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Abstract

Health-enhancing potential bioactive peptide (BP) has driven an interest in food proteins as

well as in the development of predictive methods. Research in this area has been especially

active to use them as components in functional foods. Apparently, BPs do not have a given

biological function in the containing proteins and they do not evolve under independent evo-

lutionary constraints. In this work we performed a large-scale mapping of BPs in sequence

and structural space. Using well curated BP deposited in BIOPEP database, we searched

for exact matches in non-redundant sequences databases. Proteins containing BPs, were

used in fold-recognition methods to predict the corresponding folds and BPs occurrences

were mapped. We found that fold distribution of BP occurrences possibly reflects sequence

relative abundance in databases. However, we also found that proteins with 5 or more than

5 BP in their sequences correspond to well populated protein folds, called superfolds. Also,

we found that in well populated superfamilies, BPs tend to adopt similar locations in the pro-

tein fold, suggesting the existence of hotspots. We think that our results could contribute to

the development of new bioinformatics pipeline to improve BP detection.

Introduction

As several endocrine and nervous systems in mammals are regulated by endogenous peptides,

many of them could also be regulated by exogenous peptides performing hormone-like func-

tions [1]. Due to their physiological importance and regarding their nutritional values, these

peptides are called bioactive peptides or just biopeptides (BP) [2]. In the last years, several

works from food science and biotechnological areas have shown that several food proteins

contain different amounts of these exogenous peptides [3,4]. In general, these peptides are

between 3 and 20 amino acids long and are found as encrypted regions in protein sequences.

During the gastrointestinal digestion, these peptides are released from proteins by the action

of digestive enzymes and could be absorbed through the intestine to enter the blood circula-

tion. The pathway and the absorption mechanism differ according the length and charge of

the peptide. In intestinal light di and tripeptides are uptake into the enterocyte through the
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intestinal endothelium by the co-transporter PepT1[5]. There is also evidence that some di

and tripeptides can survive cytosolic hydrolysis and be transported intact through the basolat-

eral membrane [6]. Other peptides can (although in a much smaller proportion) diffuse

through tight junctions and / or enter through vesiculation [7]. Releasing process could also be

reproduced in vitro conditions which allow their purification and biochemical characterization

[8,9]. Once in blood circulation, BP can modulate the biological activity of several human

enzymes playing key roles in different metabolisms such as the regulation of blood pressure,

stimulating or suppressing the action of the immune system, modulating the activity of the

nervous system, showing an anti-inflammatory effect and inducing a reduction in cholestero-

laemia among others [10]. It has been found that biological effects of BP mostly reside on their

sequence or primary information, but could also be related with composition [11,12] and with

their spatial arrangements [13,14]. In general they exert just one biological activity but it has

been described that some could have multifunctional activities [15].

Due to their health-enhancing potential, BP research has been especially active to use them

as components in functional foods or nutraceuticals [3,16,17]. A functional food is a natural o

processed food which contains a biologically-active compounds, which in defined amount

benefits a limited number of functions in the body providing welfare and health benefit for the

prevention, management, or treatment of chronic disease [18]. In this sense, several databases

and bioinformatics tools have been developed to predict and study BP occurrence in food pro-

teins. Among the databases, we found PepBank [19], Antimicrobial Peptide Database (APD)

[20] and BIOPEP [21]. Databases are the main source of information to predict occurrence of

BP in proteins. Basically, primary structure information of characterized peptides is used to

search for sequence similarity to predict occurrence of BP in different proteins. Sequence simi-

larity searches are commonly performed using BLAST and PSI-BLAST programs [22]. Also,

primary structure could be also used to train machine learning algorithms to predict occur-

rence of BP [23] and also for simulation of BP release by the action of digestive enzymes in a

digestive in silico simulation process [24]. Sequence similarity searches between BP and target

sequences then are the major methodologies to estimate the presence of BP. This is inherently

connected with the nature of BP in the containing proteins. Apparently, the BP encoded in

food proteins does not have a given biological function in those proteins and for that reason

do not evolve under given evolutionary constraints (i.e. to preserve structure, function, stabil-

ity). This fact reveals the main difficulties observe to predict occurrence of BP in proteins since

most bioinformatics tools take advantage of differential patterns of amino acid substitution

(i.e. conservation or coevolution) to discover and predict special important regions in

proteins.

