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4 Aix-Marseille Université, CNRS, LATP (UMR 6632), 39, rue F. Joliot-Curie, 13453

Marseille Cedex 13, France

E-mail: quique@fisica.unlp.edu.ar, tatu@mate.unlp.edu.ar,

philippe.tchamitchian@univ-amu.fr

Abstract. We give simple conditions implying the well-posedness of the Cauchy

problem for the propagation of classical scalar fields in general (n+2)-dimensional static

and spherically symmetric spacetimes. They are related to properties of the underlying

spatial part of the wave operator, one of which being the standard essentially self-

adjointness. However, in many examples the spatial part of the wave operator turns

out to be not essentially selfadjoint, but it does satisfy a weaker property that we

call here quasi essentially self-adjointness, which is enough to ensure the desired well-

posedness. This is why we also characterize this second property.

We state abstract results, then general results for a class of operators encompassing

many examples in the literature, and we finish with the explicit analysis of some of

them.

1. Introduction

Hawking and Penrose have shown that, according to general relativity, there must exist

singularities of infinite density and space-time curvature in many physically reasonable

situations. This phenomenon occurs in the big bang scenery at the very beginning of

time, and it would be an end of time for sufficiently massive collapsing bodies (see, for

example, [1] and references therein). At these singularities all the known laws of physics

and our ability to predict the future would break down.

However, in the case of black holes, any observer who remained outside the event

horizon would not be affected by this failure of predictability, because neither light

nor any other signal could reach him from the singularity. This notable feature led

Penrose to propose the weak cosmic censorship hypothesis: all singularities produced by
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gravitational collapse occur only in places, like black holes, where they are hidden from

outside view by an event horizon [2].

The strong version of the cosmic censorship hypothesis states that any physically

realistic spacetime must be globally hyperbolic [3]. The concept of global hyperbolicity

was introduced for dealing with hyperbolic partial differential equations on a manifold

[4]. A spacetime is said to be globally hyperbolic if, given any two of its points, the set of

of all causal curves joining these points is compact (in a suitable topology). Only in this

case there is a Cauchy surface whose domain of dependence is the entire spacetime. This

is a reasonable condition to impose, for example, to ensure the existence and uniqueness

of solutions of hyperbolic differential equations [4, 5].

Nevertheless, the relevant physical condition to assure predictability is not global

hyperbolicity, but the well-posedness of the field equations. Indeed, there are many

examples of spacetimes that are not geodesically complete and violate cosmic censorship,

but where there is still a well-posed initial-value problem for test fields. Global

hyperbolicity is sufficient, but not necessary for this. This suggests that, in more general

situations, we could find a weaker condition to replace the notion of global hyperbolicity

by making direct reference to test fields [6, 7, 8].

The above considerations motivate a deeper study of the well-posedness of the

initial-value problem for fields in more general singular spacetimes.

This paper is a continuation of a previous one [9], tackling the well-posedness of

Cauchy problem for waves in static spacetimes. This subject has been launched by Wald

in [6], and further developed by, among others, the authors of references [7, 10, 11].

The propagation of waves is, in such spaces, described by a classical equation of

the form

∂ttφ+Aφ = 0,

where A is a selfadjoint extension of a given symmetric and positive operator A which

reflects the underlying geometry.

Our motivation relies on the following observation: although A may not be

essentially selfadjoint (e.s.a.), boundary conditions are not necessary to construct A in

some geometries of interest. Such a situation arises when, even if A has many selfadjoint

extensions, only one has its domain included in the energy space naturally associated

to A. Here we call quasi essentially selfadjoint (q.e.s.a.) this property.

We have shown in [9] that operators A given by propagation of massless scalar

fields in static spacetimes with naked timelike singularities may be q.e.s.a. but not

e.s.a.. Thus, in such situations, demanding the finiteness of the energy is enough to

select one selfadjoint extension of A, and only one; in addition, we proved that the

solutions of the wave equation may have a non trivial trace at the boundary of the

geometrical domain, even though this trace is not imposed by any boundary condition

at all. This phenomenon never happens with e.s.a. operators.

Here we deeply examine the case of general (n+2)-dimensional static and spherically

symmetric spacetimes. More precisely, the concrete setting is the following.
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The domain is of the form I×M , where I ⊂ (0,+∞) is an open interval and M is

a compact, oriented Riemannian manifold without boundary. The operator A is defined

on C∞
0 (I × M ) as

Aϕ(z,x) =
1

a(z)

{

−∂z
(

b(z)∂zϕ(z,x)
)

− c(z)∆M ϕ(z,x) + d(z)ϕ(z,x)
}

, (1)

where ∆M is the Laplace-Beltrami operator on M , and a, b, c and d are suitable positive

coefficients only depending on the radial variable z ∈ I. No condition is prescribed on

the coefficients at the boundary of the domain.

For this class of operators we fully characterize e.s.a. and q.e.s.a. properties.

More precisely, under rather general conditions on the coefficients, we give a necessary

and sufficient condition for q.e.s.a. depending only on the integrability of the function
(

1

b(z)
+ d(z) + a(z)

)

at the boundary of I. We also give a necessary and sufficient

condition for e.s.a., in this case the condition depends also on the integrability of the

functions a(z) and β(z)2a(z) at the boundary of I, where β(z) is a particular solution

of the ordinary differential equation −
(

b(z) β ′(z)
)′

+ d(z) β(z) = 0.

We then apply this analysis to scalar fields propagating in static spherically

symmetric spacetimes of arbitrary dimension, solutions of the Einstein equations with

cosmological constant and matter satisfying the dominant energy condition or vacuum.

The criteria for e.s.a. and q.e.s.a. on the coefficients of the operator A are then

translated into criteria on the components of the metric tensor. This provides a

systematic procedure to analyze the situations where boundary conditions are, or are

not, necessary for the Cauchy problem to be well-posed.

A significant physical result is stated in theorem 5.5: in the outer region of a static,

spherically symmetric and asymptotically flat spacetime where the dominant energy

condition holds, the operator A is essentially selfadjoint, i.e. the Cauchy problem is

well-posed without any boundary conditions, if, and only if, an observer at infinity

measures that it takes an infinite time to a photon to reach the boundary.

Finally, we directly apply the developed theory to the discussion of some exact

vacuum solutions as explicit examples. We discuss the (n + 2)-dimensional Minkowski

spacetime with a removed spatial point and the higher-dimensional generalization

of Schwarzschild and Reissner-Nordström geometries; we systematically describe the

situations where boundary conditions are, or are not, necessary for the Cauchy problem

to be well-posed.

The outline of the paper is as follows. Section 2 is devoted to abstract results on

e.s.a. and q.e.s.a. properties. In section 3 we completely characterize e.s.a. and q.e.s.a.

properties of the operator given in (1). We show, in section 4, the well-posedness of

the Cauchy problem when the operator A is q.e.s.a. but not necessarily e.s.a.. In

section 5 we apply our results to the study of propagation of scalar fields in general

(n + 2)-dimensional static and spherically symmetric spacetime with n ≥ 1. We close

by discussing the examples in section 6.
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2. Quasi essentially and essentially selfadjointness

Let Ω ⊂ R
n+1 be a Lipschitz domain‡ and H a Hilbert space such that C∞

c (Ω) is dense

in H , where C∞
c (Ω) is the space of the restrictions to Ω of C∞

0 (Rn+1). We consider

an unbounded symmetric definite positive operator A, whose domain is C∞
0 (Ω). We

assume the existence of a Hilbert space E , continuously embedded in H , and a related

bilinear symmetric form b with domain E having the following properties:

(i) if φ ∈ E , ‖φ‖2E = ‖φ‖2H + b(φ, φ);

(ii) C∞
c (Ω) is dense in E ;

(iii) if φ, ψ ∈ C∞
0 (Ω), then b(φ, ψ) = 〈φ,Aψ〉.

The reader should note that A is defined only on C∞
0 (Ω), and that consequently

the relation between the form b and the operator A is only stated for functions in

C∞
0 (Ω) as well, although C∞

c (Ω) is dense in both spaces H and E . This is motivated

by the difficulties arising with boundary conditions: whether they must be specified

in advance or not is the question we consider in the subsequent theorem 2.2. We will

show that there is a “natural” self-adjoint extension of A, defined without specifying

any boundary condition, if and only if C∞
0 (Ω) is dense in E . We will also show that this

density property is always true when A is essentially self-adjoint, but may occur even

when A is not. Various examples are given at the end of the paper.

Definition 2.1 We shall say that A, any given selfadjoint extension of A, is of finite

energy when D(A) ⊂ E , with continuous injection.

Calling E0 the closure of C∞
0 (Ω) in E , we have the following result:

Theorem 2.2 Under these hypotheses we have:

(i) The operator A has only one selfadjoint extension with finite energy if and only if

E0 = E . If this is the case, this extension is AF , the Friedrichs extension.

(ii) If E0 = E , then C∞
0 (Ω) is dense in D(AF ) if and only if A is essentially selfadjoint

(e.s.a.), i.e., A has only one selfadjoint extension.

