	
· C−1

jk ·
�
σ norm
k,data − σ norm

k,pred.

	
,

where σ norm
data and σ norm

pred. are the unfolded and predicted nor-
malized differential cross-sections, C jk is the covariance

matrix of σ norm
data , and j and k are the binning indices of the

distribution. For normalized differential cross-sections, the
last bin of the above formula is removed from the χ2 calcu-
lation and ndf is reduced by one since this bin gives redundant
information. The total correlation matrix is shown in Table 6,
taking the �φ(�, �) in the dilepton channel as an example.
There is moderate correlation, either positive or negative,
between different bins of the unfolded �φ(�, �) distribu-
tion. The calculated χ2/ndf values and their corresponding
p-values are summarized in Tables 7 and 8, quantifying the
compatibility between data and each of the predictions.
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10 Conclusions

Fiducial cross-sections of top-quark pair production in asso-
ciation with a photon are measured in the single-lepton
and dilepton decay channels of the top-quark pair using
36.1 fb−1of 13 TeV pp collision data collected in 2015 and
2016 by the ATLAS detector at the LHC. The normalized
differential cross-sections are measured as a function of the
photon pT and |η|, and the �R between the photon and
the closest lepton for both channels, and the |�η| and �φ

between the two leptons for the dilepton channel.
In both channels, the measured fiducial cross-sections

agree well with the NLO SM predictions within uncertain-
ties. The measured normalized differential cross-sections
also agree well with the LO t t̄γ prediction and the NLO t t̄
prediction, where the photon comes from the parton shower.
The largest disagreement between data and LO t t̄γ predic-
tion is observed in the distribution of the azimuthal opening
angle between the two leptons in the dilepton channel, which
is sensitive to t t̄ spin correlation, while the NLO t t̄ sample
provides an improved agreement with data in this variable.
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Appendix

The definitions of the discriminating variables used in
ATLAS photon identification are given in Table 9.

The shapes of the PPT of the prompt, hadronic-fake, and
electron-fake photons are compared in Fig. 13.

Figure 14 shows the post-fit distributions of four important
variables for the training of the ELD in the single-lepton
channel.

Figure 15 shows the post-fit distributions of four important
variables for the training of the ELD in the dilepton channel.

Figure 16 shows the distributions of the ELD and HT in
the hadronic-fake control region B, as defined in Sect. 6.1.

Figure 17 shows the distributions of the efficiency, out-
side fraction, and migration matrix for the dilepton azimuthal
angle in the dilepton channel, which are the inputs for unfold-
ing, as described in Sect. 7.3.
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Table 9 Definitions of photon
discriminating variables

Name Description

Hadronic leakage

Rhad or Rhad1 Transverse energy leakage in the hadronic calorimeter normalized to transverse energy
of the photon candidate in the ECAL. In the region 0.8 ≤ |η| ≤ 1.37, the entire energy
of the photon candidate in the HCAL is used (Rhad), while in the region |η| < 0.8 and
|η| > 1.37 the energy of the first layer of the HCAL is used (Rhad1)

Energy ratios and width in the second layer of ECAL

Rη Energy ratio of 3 × 7 to 7 × 7 cells in the η × φ plane

Rφ Energy ratio of 3 × 3 to 3 × 7 cells in the η × φ plane

wη2 Lateral width of the shower, using a window of η × φ = 3 × 5 cells

Energy ratios and widths in the first (strip) layer of
ECAL

ws3 Shower width along η, using 3 strips around the largest energy deposit

ws tot Shower width along η, using 20 × 2 strip cells in the η × φ plane

Fside Energy outside the 3 central strips but within 7 strips, normalized to the energy within
the 3 central strips

Eratio Ratio between difference of the first and second energy maximum divided by their sum
(Eratio = 1 if there is no second maximum)

�E Difference between the second energy maximum and the minimum found between first
and second maximum (�E = 0 if there is no second maximum)

Fig. 13 The simulated shapes of the output of the prompt-photon tag-
ger for the prompt, hadronic-fake, and electron-fake photons after apply-
ing Tight identification and isolation criteria
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Fig. 14 Distributions of the a highest and b second highest b-tagging
scores for all jets, c total number of b-tagged jets (at a 77% efficiency),
and d scalar sum of the transverse energies of all the selected physical
objects in the single-lepton channel after event selection and likelihood

fit. Each bin of a and b, from one to five, represents the b-tagging
efficiencies of > 85%, 77–85%, 70–77%, 60–70%, and < 60%. All
data-driven corrections and systematic uncertainties are included
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Fig. 15 Distributions of the a highest and b second highest b-tagging
scores for all jets, c total number of b-tagged jets (at a 77% efficiency),
and d invariant mass between the two leptons in the dilepton channel
after event selection and likelihood fit. Each bin of a and b, from one

to five, represents the b-tagging efficiencies of > 85%, 77–85%, 70–
77%, 60–70%, and < 60%. All data-driven corrections and systematic
uncertainties are included
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Fig. 16 Distributions of the a ELD and b HT in the hadronic-fake con-
trol region B of the single-lepton channel. Data-driven correction to the
electron-fake background and all systematic uncertainties are included.

The contributions from t t̄γ and Wγ + other prompts are very small
(0.2% and 0.3%, respectively), therefore not visible
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Fig. 17 The a efficiency and outside fraction and b migration matrix for the dilepton azimuthal angle in the dilepton channel
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Y. Wu59a, T. R. Wyatt99, B. M. Wynne49, S. Xella40, Z. Xi104, L. Xia177, D. Xu15a, H. Xu59a,d, L. Xu29, T. Xu144, W. Xu104,
Z. Xu152, B. Yabsley156, S. Yacoob33a, K. Yajima132, D. P. Yallup93, D. Yamaguchi164, Y. Yamaguchi164, A. Yamamoto80,
T. Yamanaka162, F. Yamane81, M. Yamatani162, T. Yamazaki162, Y. Yamazaki81, Z. Yan25, H. J. Yang59c,59d, H. T. Yang18,
S. Yang76, Y. Yang162, Z. Yang17, W-M. Yao18, Y. C. Yap45, Y. Yasu80, E. Yatsenko59c,59d, J. Ye42, S. Ye29, I. Yeletskikh78,
E. Yigitbasi25, E. Yildirim98, K. Yorita178, K. Yoshihara136, C. J. S. Young36, C. Young152, J. Yu8, J. Yu77, X. Yue60a,
S. P. Y. Yuen24, B. Zabinski83, G. Zacharis10, E. Zaffaroni53, R. Zaidan14, A. M. Zaitsev122,an, T. Zakareishvili158b,
N. Zakharchuk34, S. Zambito58, D. Zanzi36, D. R. Zaripovas56, S. V. Zeißner46, C. Zeitnitz181, G. Zemaityte134,
J. C. Zeng172, Q. Zeng152, O. Zenin122, D. Zerwas131, M. Zgubič134, D. F. Zhang59b, D. Zhang104, F. Zhang180, G. Zhang59a,
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