In this work we perform a large-scale characterization of BP in sequence and structural

space. We search for exact occurrences of BP in non-redundant database. We retrieved all the

protein sequences containing at least one occurrence of BP which was then submitted to a fold

assignment pipeline using CATH database [25]. With those sequences with a detected struc-

tural template, we mapped BP positions on the structure representing all the members of each

homologous superfamily detected in this study. Two main results emerged from our study.

We found that some superfamilies show co-localization of several BP in their structures show-

ing same or different biological activity. Also we found that proteins with more than 5 BPs in

their sequences belongs to superfamilies with great structural and sequence variability as

derived from CATH superfamilies analysis. Both results could help in the design of bioinfor-

matic tools to localize given BPs and given structural superfamilies and also to select proteins

having larger probabilities to contain BP in food protein screening.

Mapping bioactive peptides in proteins fold
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Materials and methods

Using BIOPEP database (http://www.uwm.edu.pl/biochemia/index.php/pl/biopep) [21] of

bioactive peptides, we have selected each peptide above 5 residues long to perform a BLAST

sequence search in nr database. From these results, we selected those sequence having exact

matches for all the residues in each peptide. To reduce redundancy of the obtained sequences

we used CD-Hit program (http://weizhongli-lab.org/cd-hit/) [26] at 100% cut-off to eliminate

all duplicated sequences. We then performed a fold assignment for each of the sequence. For

this purpose, we used BLAST searches (BLASTP) using default parameters against CATH

database (http://www.cathdb.info/) [27]. For each sequence we selected best CATH domains

matches (each with a E-value below 1x10-3) corresponding to non-overlapping segments of

each sequence to assign a CATH domain in the case the protein have more than two structural

domains. We also searched among the results for those segments having a peptide to assign a

CATH domain. For each CATH domain identified in our dataset, we have used the informa-

tion derived for the Funtree database [28] as well as CATH specific annotation (http://www.

cathdb.info/) to studied GO terms annotations.

For those sequences where was possible to assign a given fold, we then proceed to perform

a structural mapping of the peptides on putative templates. For this purpose, we performed a

two steps procedure (Fig 1). First, we aligned each sequence with its corresponding putative

template, indicated by the CATH domain ID, using ClustalX [29]. We then structurally aligned

the CATH domain (template) with the protein fold which is taken as representative of corre-

sponding structural superfamily, following CATH, using the program ProFit (http://www.

bioinf.org.uk/programs/profit/index.html). In CATH database structural superfamilies have

the same first four CATH number (Class, Architecture, Topology and Homologous numbers

characterize a given structural superfamily). Each superfamily could have several homologous

Fig 1. Diagram of structural mapping of the bioactive peptides on structural superfamilies. Once a BP was

detected in a given protein after sequence exact searches, we identified putative folds for that sequence using fold-

assignment techniques. Templates in this fold identification were those domains deposited in CATH database. We

then structurally aligned the sequence putative CATH template with the corresponding representative protein of the

structural superfamily again accordingly with CATH database. We finally mapped the BP occurrence to the

representative template of each structural superfamily.

https://doi.org/10.1371/journal.pone.0191063.g001
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families characterized by the fifth; sixth and so on CATH id numbers indicating levels of

sequence conservation (for example, S35 represent the number of homologous families shar-

ing more than 35% identity between the corresponding members). With this procedure, we

were able to map peptides in a unique protein fold representing different proteins for the same

homologous family. Each protein fold with all the mapped peptides were identify with the four

first numbers corresponding to CATH database. In addition, we used CATH derived informa-

tion to characterize the structural superfamily divergence using the number of structural clus-

ters and the number of S35 homologous families in each structural superfamily.

Results and discussion

Mapping biopeptides in sequence and structural space

To assess how structural information could be used in the identification of bioactive peptides,

we performed a large-scale database sequence search followed by a structural mapping. Using

BLAST searches against non-redundant database, we searched for proteins containing exact

matches for each peptide more than 5 residues long taken from BIOPEP database [21]. Using

2595 peptides as input for similarity searches, we retrieved 88909 protein sequences with at

least one occurrence of a given BP. We used the program CD-HIT [26] to reduce the redun-

dancy of the set removing 100% identity sequences, remaining 80523 unique sequences. We

then performed a fold assignment for each of these sequences using BLAST searches against

sequences corresponding to structural domains contained in CATH database. CATH database

is a structural database of all known protein structures chopped as structural domains. CATH

classified each domain with a series of numbers to identify its structural class (C), architecture