Proof:

(i) To prove this assertion, we begin with assuming that A has only one selfadjoint

extension with finite energy. Let A be the selfadjoint operator associated with the

energy form b; let A0 be the selfadjoint operator associated with the restriction of b to

E0. Both are extensions of A with domains included in E , and so, are equal. But then

we must have D(A 1

2 ) = D(A
1

2

0 ), which is E = E0.

Reciprocally, if E = E0, the only selfadjoint extension of A with domain in E is

its Friedrichs extension, because the form b defined on E is the closure of the form b

defined on C∞
0 (Ω).

‡ Being Lipschitz is not the weakest possible hypothesis on Ω for our results to hold, but it is enough

for the examples we have in mind.
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(ii) Recall that

D(A∗) = {ϕ ∈ H : ∃C > 0 : ∀ψ ∈ C∞
0 (Ω), |〈ϕ,Aψ〉| ≤ C‖ψ‖H},

and that

D(AF ) = {ϕ ∈ E : ∃C > 0 : ∀η ∈ E , b(ϕ, η) ≤ C‖η‖H}. (2)

We assume first that C∞
0 (Ω) is dense inD(AF ). It is enough to see thatD(A∗) ⊂ D(AF ).

Taking φ0 ∈ D(A∗) and η0 = (A∗ + I)φ0, we have for all ψ ∈ C∞
0 (Ω)

〈φ0, (AF + I)ψ〉 = 〈φ0, (A+ I)ψ〉 = 〈η0, ψ〉
and then, since C∞

0 (Ω) is dense in D(AF ), for all ϕ ∈ D(AF )

〈φ0, (AF + I)ϕ〉 = 〈η0, ϕ〉.
Taking into account that (AF + I)−1 is defined on all H , by calling ϕ0 =

(AF + I)−1η0 ∈ D(AF ) we have

〈η0, ϕ〉 = 〈(AF + I)(AF + I)−1η0, ϕ〉 = 〈ϕ0, (AF + I)ϕ〉 for all ϕ ∈ D(AF ),

and then

〈ϕ0 − φ0, (AF + I)ϕ〉 = 0 for all ϕ ∈ D(AF ).

Since Im(AF + I) = H , we have ϕ0 = φ0. It implies D(A∗) ⊂ D(AF ) and so

A∗ = AF . Then A is essentially selfadjoint.

On the other hand, if C∞
0 (Ω) is not dense in D(AF ), there exists ϕ ∈ D(AF ) such

that AFϕ 6= 0 and

〈AFϕ,AFψ〉 = 0 ∀ψ ∈ C∞
0 (Ω).

Let us call η = AFϕ. If η ∈ E , then b(η, ψ) = 〈η, Aψ〉 = 〈η, AFψ〉 = 0 for all ψ ∈ C∞
0 (Ω)

and then by density of C∞
0 (Ω) in E , b(η, η) = 0. Since by hypothesis η 6= 0, we have

η /∈ E .
Therefore, we have proved that there exists η ∈ H , such that η ∈ ker(A∗) but

η /∈ E , so A cannot be essentially self adjoint. �

Definition 2.3 Under the preceding hypotheses, the operator A is quasi essentially

selfadjoint (q.e.s.a.) if it has only one extension with finite energy.

Lemma 2.4 If A is a q.e.s.a. operator, then D(AF ) = D(A∗) ∩ E.
Proof:

Since D(AF ) ⊂ D(A∗) by definition of A∗ and D(AF ) ⊂ E by definition of AF , then

D(AF ) ⊂ D(A∗) ∩ E .
Conversely, let ϕ ∈ D(A∗) ∩ E , then

b(ϕ, ψ) ≤ C‖ψ‖H ∀ψ ∈ C∞
0 (Ω)

by definition of D(A∗). Since C∞
0 (Ω) is dense in E and ϕ ∈ E , this inequality extends

to any ψ ∈ E , proving that ϕ ∈ D(AF ). �
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Lemma 2.5 If A is a q.e.s.a. operator, then the three following statements are

equivalent

(i) A is not an e.s.a. operator.

(ii) there exists ϕ ∈ D(A∗) but ϕ /∈ E .
(iii) there exists ϕ ∈ D(A∗) non vanishing and such that (A∗ + I)ϕ = 0.

Proof:

(i) ⇔ (ii): Observe that A is an e.s.a. operator if and only if A∗ = AF , thus, by

lemma 2.4, A is e.s.a. operator if and only if D(A∗) ⊂ E .
(ii) ⇔ (iii) Let ϕ0 ∈ D(A∗) and ϕ0 /∈ E , and define f = (A∗ + I)ϕ0 ∈ H ,

ϕ = (AF + I)−1f ∈ D(AF ). We have (AF + I)ϕ = (A∗ + I)ϕ0 and since ϕ ∈ D(A∗),

this implies A∗(ϕ0 − ϕ) + (ϕ0 − ϕ) = 0. Finally ϕ0 − ϕ cannot identically vanish, since

ϕ0 /∈ E while ϕ ∈ E . Thus (iii) holds.
Conversely, let ϕ 6= 0 a.e., ϕ ∈ D(A∗) such that (A∗ + I)ϕ = 0. If ϕ ∈ E , by

lemma 2.4, ϕ ∈ D(AF ) , then ϕ = 0 a.e. since AF + I is injective, which is a contradic-

tion. Thus, ϕ /∈ E and (ii) holds. �

3. A characterization of some q.e.s.a. and e.s.a. divergence type operators

Let M be a Riemannian manifold of dimension n with a metric (gij). We also assume

that M is compact, connected, without boundary and with a given orientation.

In local coordinates, for u ∈ C∞(M ) the Laplace-Beltrami operator is

∆Mu = div(∇M u) =

∑n
i,j=1 ∂i

(√
g gij∂ju

)

√
g,

,

where g is the determinant of the metric. Let us consider in Ω = (0,+∞) × M , the

operator A given by

Aϕ(z,x) =
1

a(z)

{

−∂z
(

b(z)∂zϕ(z,x)
)

− c(z)∆M ϕ(z,x) + d(z)ϕ(z,x)
}

, (3)

for all ϕ ∈ C∞
0 (Ω), where the functions a, b, c and d satisfy the following hypotheses:

• a , c , d ∈ L1
loc

(

(0,+∞)
)

and b ∈ C
(

(0,+∞)
)

,

• a > 0, b > 0, c > 0 and d ≥ 0 in (0,+∞),

• a−1, b−1, c−1 ∈ L1
loc

(

(0,+∞)
)

.

Examples will be presented in the two last sections. Let us state in advance that

the coefficient d is non vanishing only in the massive case. This is why we will call

massless the case d = 0.

We define the Hilbert spaces

H = {ϕ ∈ L2
loc(Ω) :

∫

Ω

|ϕ(z,x)|2a(z)dωM dz <∞},
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and the energy space

E = {ϕ ∈ H ∩H1
loc(Ω) : b(ϕ, ϕ) < +∞},

where we denote ωM the natural measure in M , and

b(ϕ, ψ) =

∫

Ω

b(z) ∂zϕ(z,x) ∂zψ(z,x) dωM dz +

∫

Ω

c(z)∇M ϕ(z,x) · ∇Mψ(z,x) dωM dz

+

∫

Ω

d(z)ϕ(z,x)ψ(z,x) dωM dz ,

for ϕ, ψ ∈ C∞
0 (Ω).

Thus, H and E are Hilbert spaces, equipped with their canonical norms:

‖ϕ‖2H =

∫

Ω

|ϕ(z,x)|2a(z) dωM dz and ‖ϕ‖2E = ‖ϕ‖2H + b(ϕ, ϕ). The operator A is well

defined on C∞
0 (Ω) and it is symmetric in H by definition.

We shall explore when A is a q.e.s.a. operator by using Theorem 2.2. Then the

question is to determine under which conditions on the coefficients of A, C∞
0 (Ω) is dense

in E . A related one is whether C∞
c (Ω) ∩ E is dense in E .

Notation 3.1 From now on,

∫

z0

and

∫ z1

respectively denote

∫ z0+ε

z0

and

∫ z1

z1−ε

for a

positive and small enough ε. And

∫ +∞

< +∞ means that their exists z > 0 such that
∫ +∞

z

< +∞.

Theorem 3.2 Let A be the operator defined in (3). Then

(i) C∞
c (Ω) ∩ E is dense in E if and only if

∫ +∞
(

1

b(z)
+ d(z) + a(z)

)

dz = +∞,

(ii) A is a q.e.s.a. operator (i.e. C∞
0 (Ω) is dense in E) if and only if

∫ +∞
(

1

b(z)
+ d(z) + a(z)

)

dz = +∞ and

∫

0

(

1

b(z)
+ d(z) + a(z)

)

dz = +∞.

Proof:

The proof goes through three steps: first reducing the problem to a one dimensional

case, second proving that compactly supported functions are dense under the given

hypotheses, and finally getting the desired result.

Step 1: reduction to the one dimensional case.

Let {λk, k ≥ 0} be the spectrum of −∆M , with λ0 = 0 and λk an increasing sequence,

and let (ψk)k≥0 be an associated orthonormal basis of L2(M ).

