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Half-metal phases in a quantum wire with modulated spin-orbit interaction
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We propose a spin filter device based on the interplay of a modulated spin-orbit interaction and a uniform
external magnetic field acting on a quantum wire. Half-metal phases, where electrons with only a selected spin
polarization exhibit ballistic conductance, can be tuned by varying the magnetic field. These half-metal phases are
proven to be robust against electron-electron repulsive interactions. Our results arise from a combination of explicit
band diagonalization, bosonization techniques, and extensive density matrix renormalization group computations.
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I. INTRODUCTION

The ability to control and manipulate electron spins with
an efficiency comparable to that of present-day (charge)
electronics is one of the major goals of modern spintronics
[1–3]. As it comes to applications, fabrication of a device
providing spin-dependent currents is a central issue [4]. A
seminal blueprint for a spin-filtering scheme was proposed in a
paper published more than two decades ago [5]. The Datta-Das
transistor uses a conductor contacted to a ferromagnetic source
and drain, subject to a Rashba spin-orbit interaction (SOI) [6].
Depending on the spin orientations in the source and in the
drain, the current flowing through the device can be controlled
by rotating the spins of the incoming electrons, using a gate
voltage to tune the strength of the SOI [7,8]. Progress notwith-
standing [9], reliable injection of spin-polarized electrons from
a ferromagnet into a semiconductor remains a challenge, and
so does the very realization of a functional device producing
spin-dependent currents.

Because a SOI couples spin and momentum of charge
carriers, it also provides a differentiated effect on each spin
polarization. This opens a window for a spin-filtering regime,
where only electrons with one spin polarization carry current,
while electrons with the opposite spin polarization are gapped.
This possibility is most profoundly displayed in the case of
one-dimensional conductors where a uniform Rashba SOI
leads to a spin-dependent shift of the electron dispersion by a
momentum τq0, with τ = +,− the spin polarization along an
axis determined by the SOI [10]. A Peierls-type mechanism
for a spin-based current switch was identified in Ref. [11],
where it was shown that a spatially smooth modulated Rashba
SOI coupling opens both charge and spin gaps in the system
at commensurate band fillings. Such an interaction could
be generated by a periodic gate configuration schematically
shown in Fig. 1. In subsequent studies the effect of induced
charge density wave correlations in the quantum wire due
to the periodic gating was examined, and the optimal regime
where insulating current blockade occurs was determined [12].
Other aspects of one-dimensional (1D) electron transport in
the presence of modulated Rashba interactions have also been
discussed in the literature [13].

In this paper, building on the Peierls-type mechanism
identified in Ref. [11], we show how the interplay between

a spatially smooth modulated Rashba SOI and an applied
magnetic field along the SOI axis may induce a selective
opening of energy gaps, providing for spin-polarized electron
conductance in a quantum wire. A detailed analysis, based
on explicit band diagonalization, bosonization, and extensive
DMRG computations, proves that the resulting half-metal
phases are stable against repulsive electron-electron interac-
tions, suggesting that the proposed scheme can be realized in
the laboratory.

II. HALF-METAL PHASES FOR NONINTERACTING
ELECTRONS

To elucidate the physics underlying the magnetically
controlled half-metal phases, we set out by explaining how
a uniform transverse magnetic field parallel to an SOI axis
can generate a spin-selective metal-insulator transition. We
then specialize to the case of commensurate magnetization and
band filling, where one spin projection electron subsystem is
pinned by the interactions while the other remains gapless and
as a result the system shows a perfect spin-filtering effect.

Using a tight-binding formalism, with the spin-orbit cou-
pled electrons confined to a single 1D conduction channel, we
model the system by the Hamiltonian

H = −t
X
n,α

(c†n,αcn+1,α + H.c.)−μ
X
n,α

ρn,α

− i
X
n,α,β

γR(n)
£
c†n,ασ

y

αβcn+1,β + H.c.
¤

+ hy

2

X
n,α,β

c†n,ασ
y

αβcn,β, (1)

for now ignoring the electron-electron interaction. Here c
†
n,α

(cn,α) is the creation (annihilation) operator for an electron
with spin α = ↑,↓ on site n, ρn,α = c

†
n,αcn,α , t is the

electron hopping amplitude, μ a chemical potential, hy is
the external magnetic field along the SOI axis ∼ŷ. In the
second line of Eq. (1) we assume [11] that the ŷ propagating
electron modes are confined to their ground state, and that
the remaining Rashba SOI modulation can be modeled by
γR(n) = γ0 + γ1 cos(Qn), with γ0 (γ1) being the amplitude
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FIG. 1. A qualitative sketch of the quantum device discussed in
this paper. A quantum wire supporting Rashba SOI is gated by a
periodic sequence of equally charged top gates. A transverse uniform
magnetic field is applied in the direction perpendicular to the current
(wire) and the external electric field.

of its uniform (modulated) part. This minimal assumption
smooths the unreal sharp interfaces suggested by Fig. 1 and
allows for a well-controlled analysis, also in the presence of
electron interactions. For transparency and ease of notation we
have omitted the modulation of the chemical potential term
caused by the modulated gate potential. It can be shown to
result only in a band gap renormalization, an effect that can
easily be included a posteriori by following a prescription in
Ref. [12].