(A), topology (T) and homologous superfamily (H). As proteins in our dataset could contain

multiple structural domains, we only assigned a putative template for those containing pep-

tides. From BLAST searches against CATH domains, we selected those containing E-values

less than 1x10-3. Using this method, we were able to assign a putative template to 58167

sequences (72.2%). Sequences and putative templates were then aligned using ClustalX [29]. In

order to map the occurrence of peptides in the corresponding protein fold, we structurally

aligned templates with the representative protein fold corresponding to the homologous

superfamily taken from CATH. Using this multiple alignment between a sequence containing

the exact match of a given bioactive peptide, its corresponding putative template, and the rep-

resentative protein fold for the corresponding structural family; we proceeded to map the loca-

tion of the bioactive peptide on the representative fold. This procedure was followed for each

protein in our dataset. A flowchart of all these procedure is shown in Fig 2.

Using CATH domain classification, we found that all sequences clustered in 333 domain

superfamilies. In Fig 3 and Table 1 we show the obtained distribution of proteins folds.

It is interesting to note that four main folds accounts for the 87.54% of the sequences. The

most populated cluster with 33.6% of the sequences corresponds to the fold with CATH id

3.30.70.150, an alpha-beta 2-layers sandwich. This fold is represented by ribulose bisphosphate

carboxylase large chain (RuBisCO large subunit) (EC 4.1.1.39) and most proteins are close

homologous to RuBisCO. A minor percentage of the proteins are represented by a relative of

RuBisCO, the 2,3-diketo-5-methylthiopentyl-1-phosphate enolase (DK-MTP-1-P enolase)

(EC 5.3.2.5) the so-called RuBisCO-like protein. Almost 96% of the proteins in this cluster

belong to plants and the rest to Bacteria, mainly Cyanobacterias. This cluster is followed in

abundance by a mainly alpha, orthogonal bundle (CATH id 1.10.287.210) which accounts for

the 27.5% of the sequences. The 92.8% of these sequences in this cluster belongs to Viruses and

are represented by the protein Envelope glycoprotein gp160 (Envpolyprotein). A mainly beta

fold with a complex beta structure (CATH id 2.170.40.20) accounts for the 21.3% of sequences.

Mapping bioactive peptides in proteins fold
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These proteins belong to the so-called Envelope glycoprotein gp160 (Envpolyprotein).

Finally, the family representing the Actin (beta-actin) and actin-related proteins (CATH id

3.30.420.40) accounts for the 5.14% of the sequences in the dataset. In Table 1 we show the top

10 protein superfamilies structurally clustering the sequences used in this study. It is evident

that these distributions do not reflect any particular property of folds containing BP (differen-

tial stability, special structure-function relationship, etc.), but just the sequence distribution in

the database derived from genome sequence projects. From these most populated folds, the

Actin fold (CATH id 3.30.420.40) is the only belonging to the class denominated “superfold”

Fig 2. Flowchart of main procedure followed to mapping the structural occurrence of biopeptides.

https://doi.org/10.1371/journal.pone.0191063.g002

Fig 3. Distribution of protein folds that contains biopeptides extracted from BIOPEP database.

https://doi.org/10.1371/journal.pone.0191063.g003
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[30], which are those folds associated to a large number of families and functions. We will see

below the importance of superfolds in BP biology.

Mapped biopeptides and structural superfamilies

The distribution of mapped biopeptides on protein folds changes when we considered the

number of different biopeptides associated to each structural domain. The structural families

CATH id 3.30.70.150, 3.30.420.40 and 1.10.287.210 mentioned above, are only associated with

just one biopeptide but the family 3.30.420.40 with 7 different biopeptides.

When we studied the occurrence of different biopeptides in a given structural domain, we

found that a given protein fold could contain several biopeptides with the same or different

associated functions. In S2 Table we show the number of biopeptides associated with a given

protein fold, showing only the top containing proteins. It is then possible to observe that the

fold with CATH ID 3.40.50.300 (P-loop containing nucleotide triphosphate hydrolases super-

family) contains 35 different biopeptides showing 12 different biological activities being the

maximum number of different peptides mapped in a given fold. This distribution falls to 197

different folds just containing the occurrence of only 1 BP.