We define, for each k ≥ 0,

Ak u(z) =
1

a(z)

(

−
(

b(z) u′(z)
)′

+
(

λk c(z) + d(z)
)

u(z)

)

, (4)
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for u ∈ C∞
0

(

(0,+∞)
)

, with the underlying Hilbert space H0 = L2
(

(0,+∞), a(z) dz
)

and energy spaces Ek =
{

u ∈ H0 ∩H1
loc

(

(0,+∞)
)

: bk(u, u) < +∞
}

, where

bk(u, v) =

∫ +∞

0

b(z) u′(z) v′(z) dz +

∫ +∞

0

(

λk c(z) + d(z)
)

u(z) v(z) dz .

Then we consider the Hilbert spaces Ek with their natural norms

‖u‖2Ek =

∫ +∞

0

b(z) |u′(z)|2 dz +
∫ +∞

0

(

λk c(z) + d(z) + a(z)
)

|u(z)|2 dz.

Lemma 3.3 C∞
c (Ω) ∩ E (respectively C∞

0 (Ω)) is dense in E if and only if C∞
c

(

[0,∞)
)

∩
Ek (respectively C∞

0

(

(0,+∞)
)

is dense in Ek for all k ≥ 0.

Proof:

Given ϕ ∈ E , it can be decomposed into a sum ϕ =
∑

k≥0

uk ⊗ ψk, where uk ∈ Ek and

‖ϕ‖2E =
∑

k≥0

‖uk‖2Ek .

So, density in E implies density in each Ek.
For the reciprocal, given ϕ ∈ E we first approximate it by the functions ϕm =

m
∑

k=0

uk ⊗ ψk, and density in Ek for all k ≥ 0 implies that each ϕm can be approximate

by functions of C∞
c (Ω) ∩ E (respectively C∞

0 (Ω)). �

Step 2: density of compactly supported functions in E0.

Here, for convenience we shall restrict our attention at first to the case k = 0 and

d(z) ≡ 0.

We define

E0,c = E0 ∩ {functions with compact support in [ 0,+∞)},
E0,0 = E0 ∩ {functions with compact support in (0,+∞)}.

Lemma 3.4 E0,c is dense in E0 if and only if

∫ +∞
(

1

b(z)
+ a(z)

)

dz = +∞.

Proof:

Assume first that

∫ +∞
(

1

b(z)
+ a(z)

)

dz < +∞. If u ∈ E0, then u′ ∈ L1
(

[z′,+∞)
)

for any z′ > 0, since

∫ +∞

z′

1

b(z)
dz < +∞ and using Hölder inequality. Moreover

lim
z→∞

u(z) exists and is not necessarily zero because

∫ +∞

a(z) < +∞. Thus, there

exists a linear functional on E0 which vanishes on E0,c but not everywhere, showing that

E0,c is not dense in E0. Such functional may be

λ(u) =

∫ +∞

0

(

u(z) η(z)
)′

dz,
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where η(z) is a smooth function such that η(z) = 0 if z ∈ [0, z′] and η(z) = 1 if z ≥ 2z′.

Assuming now that

∫ +∞
(

1

b(z)
+ a(z)

)

dz = +∞, we shall see that E0,c is dense
in E0.

If there exists z′ > 0 such that

∫ +∞

z′

1

b(z)
dz < +∞, taking u ∈ E0, we have again

that u′ ∈ L1
(

[z′,+∞)
)

, but now lim
z→+∞

u(z) = 0 necessarily, since

∫ +∞

a(z) dz = +∞.

Thus, we have

u(z) = −
∫ +∞

z

u′(s) ds.

Hence, defining β0(z) =

∫ +∞

z

1

b(z)
dz and using Hölder inequality we have

|u(z)| ≤
√

β0(z)

(
∫ +∞

z

b(z) |u′(z)|2 dz
)1/2

. (5)

Since ‖u‖E0 < +∞, for ε > 0, there exists z0 > 0 such that
∫ +∞

z0

(

b(z) |u′(z)|2 + a(z) |u(z)|2
)

dz ≤ ε. (6)

Define χ(z) on [0,+∞) by

χ(z) =



















1 if 0 ≤ z ≤ z0

ln

(

β0(z)

β0(z1)

)

if z0 ≤ z ≤ z1

0 if z1 ≤ z ≤ +∞
with z1 given by the equation β0(z1) = e−1 β0(z0). Then we have

‖u− u χ‖2E0 ≤
∫ +∞

z0

a(z)
(

1− χ(z)
)2

|u(z)|2 dz +
∫ +∞

z0

b(z)
(

1− χ(z)
)2

|u′(z)|2 dz

+

∫ +∞

z0

b(z)χ′(z)2 |u(z)|2 dz .

The first two terms are small by (6), and for the third one, we have from (5) and (6)
∫ +∞

z0

b(z)χ′(z)2 |u(z)|2 dz ≤
∫ z1

z0

1

b(z) β0(z)2
|u(z)|2 dz

≤ ε

∫ z1

z0

1

b(z) β0(z)
dz

≤ Cε .

Since u χ ∈ E0,c, the density of E0,c in E0 is proved.

For the case when

∫ +∞ 1

b(z)
dz = +∞, given z′ > 0 we define β0(z) =

∫ z

z′

1

b(s)
ds,

and we choose z∗, z such that z′ ≤ z∗ ≤ z. We have

|u(z)− u(z∗)| ≤
∫ z

z∗
|u′(s)| ds ≤

(∫ +∞

z∗
b(s) |u′(s)|2 ds

)
1

2
√

β0(z),
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hence

|u(z)| ≤ |u(z∗)|+
(∫ +∞

z∗
b(s) |u′(s)|2 ds

)
1

2
√

β0(z).

This implies

lim
z→+∞

|u(z)|
√

β0(z)
= 0 . (7)

Now, by (7) for any ε > 0, there exists z0 > 0 such that

|u(z0)|2
β0(z0)

+

∫ +∞

z0

(

b(z) |u′(z)|2 + a(z) |u(z)|2
)

dz ≤ ε.

Then,

|u(z)| ≤ |u(z0)|+
√
ε
√

β0(z),

when z ≥ z0. We define χ(z) by

χ(z) =



















1 if 0 ≤ z ≤ z0

ln

(

β0(z1)

β0(z)

)

if z0 ≤ z ≤ z1

0 if z1 ≤ z ≤ +∞
with z1 given by the equation β(z1) = e β0(z0), and we can prove, as above, that there

exists a constant C such that

‖u− uχ‖2E0 ≤ C ε .

Thus, in this case also, E0,c is dense in E0. �

Lemma 3.5 (i) The set of all u ∈ E0 which vanishes in some neighbourhood of 0

(depending on u) is dense in E0 if and only if

∫

0

(

1

b(z)
+ a(z)

)

dz = +∞

(ii) E0,0 is dense in E if and only if

∫ ∞
(

1

b(z)
+ a(z)

)

dz = +∞ and
∫

0

(

1

b(z)
+ a(z)

)

dz = +∞.

Proof:

(i) We consider the transformation φ(z) =
1

z
: (0,+∞) → (0,+∞), and let

Eφ =
{

u ∈ H1
loc((0,+∞) : ‖u‖2φ =

∫ +∞

0

(

bφ(z) |u′(z)|2 + aφ(z) |u(z)|2
)

dz < +∞
}

,

where bφ(z) = z2 b (1/z) and aφ(z) = a (1/z) /z2.

Then Eφ and E0 are isomorphic, through the application Φ : E0 → Eφ given by

Φ(v) = u = v ◦ φ.
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By lemma 3.4, Eφ,c is dense in Eφ if and only if

∫ +∞
(

1

bφ(z)
+ aφ(z)

)

dz =
∫

0

(

1

b(z)
+ a(z)

)

dz = ∞, and we observe that v ∈ E0 vanishes in a neighbourhood

of 0 if and only if Φ(v) ∈ Eφ,c.
(ii) follows directly from both assertion (i) and lemma 3.4. �

In this step we have done the assumption that d = 0 and k = 0. When d or k

are not vanishing, then it suffices to replace a(z) by a(z) + d(z) + λkc(z) to obtain the

appropriate versions of lemmas 3.4 and 3.5.

Step 3: conclusion in the one dimensional case

Lemma 3.6

(i) C∞
c

(

[ 0,+∞)
)

∩ E0 is dense in E0 if and only if

∫ +∞
(

1

b(z)
+ a(z)

)

dz = +∞,

(ii) C∞
0

(

(0,+∞)
)

is dense in E0 if and only if

∫ +∞
(

1

b(z)
+ a(z)

)

dz = +∞ and
∫

0

(

1

b(z)
+ a(z)

)

dz = +∞.

Proof.

(ii) Assume first C∞
0

(

(0,+∞)
)

is dense in E0, then E0,0 must be dense too, and this

implies, by lemma 3.5,

∫ +∞
(

1

b(z)
+ a(z)

)

dz =

∫

0

(

1

b(z)
+ a(z)

)

dz = +∞.

Reciprocally, if

∫ +∞
(

1

b(z)
+ a(z)

)

dz =

∫

0

(

1

b(z)
+ a(z)

)

dz = +∞, by lemma

3.5, E0,0 is dense in E0. Therefore it suffices to prove that C∞
0

(

(0,+∞)
)

is dense in E0,0.
For this purpose we will show that for any compact interval I = [z0, z1] ⊂ (0,+∞),

C∞
0 (I) is dense in EI = {u ∈ E0 : supp u ⊂ I}.