Choosing ŷ as spin quantization axis, the uniform part of the
SOI in (1) is seen to split the dispersion relations of the rotated
spins by a momentum τq0, with q0 = arctan(γ0/t) and with
τ = ± the spin projections along ŷ. In addition, the τ = ±
bands are split also by a Zeeman energy 1ε = −τhy/2 due
to the magnetic field hy . For a given filling fraction ν and
magnetization m, the right and left Fermi momenta for each
band are given by

k
R/L

F,τ = τq0 ± k0
F,τ , (2)

where k0
F,τ = (ν + τm)π/2. The corresponding values of

magnetic field and chemical potential can be obtained from
the conditions

²0
+
¡
q0 ± k0

F,+
¢ − μ − hy/2 = ²0

−
¡ − q0 ± k0

F,−
¢

−μ + hy/2 = 0.

To assess the impact of the modulated part of the SOI in (1),
it is convenient to use a bosonization approach [14]. This will
also be practical when we later analyze the role of electron-
electron interactions, with bosonization offering an expedient
view on correlation effects in the presence of a Rashba SOI
[15]. Introducing Bose fields ϕτ and their duals ϑτ , standard
bosonization maps the low-energy sector of the Hamiltonian
in (1) to an effective continuum theory H bos = H bos

0 + H bos
γ1

,
where

H bos
0 = vF,τ

2

X
τ=±

Z
dx [(∂xϕτ )2 + (∂xϑτ )2], (3)
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= − MR
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X
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¤
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Here vF,τ = 2
√

t2 + γ 2
0 sin(k0

F,τ ) are the Fermi velocities,
MR = γ1 sin(q0a0) measures the strength of the modulated

Rashba SOI, and a0 is a short-distance cutoff conveniently
taken as the lattice spacing. Note that the bosonized Hamilto-
nian can also be decomposed as H bos = H bos

+ + H bos
− , with

each piece containing only Bose fields with either τ = +
or τ = −, showing that the rotated spins are good quantum
numbers.

From Eq. (4) one concludes that the modulated Rashba SOI
can have an effect only at commensurate band fillings given
by the conditions

2k0
F,τ ± Q ≈ 0 mod 2π, (5)

since for all other cases the sine term in (4) oscillates rapidly
and vanishes upon integration. At finite magnetization the
commensurability conditions in (5) are different for each
spin projection; when the conditions are met for a given
polarization, a relevant perturbation (in the sense of the
renormalization group [14]) is present, opening a gap to the
corresponding electron excitations. To be precise, when only
the spin “+” sector satisfies the commensurability condition,
H bos

+ is a massive sine-Gordon model and becomes gapful
with a mass gap MR , while H bos

− describes a gapless Gaussian
model. Then the + spin electron subsystem is pinned by the
commensurability effect in a long-range ordered quantum
configuration while the “−” sector remains gapless and
disordered. Charge transport in the gapped sector is forbidden
while in the gapless one transport is ballistic. Therefore the
wire displays a half-metal behavior [16] and acts as a spin
filter. Such a half-metal phase, induced by a magnetic field
and a modulated gate voltage, might be experimentally realized
and controlled by varying the electron chemical potential via a
back gate. As the conducting sector could be turned ON/OFF
or even changed to the other spin polarization, the proposed
device would be properly called a magnetic spin filter.

The results above, obtained for noninteracting electrons,
can easily be checked numerically by explicit band diago-
nalization. In Fig. 2 we illustrate a simple case by plotting
the single-particle dispersion relations for Rashba modulation
Q = π , with band filling ν = 3/4 and magnetization m = 1/4.

III. EFFECT OF THE ELECTRON-ELECTRON
CORRELATIONS

To find out whether the half-metal phases identified above
can be realized experimentally, it is crucial to analyze the effect
of electron-electron correlations. For this purpose, we here
model the screened Coulomb interaction between electrons by
an on-site Hubbard interaction

HU = U
X

n

ρn,↑ρn,↓, (6)

to be added to the Hamiltonian in (1).