When we studied GO terms annotations [31] of each CATH domain as a function of the

number of mapped biopeptides per structural domain, we found that proteins associated with

larger number of biopeptides are functionally more diverse. In Fig 4 we show the distribution

of GO terms associated with folds with more and less than 5 biopeptides. Using the three types

of GO terms (molecular function, biological process and cellular components) folds with more

than 5 biopeptides appear functionally more diverse than those sequences with fewer occur-

rences of BP (Fig 4a, 4b and 4c). We obtained a similar result using the functional clusters

derived in Funtree [28] which is also associated with CATH database. In Fig 3d, we show the

distribution for the number of different functional clusters which again show more functional

diversification for those proteins associated with more than 5 biopeptides. Interestingly, the

Table 1. Description of the top ten most abundant superfamilies found in the assignation of structure of the sequences with at least one peptide.

Percentage of proteins

with assigned fold

CATH Representative domain

in CATH

C A T Representative protein

33.60 3.30.70.150 1wddA01 Alpha

Beta

2-Layer sandwich Alpha-Beta plaits Large subunit rubisco

27.47 1.10.287.210 1qbzA00 Mainly

Alpha

Orthogonal

bundle

Helix hairpins Envelope glycoprotein gp160

21.30 2.170.40.20 1kmoA02 Mainly

Beta

Beta barrel Maltoporin; chain A HIV envelope protein

Gp120; chain G

5.14 3.30.420.40 3i33A01 Alpha

Beta

2-Layer

Sandwich

Nucleotidyl transferase;

domain 5

Plasmodium falciparum

actin I

1.52 1.10.490.10 2nrlA00 Mainly

Alpha

Orthogonal

Bundle

Globin-like Blackfin tuna myoglobin

1.67 2.30.36.70 1s22A02 Mainly

Beta

Roll Actin; chain A, domain 2 Actin; chain A, domain 3

0.55 3.40.190.10 1ixhA01 Alpha

Beta

3-Layer(aba)

Sandwich

D-maltodextrin binding

protein; domain 2

Periplasmic binding protein-

like II

0.54 2.60.40.720 2ioiA00 Mainly

Beta

Sandwich Immunoglobulin-like Human mutant, p53

0.53 3.40.50.720 1c0pA01 Alpha

Beta

3-Layer(aba)

Sandwich

Rossmann fold NAD(P)-binding

Rossmann-like domain

0.42 2.60.120.10 1juhA02 Mainly

Beta

Sandwich Jelly rolls Jelly rolls

https://doi.org/10.1371/journal.pone.0191063.t001
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distribution of sequences lengths for the proteins with more and less than 5 BP is statistically

different (Two-sample Kolmogorov-Smirnov test p-value < 0.001) but unexpectedly proteins

with more BP are shorter.

When we studied the relationship of sequence divergence to structural conservation we

found that proteins associated to more than 5 biopeptides per fold have higher number of

sequences per protein fold but also a larger number of structural clusters (Fig 5). Both mea-

sures are indicative of higher evolutionary divergence in their evolutionary process. This rela-

tionship was studied using the number of protein families sharing more than 35% identity

(S35 number in CATH) and the number of structural cluster in the corresponding structural

Fig 4. Distribution of number of GO terms associated with folds with more and less than 5 biopeptides. Distributions

of different GO terms per each class (Molecular function, Cellular components and Biological process) for proteins showing

less than 5 and 5 or more BP (panels a, b, and c). Panel d, shows the same distribution but now using FunTree clusters

information. In all the cases it is possible to observe that proteins with more than 5 BPs are functionally more diverse than

those proteins with less than 5 BPs.

https://doi.org/10.1371/journal.pone.0191063.g004
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superfamily. It is interesting to note, that only two protein families corresponding with 5 or

more biopeptides mapped have just only one structural cluster (families 3.40.50.720 and

2.60.40.10 see Fig 5) but with a large number of associated S35. These families correspond to a

Rossman-like and the Inmunoglobulin domains respectively. As we mentioned above, these

domains are called “supefolds” [30] because they are very well conserved from the structural

point of view but are extremely diverse in the sequence and functional dimension.

Mapped biopeptides and putative hot-spots of protein structural

superfamilies

Using structural superfamilies with 5 or more biopeptides mapped in the corresponding repre-

sentative fold we found that the different biopeptides, also those with different biological func-

tions, overlap in certain regions of the structure. For example, in Fig 6, we represent 7 different

BP activity classes indicated with different colours (ACE inhibitor, antibacterial, antioxidative,

chemotactic, inmunomodulating, neuropeptide and stimulating) mapped onto the representa-

tive fold. It is possible to see that different BPs are mapped in similar regions of the protein

fold. Similar results are found in different protein families (S1 and S2 Figs). These figures cor-

responds to well populated folds with several BP mapped (different colours indicate different

biological activity (as indicated also in Table 2). When we explored general characters of these

regions, we were unable to find any correlation between occurrence of biopeptides in the sur-

face or buried areas of mapped proteins, neither a correlation with the type of biopeptide’s bio-

logical activity. It is then possible that BPs at the superfamily level occur in some “hot-spots”

regions.