Let m =

∫

I

b(z) dz and define φ : I → J = [0, m] by φ(z) =

∫ z

z0

b(s) ds. Then,

L2
(

I, b(z)dz
)

and L2(J, ds) are isomorphic through the application Φ : L2(J, ds) →
L2
(

I, b(z)dz
)

such that Φ(v) = v ◦ φ.
Let u ∈ EI , and denote f = u′ and g = f ◦ φ−1, g ∈ L2(J, ds), then there exists

a sequence (gn)n≥0 such that gn ∈ C0(J̊)§ for all n ≥ 0 and gn → g in L2(J, ds). Let

fn = gn ◦ φ, then fn ∈ C0(I̊) and fn → f in L2
(

I, b(z)dz
)

, we also have that

∫

I

∣

∣f(z)− fn(z)
∣

∣ dz ≤ C

(
∫

I

b(z)
∣

∣f(z)− fn(z)
∣

∣

2
dz

)
1

2

,

by Cauchy-Schwarz inequality and because
1

b
∈ L1

loc

(

(0,∞)
)

. Since

∫

I

f(z) dz = 0 , we

§ C0(J̊) is the space of continuous functions with compact support in (0,m).
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deduce that

lim
n→∞

∫

I

fn(z) dz = 0.

Choose χ ∈ C0(I̊), such that

∫

I

χ(z) dz = 1, and define

f̃n = fn −
(
∫

I

fn(z)dz

)

χ.

Then

∫

I

f̃n(z) dz = 0, f̃n ∈ C0(I̊) and f̃n → f in L2
(

I, b(z)dz
)

:

∫

I

b(z)
(

f(z)− f̃n(z)
)2

dz ≤
∫

I

b(z)
(

f(z)− fn(z)
)2

dz +

(
∫

I

fn(z) dz

)2 ∫

I

b(z)χ(z)2 dz

−→
n→∞

0 . (8)

Set

ũn(z) =

∫ z

z0

f̃n(s) ds,

since

∫

I

f̃n(z) dz = 0, ũn(z) ∈ C1
0(I̊) for all n ≥ 0, and by (8),

lim
n→∞

∫

I

b(z)
∣

∣

∣
u′(z)− ũ′n(z)

∣

∣

∣

2

dz = 0,

and

lim
n→∞

‖u− ũn‖∞ = 0

because

lim
n→∞

∫

I

∣

∣

∣
f(z)− f̃n(z)

∣

∣

∣
dz = 0.

Hence we have

lim
n→∞

∫

I

a(z)
∣

∣

∣
u(z)− ũn(z)

∣

∣

∣

2

dz = 0,

so that, finally,

lim
n→∞

‖u− ũn‖EI = 0.

This proves the density of C1
0 (I) in EI . To pass from C1

0(I) to C∞
0 (I), a classical

regularization procedure is enough: it shows that C∞
0 (I) is dense in C1

0(I) for the

topology given by the norm

sup
z∈I

|u(z)|+ sup
z∈I

|u′(z)|;

since a and b are integrable on I, this implies the same density for the topology induced

by EI , and part (ii) of the lemma is completely proved.
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Regarding part (i), we will be sketchy. The necesity of the condition
∫ +∞

(

1

b(z)
+ a(z)

)

dz = +∞ follows from lemma 3.4. Its sufficiency needs only to be

proved when C∞
0

(

(0,∞)
)

is not dense, that is to say when

∫

0

(

1

b(z)
+ a(z)

)

dz < +∞.

But then, the same proof as above works, even when I = [0, z1]. �

Proof of theorem 3.2

Let us now prove theorem 3.2 (ii): if C∞
0 (Ω) is dense in E , by lemma 3.3

C∞
0

(

(0,+∞)
)

is dense in Ek for all k ≥ 0, in particular for k = 0, then by lemma

3.6, we have

∫ +∞
(

1

b(z)
+ d(z) + a(z)

)

dz =

∫

0

(

1

b(z)
+ d(z) + a(z)

)

dz = +∞.

Conversely, if

∫ +∞
(

1

b(z)
+ d(z) + a(z)

)

dz =

∫

0

(

1

b(z)
+ d(z) + a(z)

)

dz = +∞,

we also have
∫ +∞

(

1

b(z)
+ d(z) + a(z) + λk c(z)

)

dz =

∫

0

(

1

b(z)
+ d(z) + a(z) + λk c(z)

)

dz = +∞ ,

then C∞
0

(

(0,+∞)
)

is dense in Ek for all k, we can see it changing a(z) by d(z) + a(z) +

λk c(z) in all the previous results, and again by lemma 3.3, C∞
0 (Ω) is dense in E .

The proof of (i) analogously follows. Theorem 3.2 is completely proved. �

Remark 3.7 Under different hypotheses, when the coefficients of the operator A

depend on (z,x) we have given a characterization of q.e.s.a. operators in [9]. Warning:

in page 21 of that reference, the integrand of (43) was mistakenly written as 1
Mn+1,n+1(z,x)

instead of (M−1)n+1,n+1(z,x).

Essentially selfadjointness characterization

The characterization of e.s.a. for the operator A defined in (3) will rely on the real-

valued solutions of the O.D.E.

−
(

b(z) u′(z)
)′

+ d(z) u(z) = 0 (9)

on (0, z′) and on (z′,+∞).

A typical case is when

∫

0

a(z) dz < +∞, but

∫ +∞

a(z) dz = +∞. Then

since we may assume A to be q.e.s.a. (otherwise it cannot be e.s.a.), we have
∫

0

(

1

b(z)
+ d(z)

)

dz = +∞. In such a case, we will show that there is a unique solution
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of (9), denoted by α, such that


















α is a solution of (9) in (0, z′),

α(z′) = 1,
∫ z′

0

(

b(z)α′(z)2 + d(z)α(z)2
)

dz < +∞ .

(10)

Then, we define β(z), z ∈ (0, z′), by

β(z) = α(z)

∫ z′

z

1

b(s)α(s)2
ds . (11)

Note that, by construction, β is another solution of (9) in (0, z′). We shall prove that:

A is e.s.a. if and only if

∫

0

β(z)2 a(z) dz = +∞.

In the case where the role of 0 and +∞ are exchanged, the result is similar. We

will show that there exists a unique function α such that


















α(z) is a solution of (9) in (z′,+∞),

α(z′) = 1,
∫ +∞

z′

(

b(z)α′(z)2 + d(z)α(z)2
)

dz < +∞ .

(12)

Then, we define β(z), z ∈ (z′,+∞), by

β(z) = α(z)

∫ z

z′

1

b(s)α(s)2
ds , (13)

and we shall prove that: A is e.s.a. if and only if

∫ +∞

β(z)2 a(z) dz = +∞.

Note that, when d(z) ≡ 0 the problem considerably simplifies since, in this case,

α ≡ 1 and β(z) turns out to be either β0(z) =

∫ z′

z

1

b(z)
dz or β0(z) =

∫ z

z′

1

b(z)
dz

respectively.

Notation 3.8 We denote
(

α(z), β(z)
)

the above couples of solutions of (9); the context

will indicate whether z ∈ (0, z′), in which case
(

α(z), β(z)
)

are given by (10) and (11),

or z ∈ (z′,+∞), where
(

α(z), β(z)
)

are given by (12) and (13).

With this notation, the result is the following.

Theorem 3.9 Assume the operator A given in (3) to be q.e.s.a., that is to say
∫

0

(

1

b(z)
+ d(z) + a(z)

)

dz =

∫ +∞
(

1

b(z)
+ d(z) + a(z)

)

dz = +∞ .

There are four cases:

(i) If

∫

0

a(z) dz =

∫ +∞

a(z) dz = +∞, then A is e.s.a.;
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(ii) If

∫

0

a(z) dz < +∞ and

∫ +∞

a(z) dz = +∞, then A is e.s.a. if and only if
∫

0

β(z)2a(z) dz = +∞ ;

(iii) If

∫

0

a(z) dz = +∞ and

∫ +∞

a(z) dz < +∞, then A is e.s.a. if and only if
∫ +∞

β(z)2a(z) dz = +∞ ;

(iv) If

∫

0

a(z) dz < +∞ and

∫ +∞

a(z) dz < +∞, then A is e.s.a. if and only if
∫

0

β(z)2a(z) dz =

∫ +∞

β(z)2a(z) dz = +∞ .

Remark 3.10 Take care of the uniqueness of α (and thus the meaningfulness of the

definitions above): it holds when

∫

0

( 1

b(z)
+ d(z)

)

dz = +∞ or

∫ +∞( 1

b(z)
+ d(z)

)

dz =

+∞, according to where the variable z lives.

Preliminary step: study of solutions of (9)

Lemma 3.11 Let u(z) be a solution of (9) in some interval I ⊂ (0,+∞). Then the

function b(z) u(z)′ u(z) is increasing in I.