A. Small U: Bosonization analysis

The bosonized expression of Eq. (6) in the rotated basis
(with spin projections ± along the ŷ axis) takes the form

H bos
U = U

π

Z
dx

·
∂xϕ+∂xϕ− + 1

πa2
0

sin
¡√

4πϕ+ + 2k0
F,+x

¢

× sin
¡√

4πϕ− + 2k0
F,−x

¢ª
. (7)
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FIG. 2. Single-particle dispersion relation for Q = π , ν = 3/4,
m = 1/4, with Fermi level ²F = 0. The lower band with spin “+” is
completely filled, but the lower band with spin “−” is partially filled.
There is a gap to charge excitations with spin +, but no gap to charge
excitations with spin −. Rashba coefficients are taken as γ0/t =
tan(π/6) and γ1/t = 0.2, filling and magnetization correspond to
magnetic field hy/t = 1.78 and chemical potential μ/t = −0.89.

In a half-metal phase, where condition (5) is satisfied in one
spin sector, the sine factors in (7) come out incommensurate,
implying that their product averages to zero upon integration.
This leaves us with the gradient term in (7), which, however,
is exactly marginal and therefore cannot close the gap ∼ MR .
One concludes that electron correlations do not destabilize the
magnetically controlled half-metal phases at the low energies
where bosonization applies.

B. Larger U: DMRG analysis

What about intermediate energies where effects from the
lattice may play a role? To find out, we have carried out
large-scale DMRG computations on the Hamiltonian in (1)
with the Hubbard interaction (6) added, H 0 = H + HU. The
computations were performed in the same rotated spin basis
as used above, with electron operators

µ
dn,+
dn,−

¶
≡ 1√

2

µ
cn,↑ − icn,↓

−icn,↑ + cn,↓

¶
. (8)

The Hamiltonian H 0 commutes with the total charge op-
erator

P
n,τ d

†
n,τ dn,τ and the total spin y-component opera-

tor 1
2

P
n,τ τd

†
n,τ dn,τ . As a consequence, the eigenvalues of

N̂+ = P
n d

†
n,+dn,+ and N̂− = P

n d
†
n,−dn,− are good quantum

numbers describing the occupation of states with each spin
projection τ = ±. For a chain of length L with band filling
ν and magnetization m we then consider the lowest-energy
state in the subspace with N+ = L(ν + m)/2 occupied states
with spin + and N− = L(ν − m)/2 occupied states with spin
−, denoting by E0(N+,N−) the corresponding ground-state
energy. One-particle excitation gaps 1± are defined as the
average energy cost of adding or removing an electron with a

FIG. 3. DMRG results for one-particle gaps as function of U in
the half-metal phase depicted in Fig. 2.

given spin projection ± [17],

21± = E0(N±+1,N∓)+E0(N±−1,N∓)−2E0(N+,N−),

and coincide, in the gapped spin sector of a half-metal phase,
with the excitation gap MR of the massive sine-Gordon model
above. Importantly, this is the gap that determines the current
blockade effect in our proposed spin-filter device.

In Fig. 3 we show our DMRG results for the one-particle
gaps and their infinite length extrapolation in the half-metal
phase sustained by a Rashba SOI modulation Q = π , filling
ν = 3/4 and magnetization m = 1/4, with the condition (5)
satisfied for spin +, and with the repulsive Hubbard interaction
ranging from U = 0 to U = 25 t . The remaining Hamiltonian
parameters were set to γ0/t = tan(π/6) and γ1/t = 0.2. The
computations were carried out for finite-length systems with
L = 48, 64, and 96 sites, using the ALPS library [18]. Most of
the data points have been obtained keeping 800 states during
30 sweeps. The estimated error for energy measures is 10−3 t ,
which ensures enough precision for the gaps we report.

In the noninteracting case, as discussed above, the spin
+ band is half-filled and gapped [with 1+ = 0.2t in Fig. 3]
while the spin − band is quarter-filled and gapless. As seen
in Fig. 3, electron-electron repulsion ∼U reduces the gap 1+,
however, without closing it for any U . On the contrary, the
system seems to stabilize with a different gap in the large U

limit. The spin − gap, which vanishes at U = 0, also scales to
zero for any U . This last result, however, is highly sensitive
to finite-size effects; in particular, the dispersion seen in
Fig. 3 at U = 0 is due to the incommensurability between the
band energy minimum of the shifted bands and the discrete
finite-length reciprocal lattice.