Conclusions

Taking into account that all proteins may be considered to contain BP [32,33] we studied

BPs distribution in sequence and protein structural space. We followed the simpler possible

analysis to identify putative BPs in protein sequences using 100% identity matches to well

Fig 5. Number of different structural and sequential clusters derived from CATH database. Blue dots represent proteins

with less than 5 BPs and the orange ones those with 5 or more BPs. It is possible to see that proteins with more than 5 BPs are

more diverse structurally and sequentially.

https://doi.org/10.1371/journal.pone.0191063.g005
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established BPs deposited in BIOPEP database. After our large-scale BP mapping, two major

results emerged from our analysis. The first one is that proteins containing high number of

BPs (�5) belong to superfamilies very diverse in their sequences and in their biological func-

tions (Fig 4). Each superfamily is represented by a given protein fold which is conserved

among all the members as an evidence of homology between all their sequences. However, in

those superfamilies with proteins with 5 or more BPs in their sequences these representative

fold shows a higher structural variability (Fig 5). Protein folds associated to a great number of

homologous families with the same or different biological function have been called “super-

folds” as derived from a landmark work by Orengo and collaborators [30,34]. As it was esti-

mated that there is a limited number of protein folds in nature [35] it follows that some of

them could be overrepresented given place to the presence of superfolds. Also, they have been

associated with an differentially increased thermostability [36] and with a lesser representation

in microbial superkingdoms Archea and Bacteria in reference with those of Eukarya [37]. The

second main result is that in these proteins with 5 or more BPs in their sequences, BPs with dif-

ferent activities tend to locate in similar regions (putative hotspots) when are mapped in the

representative fold of the superfamily which they belong to (Fig 6, S1 and S2 Figs).

As we mentioned above, BPs sequences are not expected to evolve under a selective pres-

sure in order to preserve its corresponding BP biological activity. BPs express their activity

when are released by proteolytic cleavage or other types of fragmentation in the digestive tract

[38]. As has been previously suggested, BPs environment, flanking solvent exposition regions

as well the presence of hydrophilic regions, could favour the action of proteinases for BPs

release [39]. Taking into account the results obtained in our work, presence of superfolds and

putative hotspots for those proteins with more than 5 BPs, suggest the presence of common

mechanisms to release the BPs during the digestion. Although structurally diverse as suggested

in Fig 5, superfolds, and folds in general, could conserve hydrophilic/hydrophobic regions in

order to conserve the same fold [40] and then solvent exposed areas are also conserved. The

observation of putative hotspots were different activity BPs co-localize, possibly results from

the conservation of solvent exposed regions and putative targets of proteolytic enzymes.

Fig 6. Structure of dethiobiotin synthase (PDB ID 1byi) represented in cartoon representation showing mapped BPs.

Red indicates ACE inhibitor BP activity (14), blue antibacterial (4), yellow inmunomodulating (3), green antioxidative (3),

magenta neuropeptide (1), light grey chemotactic (1) and dark grey stimulating activities (1) (as derived from BIOPEP

database). It is possible to see that different activities have similar location. BPs found in different proteins of the same

superfamily have been mapped on a representative structure (1byi) accordingly to CATH (see Materials and methods).

https://doi.org/10.1371/journal.pone.0191063.g006
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Analysis of protein fold distribution containing BPs (Fig 3) could certainly reveal bias com-

position of sequences in databases and mostly agree with previous results [41,42]. In fact,

rubisco (CATH id 3.30.70.150), the most abundant protein on earth, has been proposed as a

sustainable source of bioactive peptides, supported by in vitro and in vivo analyzes [43].

Table 2. Detail of the sequence and activity of biopeptides of the first four superfamilies with the highest number of biopeptides. The activity corresponds to the clas-

sification in BIOPEP.