Proof:

From (9) we obtain

−
(

b(z) u(z)′ u(z)
)′

+ b(z) u′(z)2 + d(z) u(z)2 = 0 ,

showing that
(

b(z) u(z)′ u(z)
)′

is nonnegative. �

Lemma 3.12 Let u(z) be a solution of (9) in (0, z′). Then
∫ z′

0

(

b(z) u′(z)2 + d(z) u(z)2
)

dz = +∞

if and only if

lim
z→0+

b(z) u′(z) u(z) = −∞ .

Proof:

Since u(z′) and u′(z′) exist, the proof follows immediately from the fact that, for

0 < z0 < z′, we have
∫ z′

z0

(

b(z) u′(z)2 + d(z) u(z)2
)

dz =

∫ z′

z0

(

b(z) u(z)′ u(z)
)′

dz

= b(z′) u′(z′) u(z′)− b(z0) u
′(z0) u(z0) .

�
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Lemma 3.13 Let z′ > 0 be chosen.

(i) There exists at least one solution α(z) of (9), in the interval (0, z′), such that

α(z′) = 1

and
∫ z′

0

(

b(z)α′(z)2 + d(z)α(z)2
)

dz < +∞ .

This solution is positive and increasing in (0, z′), satisfying

lim
z→0+

b(z)α′(z)α(z) = 0 .

(ii) If in addition

∫ z′

0

(

1

b(z)
+ d(z)

)

dz = +∞, this solution is unique.

Proof:

Let L2
b

(

(0, z′)
)

be the space of measurable functions f(z) such that
∫ z′

0

b(z) f(z)2 dz < +∞ .

We define, for any f in this space, the function Tf by

Tf(z) = 1−
∫ z′

z

f(s) ds ,

so that Tf ∈ C((0, z′))
⋂

H1
loc

(

(0, z′)
)

, with (Tf)′(z) = f(z). Let

q(f) =

∫ z′

0

(

b(z) f(z)2 + d(z)
(

Tf(z)
)2
)

dz,

taking values in (0,+∞], and

q0 = inf
f∈L2

b

q(f) .

Note that q0 is finite since, for example, for f(z) =
1

z′ − z0
1[z0,z′](z) for some 0 < z0 < z′,

q(f) < +∞. We shall show that q0 is in fact a minimum. To this end, let (fn)n∈N be a

minimising sequence

lim
n→+∞

q(fn) = q0 .

Then, by construction,

sup
n∈N

‖fn‖L2
b
< +∞ ,

so that (up to extracting a subsequence) we may suppose that the sequence (fn) has a

weak limit f0 in L2
b

(

(0, z′)
)

. Let us prove that q(f0) = q0.

For any z0 ∈ (0, z′) and for all z ≥ z0

|Tfn(z)| ≤ 1 +

(

∫ z′

z0

1

b(z)
dz

)1/2

‖fn‖L2
b
≤ C(z0) ,
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and

Tf0(z) 1[z0,z′](z) = lim
n→+∞

Tfn(z) 1[z0,z′](z) .

So, by dominated convergence, we have

lim
n→+∞

∫ z′

z0

d(z)
(

Tfn(z)
)2

dz =

∫ z′

z0

d(z)
(

Tf0(z)
)2

dz .

Also we know that
∫ z′

z0

b(z) f0(z)
2 dz ≤ lim inf

n→+∞

∫ z′

z0

b(z) fn(z)
2 dz ,

since f0 = w-lim
n→+∞

fn in L2
b

(

(0, z′)
)

as well. From these two facts, we deduce

∫ z′

z0

(

b(z) f0(z)
2 + d(z)

(

Tf0(z)
)2
)

dz

≤ lim inf
n→+∞

∫ z′

z0

(

b(z) fn(z)
2 + d(z)

(

Tfn(z)
)2
)

dz ≤ q0 .

Letting z0 → 0+, we obtain q(f0) ≤ q0, and thus q(f0) = q0 as desired.

Let now α(z) = Tf0(z). For any u ∈ C
(

(0, z′)
)
⋂

H1
loc

(

(0, z′)
)

, with u(z′) = 1,

define

Q(u) = q(u′)

=

∫ z′

0

(

b(z) u′(z)2 + d(z) u(z)2
)

dz .

We have proved that

Q(α) = min
u

Q(u) .

We define

α+ =

{

α if α ≥ 0

0 if not
and α− =

{

−α if α ≤ 0

0 if not
,

so that α = α+ − α− and α+α− = 0. Then we have that Q(α+) ≤ Q(α) with

strict inequality if and only if α− 6= 0, and since α+ ∈ C
(

(0, z′)
)
⋂

H1
loc

(

(0, z′)
)

with

α+(z′) = 1, we must have

Q(α+) = Q(α) ,

and α+ = α, i.e., α is positive in (0, z′].

If ψ ∈ C
(

(0, z′)
)
⋂

H1
loc

(

(0, z′)
)

is such that Q(α + tψ) < +∞ for all t ∈ R and

ψ(z′) = 0, we must have

Q(α) ≤ Q(α + tψ) ,

and this implies
∫ z′

0

(

b(z)α(z)′ψ(z)′ + d(z)α(z)ψ(z)
)

dz = 0 .
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This, in particular, is true for all ψ ∈ C∞
0

(

(0, z′)
)

, implying that

−
(

b(z)α(z)′
)′

+ d(z)α(z) = 0

in (0, z′).

But then, this means that
∫ z′

0

(

b(z)α(z)′ψ(z)′ +
(

b(z)α(z)′
)′

ψ(z)

)

dz = 0

for all ψ ∈ C
(

(0, z′)
)

∩H1
loc

(

(0, z′)
)

with Q(α + tψ) < +∞ and ψ(z′) = 0. Therefore

lim
z→0+

b(z)α′(z)ψ(z) = 0 .

Choosing ψ = α η, where η ∈ C∞
(

0,+∞)
)

, η = 1 near 0 and η = 0 near z′, we get

lim
z→0+

b(z)α′(z)α(z) = 0 .

With lemma 3.11, this shows that (recall that α is positive) α2 and hence α are both

increasing in (0, 1). Thus, part (i) is entirely proved.

(ii) Let

β(z) = α(z)

∫ z′

z

1

b(s)α(s)2
ds .

Then, β(z) is another solution of (9) in (0, z′), so that any solution writes λα(z)+µ β(z),

λ, µ ∈ R. The uniqueness of α(z) will follow from the proof of
∫ z′

0

(

b(z) β ′(z)2 + d(z) β(z)2
)

dz = +∞ . (14)

A direct calculation shows that β(z′) = 0 and β ′(z′) = − 1

b(z′)
. Thus, from the O.D.E.

(9), we obtain

−β ′(z) =
1

b(z)
+

1

b(z)

∫ z′

z

d(s) β(s) ds .

Since β is positive by construction, it turns out to be decreasing in (0, z′), with

|β ′(z)| ≥ 1

b(z)
, 0 < z ≤ z′ ,

and

β(z) ≥
∫ z′

z

1

b(s)
ds =: β0(z) . (15)

Hence, there exists a constant C such that β(z) ≥ C if z ≤ z′/2, and we obtain
∫ z′

0

(

b(z) β ′(z)2 + d(z) β(z)2
)

dz ≥
∫ z′

0

1

b(z)
dz + C2

∫ z′/2

0

d(z) dz

= +∞ .

The lemma is proved. �

Lemma 3.13 has an analogous counterpart near +∞, which is the following.
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Lemma 3.14 Let z′ > 0 be chosen.

(i) There exists at least one solution α(z) of (9), in the interval (z′,+∞), such that

α(z′) = 1

and
∫ +∞

z′

(

b(z)α′(z)2 + d(z)α(z)2
)

dz < +∞ .

This solution is positive and decreasing in (z′,+∞), satisfying

lim
z→+∞

b(z)α′(z)α(z) = 0 .

(ii) If in addition

∫ +∞
(

1

b(z)
+ d(z)

)

dz = +∞, this solution is unique.

Proof:

By making the change of variable z 7→ z′2

z
, the proof immediately follows from the

previous lemma. �

Remark 3.15 The function α(z) given in (0, z′) (respectively in (z′,+∞)) by lemma

3.13 (resp. lemma 3.14) is not a solution of (9) on (0,+∞), but of

−
(

b(z)α′(z)
)′

+ d(z)α(z) = λ δz′(z) ,

where δz′(z) is the Dirac measure at z = z′, and λ =

∫ +∞

0

(

b(z)α′(z)2 + d(z)α(z)2
)

dz.

Main step: e.s.a. characterization in dimension one

Let us consider now the operator

A0 u(z) =
1

a(z)

(

−
(

b(z) u′(z)
)′

+ d(z)u(z)

)

defined as in (4) with
∫

0

(

1

b(z)
+ d(z)

)

dz =

∫ +∞
(

1

b(z)
+ d(z)

)

dz = +∞ . (16)

Lemma 3.16 If

∫

0

a(z) dz =

∫ +∞

a(z) dz = +∞, A0 is an e.s.a. operator.

Proof:

Assume A0 is not e.s.a.. By lemma 2.5 there exists u ∈ H0 such that

−
(

b(z) u′(z)
)′

+ d(z) u(z) + a(z) u(z) = 0 ,

and u /∈ E0, i.e., either

∫

0

(

b(z)(u′(z))2 +
(

d(z) + a(z)
)

u(z)2
)

dz = +∞ or
∫ +∞(

b(z)(u′(z))2 +
(

d(z) + a(z)
)

u(z)2
)

dz = +∞ (or both).