It is instructive to consider also the two-particle excitation
gaps, which describe pure charge or pure spin excitations,
related to the bosonic charge and spin fields ϕc = (ϕ+ +
ϕ−)/

√
2 and ϕs = (ϕ+ − ϕ−)/

√
2, respectively. The charge

gap 1c is defined by

1c = 1
2 [E0(N+ + 1,N− + 1)E0(N+ − 1,N− − 1)

− 2E0(N+,N−)], (9)
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FIG. 4. DMRG results for two-particle gaps as function of U in
the half-metal phase depicted in Fig. 2.

while the spin gap 1s is defined by

1s = 1
2 [E0(N+ + 1,N− − 1) + E0(N+ − 1,N− + 1)

− 2E0(N+,N−)]. (10)

For the noninteracting system (U = 0), the two-particle gaps
are simply related to the gaps of single particles as 1c = 1s =
1+ + 1−. The presence of electron interactions may change
these relations, however. In fact, the more different the charge
and spin gaps are, the more correlated the system is, making
two-particle gaps sensitive probes of correlation effects.

In Fig. 4 we present the corresponding numerical results
for the two-particle gaps. Although the density matrix renor-
malization (DMRG) data show a marked size dependence,
the infinite-length extrapolation following a 1/L law fits
remarkably well the finite-size data, showing that the charge
and spin gaps remain coincident at any U , being the sum
of the one-particle gaps. This strongly supports the picture
of the system remaining in the same non-correlated phase
as when U = 0. For weak and intermediate electron-electron
interactions, with U . t , the only noticeable interaction effect
is a small reduction of the single-particle gap (cf. Fig. 3).

IV. PROPOSALS FOR EXPERIMENTAL REALIZATIONS

Having furnished a proof of concept for a novel type of
spin filter device—exploiting the possibility of magnetically
controlled half-metal phases in a quantum wire subject to
periodic gating—what are the prospects to actually make it
work? While an exhaustive analysis goes beyond the scope
of this paper, let us attempt a brief appraisal. Given that
correlation effects are negligible for the weak to intermediate
interaction strength U/t . O(1) expected for a gated quantum
wire supported by a semiconductor heterostructure [19], the
key parameter that determines the functionality of the device is
the single-particle gap MR , defined above for noninteracting
electrons as MR = 2γ1 sin(q0a0). When including the effect
from the modulation of the chemical potential due to the
periodic gating (cf. Fig. 1), MR gets dressed by the amplitude

μmod of the modulation and is replaced by

MR,μmod =
q

M2
R ± μmodMR cos(πν) + μ2

mod/4, (11)

with ν the band filling, and with the sign + (−) coding for
the Rashba and chemical potential modulations being out of
phase (in phase) depending on material and design of the
setup [12]. As a case study, we use data obtained from an
experiment on gate-controlled Rashba interaction in a square
asymmetric InAs quantum well [20], assuming that it has been
gated to define a single-channel μm-range ballistic quantum
wire. Combined with data from Ref. [21], we obtain that γ1 ≈
1 × 10−11 eVm, q0a0 ≈ 0.1, 4 meV 6 μmod 6 10 meV, and
ν ≈ 0.04. The value for γ1 is here obtained from [21] by
assuming that it depends on the voltage of the keyboard of
top gates (cf. Fig. 1) in the same way as the uniform part (∼γ0)
of the Rashba interaction. This is a reasonable assumption
given that the Rashba coupling γ1 is largely determined by
the behavior of the band edge along the growth direction of
the heterostructure (∼ẑ in Fig. 1), implying that its value right
below one of the nanosized top gates should be close to that
of γ0 in the case of a single extended top gate. Taking into
account random field fluctuations coming from dopant ions is
not expected to have a sizable effect on this estimate [12]. With
the chemical potential modulation here being out of phase with
that of the Rashba SOI [12], Eq. (11) yields the estimate

0.3 meV 6 MR,μmod 6 3.0 meV. (12)

To prevent thermal leakage across the single-particle gap that
serves to blockade transport of electrons with wrong spin, a
device based on the same materials and basic architecture
as in Ref. [20] would thus have to operate well below
1K. Functionality of a device at higher temperatures may
be achieved by boosting the effective Rashba couplings
[22], or, maybe more workable, by band engineering, using
composite materials where the Rashba and chemical potential
modulations are in phase instead of out of phase.

V. CONCLUSIONS

In summary, in this paper we have shown that a combination
of a uniform magnetic field and a gate voltage controlled
modulated Rashba SOI may drive a quantum wire into half-
metal phases, with transport only of electrons with a given
spin polarization. We have identified the commensurability
conditions for the appearance of such phases, and also provided
analytical and numerical evidence for their robustness against
electron-electron interactions.

Our results hold promise for the design of a magnetic
field-controlled spin-filter device, without resorting to injec-
tion from ferromagnetic leads. To assess the viability and
functionality of such a design requires further work, theoretical
as well as experimental.
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