CATH Structures/

domains

Number of

BP

Sequences of each BP Activity

3.40.50.300 215 35 GKKVLQ; DYGLYP; PQEVLP; PQEVLP; KVLILA; RADHPF; LAHKAL; KVLAGM;

GLDIQK; VTSTAV; IKPLNY; FQKVVA; VPQPIP; VIEKYP; KVREGT; VHLPPP;

Ace Inhibitor

LKKISQ Ace Inhibitor/

Antibacterial

RRPYIL; KIPYIL Anti Inflammatory

HLPLPL Antiamnestic

STVATL; ALCSEK Antibacterial

IEAEGE; LLPHHH; QYDQGV; GALAAH Antioxidative

LGTIPG; VGVAPG Chemotactic

SIKVAV Immunomodulating/

Anticancer

VGGIPY Immunomodulating

FFGLMG; KRQHPG Neuropeptide

YLGYLE; RYLGYL; GGFLTRH Opioid

SFLLRN Stimulating

3.40.50.720 309 25 VTSTAV; PANIKWGD; PSKIKWGD; QSLVYP; PQEVLP; PANLPWGSSNV; VLAQYK;

VIEKYP; LAHKAL; EPKAIP; KVLAGM; GLDIQK

Ace Inhibitor

LKKISQ Ace Inhibitor/

Antibacterial

ALCSEK Antibacterial

GALAAH; LGFEYY; PKAVHE; ISELGW Antioxidative

RGDSPA Antithrombotic

VGVAPG; LGTIPG; PGAIPG Chemotactic

LVCYPQ Immunomodulating

SIKVAV Immunomodulating/

Anticancer

EVQKQLQ Neuropeptide

3.20.20.70 35 18 KVLILA; VLPYPV; PQEVLP; GKKVLQ; LAHKAL; KVLPVP; YLYEIA; VTSTAV Ace Inhibitor

LKKISQ Ace Inhibitor/

Antibacterial

STVATL Antibacterial

YFYPEL; GALAAH; PKAVHE; EELDNALN; YGYTGA Antioxidative

PGAIPG; VGVAPG Chemotactic

SIKVAV Immunomodulating/

Anticancer

2.60.120.10 246 17 KVLILA; NWGPLV; YLAGNQ; YQEPVL Ace Inhibitor

LSPFWNINA Antiamnestic

STVATL Antibacterial

AIRQGDVF; KHNRGDEF; LLPHHADADY; LVNPHDHQN; VIPAGYP; VLEANPRSF;

YFPVGGDRPESF

Antioxidative

RGDSPA Antithrombotic

HCQRPR Immunomodulating

EITPEKNPQLR; VAWWMY Inhibitor

https://doi.org/10.1371/journal.pone.0191063.t002
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One of the most common procedure to predict the presence of BPs in proteins is the use of

sequence similarity searches using well curated databases [21] followed by in vitro hydrolysis

and/or simulated digestion and identification [44]. Our results also indicate two features that

could improve target-directed search of BPs in proteins. Identification of the fold in which a

given sequence would possible fold, is nowadays routinely used in widely used homology

modeling techniques [45,46]. Fold assignment techniques have also been developed to be used

at the proteomic level [47]. Identification of superfamilies containing superfolds could increase

the detection rate of BPs in wet-screening procedures. Additionally, these detected superfolds

could also contain more than one type of BPs having different biological activities as derived

from our results.

Although it is difficult to put our results in an evolutionary context, just because BPs are

not independent of the evolutionary constraints of the whole protein they belong to, our

results could help in the design of new bioinformatics pipelines to improve predictions of BPs

occurrences.

Supporting information

S1 Fig. Structure of dethiobiotin synthase (PDB ID 1c0p, domain A01 accordingly with

CATH (1c0pA01)) represented in cartoon representation showing mapped BPs. Red indi-

cates ACE inhibitor BP activity (12), green antibacterial(1), blue antioxidative (5) and orange

chemostatic activities (13) (as derived from Biopep database). It is possible to see that different

activities have similar location. BPs found in different proteins of the same superfamily have

been mapped on a representative structure (1c0p) accordingly to CATH.

(TIF)

S2 Fig. Structure of Triosephosphate Isomerase (PDB ID 2vxn, domain A00 accordingly

with CATH (2vxnA00)) represented in cartoon representation showing mapped BPs. Red

indicates ACE inhibitor BP activity (6), green antibacterial (1), blue antioxidative (2) and

orange chemostatic activities (1) (as derived from Biopep database). It is possible to see that

different activities have similar location. BPs found in different proteins of the same superfam-

ily have been mapped on a representative structure (12vxn) accordingly to CATH.

(TIF)

S1 Table. List of complete CATH domains found in the assignation of structure of the

sequences with at least one peptide.

(PDF)

S2 Table. Number of biopeptides and proteins associated with a given protein fold (CATH

id).

(PDF)
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