On well-posedness of the Cauchy problem . . . 20

If

∫

0

(

b(z) u′(z)2 +
(

d(z) + a(z)
)

u(z)2
)

dz = +∞, by lemma 3.12 (changing d in

d+ a) we have

lim
z→0+

b(z) u′(z) u(z) = −∞ .

In particular, u′(z) u(z) < 0 for z ≤ z0, for some z0 > 0, so that u2 is decreasing in

(0, z0]. But since

∫ +∞

0

a(z) u(z)2 dz < +∞, this implies

∫

0

a(z) dz < +∞, which is a

contradiction.

If

∫ +∞
(

b(z) u′(z)2 +
(

d(z) + a(z)
)

u(z)2
)

dz = +∞, a change of variable reduces

the proof to the preceding case. �

Lemma 3.17 Assume

∫

0

a(z) dz < +∞ and

∫ +∞

a(z) dz = +∞. Then, A0 is an

e.s.a. operator if and only if

∫

0

β(z)2a(z) dz = +∞.

Proof:

We first assume that

∫

0

β(z)2a(z) dz < +∞. We set u(z) = β(z) η(z) with

η ∈ C∞
(

[0,+∞)
)

, η = 1 near 0 and η = 0 for z ≥ ε. Then u ∈ H0 and A∗
0u ∈ H0. But

by the hypotheses (16), u /∈ E0 (see (14) in the proof of lemma 3.13). Thus A0 is not

e.s.a..

Reciprocally, assume that A0 is not e.s.a.. Then there exists u ∈ H0 such that

−
(

b(z) u′(z)
)′

+ d(z) u(z) + a(z) u(z) = 0 ,

and u /∈ E0.
Since

∫ +∞

a(z) dz = +∞ and

∫ +∞

u(z)2a(z) dz < +∞, the same argument as in

lemma 3.16 shows that necessarily
∫ +∞(

b(z) u′(z)2 + d(z) u(z)2
)

dz < +∞ .

Thus we must have
∫

0

(

b(z) u′(z)2 + d(z) u(z)2
)

dz = +∞ .

By lemma 3.12, lim
z→0+

b(z) u′(z) u(z) = −∞, and in particular, u2 is decreasing in (0, z0)

for some z0 > 0. We may assume that u(z0) > 0 and u′(z0) < 0 (up to changing u in

−u). Let C1 and C2 be two constants such that
{

C1 α(z0) + C2 β(z0) = u(z0),

C1 α
′(z0) + C2 β

′(z0) = u′(z0) .

They exist because we know that the Wronskian b(z)
(

α(z)β ′(z) − α′(z)β(z)
)

is never

vanishing ‖. Moreover, we must have C2 6= 0, otherwise u(z0) and u′(z0) would have

‖ In fact, it is a constant, equal to −1.
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the same sign (recall that α is positive and increasing, by lemma 3.13). We even have

C2 > 0¶.
Let v(z) = u(z)− C1 α(z)− C2 β(z). We have

−
(

b(z) v′(z)
)′

+ d(z) v(z) + a(z) u(z) = 0 ,

with v(z0) = v′(z0) = 0, u > 0 in (0, z0]. By classical arguments, v must be positive and

decreasing in (0, z0]:

• It is so in some neighborhood of z0, because
(

b(z) v′(z)
)′

> 0 near z0 and v
′(z0) = 0,

so that v′(z) < 0 in (z0 − ǫ, z0);

• it cannot change its sense of variation in (0, z0) (v(z1) > 0, v′(z1) = 0, v′′(z1) ≤ 0

at some z1 < z0 is impossible).

Hence, since C2 > 0, we have

β(z) ≤ 1

C2
(u(z)− C1 α(z))

in (0, z0]. Since α is bounded,

∫

0

a(z) dz < +∞ and u ∈ H0, this implies

∫

0

β(z)2a(z) dz < +∞ ,

and the proof is finished. �

Lemma 3.18 Assume

∫

0

a(z) dz = +∞ and

∫ +∞

a(z) dz < +∞. Then, A0 is an

e.s.a. operator if and only if

∫ +∞

β(z)2 a(z) dz = +∞.

Proof:

The result follows by a change of variable and the preceding lemma. �

Lemma 3.19 Assume

∫

0

a(z) dz < +∞ and

∫ +∞

a(z) dz < +∞. Then, A0 is an

e.s.a. operator if and only if

∫ +∞

β(z)2a(z) dz = +∞.

Proof:

If A0 is not e.s.a., there exists u ∈ H0 solution of

−
(

b(z) u′(z)
)′

+ d(z) u(z) + a(z) u(z) = 0 ,

and either

∫

0

(

b(z) u′(z)2+ d(z) u(z)2
)

dz = +∞ or

∫ +∞(

b(z) u′(z)2+ d(z) u(z)2
)

dz =

+∞. Use the arguments of lemma 3.17 or lemma 3.18, depending on the case.

Reciprocally, as we have done in lemma 3.17, we consider u(z) = β(z) η(z) for a

suitable η and the result follows. �

¶ C2 = b(z0)[u(z0)α
′(z0)− u′(z0)α(z0)] > 0
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Final step: reduction to the one-dimensional case

Defining the operators Ak as in (4), i.e.,

Ak u(z) =
1

a(z)

(

−
(

b(z)u′(z)
)′

+
(

λk c(z) + d(z)
)

u(z)

)

,

we have the following result:

Lemma 3.20 A is an e.s.a. operator if and only if for all k ≥ 0 Ak is an e.s.a.

operator.

Proof:

We use the notation introduced in step 1 of the proof of theorem 3.2. By Lemma

2.5, if Ak is not e.s.a., there exists u ∈ H0, u ∈ D(A∗
k) but u /∈ Ek. This implies that

ϕ = u⊗ ψk ∈ D(A∗) and ϕ /∈ E , so that A is not e.s.a. .

Reciprocally, if A is not e.s.a., there exists ϕ ∈ H non vanishing, such that

A∗ϕ+ ϕ = 0.

Decompose

ϕ =
∑

k≥0

uk ⊗ ψk,

there exists k such that uk 6= 0. If φ ∈ C∞
0

(

(0,∞)
)

, we have

0 =< ϕ,A(φ⊗ ψk) + φ⊗ ψk >H=< uk, Akφ+ φ >H0
,

which means that A∗
kuk + uk = 0. Thus Ak is not e.s.a. by lemma 2.5 again. �

Proof of theorem 3.9

(i) If

∫

0

a(z) dz = +∞ and

∫ +∞

a(z) dz = +∞, then

∫

0

(

a(z) + λk c(z)
)

dz = +∞

and

∫ +∞(

a(z) + λk c(z)
)

dz = +∞, for all k ≥ 0. Therefore Ak is e.s.a. by lemma

3.16 with a changed in a + λk c(z), and by lemma 3.20 A is e.s.a..

In the cases (ii), (iii) and (iv) if A is e.s.a. it follows by lemma 3.20 that in

particular A0 is e.s.a.. Then lemmas 3.17, 3.18 and 3.19 give the result.

For the converse, let us take the case (ii). If A is not e.s.a., by lemma 3.20 there

exists k ≥ 0 such that Ak is not e.s.a.. Then by lemma 3.17
∫

0

βk(z)
2a(z) dz < +∞, (17)

where βk is the solution of

−
(

b(z) u′(z)
)′

+ (c(z)λk + d(z)) u(z) = 0
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on (0, z′) with Cauchy data u(z′) = 0 and u′(z′) = − 1

b(z′)
. A classical comparison

principle, applied to the functions βk and β, defined in (11), give us 0 ≤ β ≤ βk on

(0, z′). Then (17) implies

∫

0

β(z)2a(z) dz < +∞ ,

as desired.

The other cases are analogous.

Theorem 3.9 is completely proved. �

Remark 3.21 The precise definition of the function β(z) is needed only for the

sufficiency of the condition
∫

0

β(z)2a(z) dz < +∞

for A to be e.s.a.. This is not used in the reciprocal, where the “massless-β ”

β0(z) =

∫ z′

z

1

b(s)
ds

would have worked as well (see (15)). But, for the sufficiency, if we choose u(z) =

β0(z) η(z) in lemma 3.17, with η ∈ C∞([0,+∞)), η = 1 near 0 and η = 0 for z ≥ z′

2
,

then

A∗
0 u(z) =

1

a(z)

(

−
(

b(z) β0(z) η
′(z)
)′

+ d(z) β0(z) η(z)

)

,

and this belongs to H0 only when
∫

0

d(z)2 β0(z)
2 1

a(z)
dz < +∞ .

This gives a necessary and sufficient condition for e.s.a. in terms of β0(z) only, not

β(z), when
d(z)

a(z)
is bounded:

Corollary 3.22 When
d(z)

a(z)
is bounded near 0,

∫

0

a(z) dz < +∞ and

∫ +∞

a(z) dz =

+∞, A is e.s.a. if and only if

∫

0

β0(z)
2a(z) dz = +∞.

There are similar statements in the other cases.

Remark 3.23 The previous results in the domain (z0, z1)× M

In some relevant examples one is lead to consider Ω = (z0, z1)×M , 0 ≤ z0 ≤ z1 ≤
∞, and a differential operator A defined as in (3) by

Aϕ(z,x) =
1

a(z)

{

−∂z
(

b(z)∂zϕ(z,x)
)

− c(z)∆Mϕ(z,x) + d(z)ϕ(z,x)
}

,

for all ϕ ∈ C∞
0 (Ω), where the functions a, b, and c satisfy the following hypotheses:
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• a, c, d ∈ L1
loc

(

(z0, z1)
)

, b ∈ C
(

(z0, z1)
)

• a > 0, b > 0, c > 0 and d ≥ 0 in (z0, z1)

• a−1, b−1, c−1 ∈ L1
loc

(

(z0, z1)
)

.

The previous results straightforwardly generalize to such a case. For the convenience

of the reader, we state the two main theorems.

Theorem 3.24 A is a q.e.s.a. operator in H if and only if

∫ z1
(

1

b(z)
+ d(z) + a(z)

)

dz

= +∞ and

∫

z0

(

1

b(z)
+ d(z) + a(z)

)

dz = +∞.

Theorem 3.25 We assume A is a q.e.s.a. operator, There are four cases:

(i) If

∫

z0

a(z) dz =

∫ z1

a(z) dz = +∞, then A is e.s.a.;

(ii) If

∫

z0

a(z) dz < +∞ and

∫ z1

a(z) dz = +∞, then A is e.s.a. if and only if
∫

z0

β(z)2a(z) dz = +∞ ;

(iii) If

∫

z0

a(z) dz = +∞ and

∫ z1

a(z) dz < +∞, then A is e.s.a. if and only if
∫ z1

β(z)2a(z) dz = +∞ ;

(iv) If

∫

z0

a(z) dz < +∞ and

∫ z1

a(z) dz < +∞, then A is e.s.a. if and only if
∫

z0

β(z)2a(z) dz =

∫ z1

β(z)2a(z) dz = +∞.

A typical situation where these results apply is when

∫ z1
(

1

b(z)
+ d(z) + a(z)

)

dz =

+∞ but

∫

z0

(

1

b(z)
+ d(z) + a(z)

)

dz < +∞. Then C∞
0 (Ω) is not dense in E , but the

only non trivial linear forms continuous on E , vanishing on C∞
0 (Ω), are supported on

{z0}×M . This means that a boundary condition must be chosen at z = z0, but not at

z = z1.

Moreover if we have, for example,

∫ z1

a(z) dz = +∞, the selfadjoint extension Ã,

defined from A with an appropriate boundary condition at z = z0, will be unique.

In particular, considering null Dirichlet boundary condition, Ã will be the selfadjoint

extension of A constructed from the restriction of the bilinear form to E0.
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4. Well-posedness of the Cauchy problem

Let A and Ω be as in the previous section. We assume A to be at least q.e.s.a. but not

necessarily e.s.a.; we denote in the same way its unique selfadjoint extension with finite

energy. We take functions f ∈ E and g ∈ H and consider the Cauchy problem

(P )











∂ttϕ+ Aϕ = 0,

ϕ(0, ·) = f,

∂tϕ(0, ·) = g.

Theorem 4.1 Under the hypotheses above, the problem (P) has a unique solution

φ ∈ C([0,∞); E) ∩ C1([0,∞);H),

and there exists a constant C > 0 such that

∀ t > 0 ‖φ(t, ·)‖E + ‖∂tφ(t, ·)‖H ≤ C(‖f‖E + ‖g‖H).
In this case, the energy

E(φ, t) =
1

2

∫

Ω

(

a(z) (∂tφ)
2 + b(z) (∂zφ)

2 + c(z) |∇φ|2 + d(z)|φ|2
)

dµ

is well-defined and conserved:

∀ t > 0 E(φ, t) =
1

2

(

‖g‖2H + b(f, f)
)

.

Proof:

Let D be the domain defined in (2), given f ∈ D and g ∈ E , the solution of (P) is

given by (see, for example, [6] and references therein)

φ(t, ·) = cos
(

tA
1

2

)

f + A− 1

2 sin
(

tA
1

2

)

g. (18)

Taking into account that D(A
1

2 ) = E , we have φ(t, ·) ∈ D and ∂tφ(t, ·) ∈ E . That φ(t, ·)
and ∂tφ(t, ·) are continuous vector-valued functions (in D and in E respectively) rely

on a classical density argument we only sketch. For ε > 0 we set fε = (I + εA)−1f ,

gε = (I + εA)−1g and φε = (I + εA)−1φ. Then ∂tφε(t, ·) ∈ D and ∂ttφε(t, ·) ∈ E , with
their norms uniformly bounded in t, while φε(t, ·) → φ(t, ·) in D and ∂tφε(t, ·) → ∂tφ(t, ·)
in E when ε→ 0. The conclusion readily follows.

When f ∈ E and g ∈ H , we define φ(t, ·) by (18). Then φ(t, ·) ∈ E and ∂tφ(t, ·) ∈ H .

The continuity results are obtained by density arguments in the same way as above.

The reader should notice that in this case we have ∂ttφ(t, ·) + A(φ(t, ·)) = 0 in

E ′, where E ′ is the dual space of E ; hence φ is a weak solution of (P). Regarding the

conservation of the energy, although the argument here is standard, we recall it for its

convenience. We assume first that f ∈ D and g ∈ E . Then φ(t, ·) is a strong solution of

(P) and we have
∫ t2

t1

∫

Ω

a(z) ∂tφ (∂ttφ+ Aφ) dt dµ = 0. (19)
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We consider each term separately, obtaining for the first one
∫

Ω

∫ t2

t1

a(z) ∂tφ ∂ttφ dt dµ =
1

2

∫

Ω

a(z) (∂tφ)
2 dµ

∣

∣

∣

∣

t2

t1

, (20)

and for the second one (see for instance [12])
∫ t2

t1

∫

Ω

∂tφ Aφ a(z) dt dµ =

∫ t2

t1

< ∂tφ,Aφ >H dt

=

∫ t2

t1

b(φ, ∂tφ) dt

=
1

2

∫

Ω

(

a(z) (∂tφ)
2 + b(z) (∂zφ)

2 + c(z) |∇φ|2 + d(z)|φ|2
)

dµ

∣

∣

∣

∣

t2

t1

.

(21)

Now, by (19), adding (20) and (21), we have for all t > 0

E(φ, t) =
1

2

∫

Ω

(

a(z) (∂tφ)
2 + b(z) (∂zφ)

2 + c(z) |∇φ|2 + d(z)|φ|2
)

dµ

=
1

2

(

‖g‖2H + b(f, f)
)

.

Again, by a density argument as before, this result remains true when f ∈ E and

g ∈ H . �

5. Propagation of classical scalar fields in static spherically symmetric

spacetimes

We consider a (n+2)-dimensional static and spherically symmetric spacetime with n ≥ 1

and metric signature (−+ . . .+). Due to the required isometries the more general line

element can be written as

ds2 = −F (r) dt2 +G(r) dr2 + r2 dℓ2Sn , (22)

where dℓ2Sn is the metric on the unit n-sphere Sn and r in (0,+∞). For a non-

degenerate Lorentzian metric gab, (22) makes sense only for those values of r such

that 0 < F (r)G(r) < +∞. On the other hand, since gab(∂t)
a(∂t)

b = −F , the Killing

vector field ∂t is timelike only in the region F (r) > 0, and so spacetime is static only

in this region. Therefore, without loss of generality, from now on we shall restrict

ourselves to the region where F (r) and G(r) are both finite and positive. In addition

we shall assume that F and G are such that the condition 0 < F (r), G(r) < +∞
holds in a finite union of disjoint non empty open subintervals (r−i , r

+
i ) of (0,+∞) and

F, F ′, G ∈ C1(
m
⋃

i=1

(r−i , r
+
i )). If the spacetime is asymptotically flat, in the outer region

(r−m,+∞), we can find coordinates such that lim
r→+∞

F (r) = lim
r→+∞

G(r) = 1.
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Due to the required symmetries the more general energy-momentum tensor can be

written as

T b
a = diag{−ρ(r), pr(r), pθ(r), . . . , pθ(r)} , (23)

where ρ(r) is the energy density, and pr(r), pθ(r) are the principal pressures. We shall

assume that ρ(r) is bounded and the dominant energy condition+ is satisfied, which, in

this case, is equivalent to

|pr(r)|, |pθ(r)| ≤ ρ(r) < +∞ . (24)

From (22) and (23) we get that Einstein’s equations, i.e., Gab + Λ gab = 8πTab,

become

Gt
t = − n

2 r2

(

(n− 1)

(

1− 1

G(r)

)

+ r
G′(r)

G(r)2

)

= −8π ρ(r)− Λ , (25)

Gr
r =

n

2 r2

(

r F ′(r)

F (r)G(r)
+ (n− 1)

(

1

G(r)
− 1

))

= 8π pr(r)− Λ , (26)

Gθ
θ =

F ′′(r)

2F (r)G(r)
− F ′(r)G′(r)

4F (r)G(r)2
+

(n− 1)F ′(r)

2rF (r)G(r)
− F ′(r)2

4F (r)2G(r)

− (n− 1)G′(r)

2rG(r)2
− (n− 2)(n− 1)

2r2

(

1− 1

G(r)

)

= 8π pθ(r)− Λ , (27)

where Λ is the cosmological constant. Furthermore, the local energy-momentum

conservation (∇aT
ab = 0) gives

p′r(r) = −ρ(r) + pr(r)

2

F ′(r)

F (r)
− n

(pr(r)− pθ(r))

r
. (28)

Of course, due to Bianchi’s identities, (25)-(28) are not independent. These are a system

of three linear independent ODE ’s and, in order to find the five unknown functions F (r),

G(r), ρ(r), pr(r) and pθ(r), we have to provide equations of state relating the functions

ρ(r), pr(r) and pθ(r).

From (25) and (26) we can write down a more handleable set of two equivalent

independent equations
(

rn−1

(

1− 1

G(r)

))′

=
2rn

n
(8π ρ(r) + Λ) , (29)

ln′
(

F (r)G(r)
)

=
16π

n

(

ρ(r) + pr(r)
)

r G(r) , (30)

which in the vacuum cases, leads readily to the solution.

Indeed, if we for instance set ρ(r) = −pr(r) = pθ(r), from (28) we immediately get

that

pr(r) = −ρ(r) = −C1

r2n
,

+ See for example [1]
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where the constant C1 must be positive by (24). Then, we find from (29) that

1

G(r)
= 1− C2

rn−1
+

16π C1

n(n− 1) r2n−2
− 2Λ r2

n(n + 1)
,

where C2 is a new arbitrary constant. And (30) immediately gives F (r)G(r) = C3,

and we can always set the constant C3 = 1 by scaling the time. This family of

solutions, depending on three parameters, includes the higher-dimensional generalization

of Schwarzschild, de Sitter and Reissner-Nordström geometries.

For future use, we shall prove the following result.

Lemma 5.1 If 0 < F (r), G(r) < +∞ in some interval (r−i , r
+
i ), then

(i) F (r)G(r) is a nondecreasing function of r in (r−i , r
+
i ), and then bounded in a

neighborhood of r−i .

(ii) In the outer region of an asymptotically flat spacetime, F (r)G(r) is bounded.

Proof:

(i) As a consequence of the dominant energy condition (24) the right hand side of

(30) cannot be negative, then F (r)G(r) cannot be decreasing.

(ii) Since F (r)G(r) is nondecreasing, we get that 0 < F (r)G(r) ≤ 1 since

lim
r→+∞

F (r) = lim
r→+∞

G(r) = 1. �

In these spacetimes, we shall consider the propagation of a scalar field ψ with

Lagrangian density

L = −1

2
∇aψ∇aψ − m2

2
ψ2,

where the constant m is the mass of the field and ∇ denotes the covariant derivative

(Levi-Civita connection).

As usual, we obtain the field equations by requiring that the action

S =

∫

L (∇aψ, ψ, gab)
√

|g| dtdµ

be stationary under arbitrary variations of the fields δψ in the interior of any compact

region, but vanishing at its boundary. Thus, we have the Euler-Lagrange equation

∇a

(

∂L

∂∇aψ

)

=
∂L

∂ ψ
,

which, in our case, becomes the Klein-Gordon equation

∇a∇aψ = �ψ =
∂a

(

√

|g| gab ∂bψ
)

√

|g|
= m2 ψ . (31)

Therefore, we get from (22) and (31) that the field equation may be written as

∂ttψ = −Aψ
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where

Aψ = − 1

rn

√

F (r)

G(r)



∂r

(

rn

√

F (r)

G(r)
∂rψ

)

+ rn−2
√

F (r)G(r) ∆Snψ



+m2 F (r)ψ ,

(32)

where ∆Sn is the Laplacian on the unit n-sphere. Then, by comparing with the operator

defined in (3), we get the identification of the coefficients

a(r) = rn

√

G(r)

F (r)
, b(r) = rn

√

F (r)

G(r)
,

c(r) = rn−2
√

F (r)G(r) , d(r) = m2 rn
√

F (r)G(r) . (33)

Remark 5.2 From (22) we get that radial null geodesics satisfy
dt

dr
= ±

√

G(r)

F (r)
. Then,

if r0 and r belong to the closure of a connected region where 0 < F (s), G(s) < +∞, we

find from (33) that the coordinate time t a radial photon takes to travel from r to r0 is

T (r → r0) =

∣

∣

∣

∣

∣

∫ r0

r

√

G(s)

F (s)
ds

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ r0

r

√

a(s)

b(s)
ds

∣

∣

∣

∣

∣

. (34)

We shall see that it is actually this time which plays a crucial role in the analysis

of e.s.a. when there is a horizon at r0 (r0 = r+i or r0 = r−i ) in the spacetime, i.e.,

T (r → r0) = +∞.

Lemma 5.3 In the outer region of an asymptotically flat spacetime one has
∫ +∞

a(r) dr = +∞.

Proof. If lim
r→+∞

F (r) = lim
r→+∞

G(r) = 1 by (33) we have that lim
r→+∞

a(r)

rn
= 1, and then

∫ +∞

a(r) dr = +∞. �

Lemma 5.4 If 0 < F (r), G(r) < +∞ in (r−i , r
+
i ), with r−i > 0, the three following

statements are equivalent

∫

r−i

1

b(r)
dr = +∞,

∫

r−i

a(r) dr = +∞ and

∫

r−i

√

a(r)

b(r)
dr = +∞ .

On the other hand, if r+i is finite, the three following statements are equivalent

∫ r+i 1

b(r)
dr = +∞,

∫ r+i

a(r) dr = +∞ and

∫ r+i

√

a(r)

b(r)
dr = +∞ .
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Proof.

By (33) we have that a(r)b(r) = r2n. For r∗ < r < r∗ < +∞, we readily get the

inequalities

r2n∗
b(r)

< a(r) <
r∗2n

b(r)
and rn∗

√

a(r)

b(r)
< a(r) < r∗n

√

a(r)

b(r)
.

Now, by integrating these expressions between r∗ and r∗, we get the result. �

Observe that by the properties of the functions F and G, under the hypotheses of

lemma 5.4 we have

• a, b, c, d ∈ C1
(

(r−i , r
+
i )
)

• a, b, c > 0 and d ≥ 0 in (r−i , r
+
i )

• a−1, b−1, c−1 ∈ L1
loc

(

(r−i , r
+
i )
)

.

Then, if we consider the operator defined by (32) in Ω = (r−i , r
+
i )× Sn, we have:

Theorem 5.5 For 0 < r−m < ∞, let A be the operator corresponding to the

propagation of a scalar field in Ω = (r−m,∞) × Sn in a static, spherically symmetric

and asymptotically flat spacetime where the dominant energy condition holds. The three

following statements are equivalent:

(i) The time T (r → r−m) is infinite.

(ii) A is a q.e.s.a. operator.

(iii) A is an e.s.a. operator.

Or, in other words, A is e.s.a. if and only if a radial photon needs an infinite amount

of time to get r−m.

Proof:

(i) ⇒ (ii) and (iii): By lemma 5.3 we have that

∫ +∞

a(r) dr = +∞. On the other

hand, if T (r → r−m) = +∞, it follows by (34) that

∫

r−m

√

a(r)

b(r)
dr = +∞, and then from

lemma 5.4 we have

∫

r−m

a(z) dz = +∞. Therefore, it follows from theorem 3.24 that the

operator A is q.e.s.a and from theorem 3.25 (i) that the operator A is e.s.a.

(ii) ⇒ (i): Conversely, assume that T (r → r−m) < +∞, then

∫

r−m

√

a(r)

b(r)
dr <

+∞. And it immediately follows from lemma 5.4 that

∫

r−m

a(r) dr < +∞ and
∫

r−m

1

b(r)
dr < +∞. On the other hand, since F (r)G(r) is bounded by lemma 5.1,

∫

r−m

d(r)dr = m2

∫

r−m

rn
√

F (r)G(r) dr < +∞. Therefore, it follows from theorem 3.24

that the operator A is not q.e.s.a.
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(iii) ⇒ (ii): This is obvious by definition. �

Remark 5.6 Note that the boundedness of F (r)G(r) is only used in the proof of the

sufficiency of the condition T (r → r−m) = +∞, to guarantee that d(r) is integrable

at r−m. Therefore, for massless fields, since in this case d(r) ≡ 0 the theorem follows

without invoking any energy condition.

Similar results also follow from remark 3.23 and lemma 5.4 at internal horizons.

6. Examples

6.1. (n + 2)-dimensional punctured Minkowski spacetime

Here we consider the flat (n + 2)-dimensional Minkowski spacetime with a removed

spatial point. We chose the origin of coordinates at this point and then the line element

can be written as

ds2 = −dt2 + dr2 + r2 dl2Sn ,

where −∞ < t < +∞ and 0 < r < +∞. This spacetime has a time-like singular

boundary along the t axis. In this case, Ω = (0,∞)× Sn and F (r) = G(r) = 1, so the

coefficients in (33) are a(r) = b(r) = rn, c(r) = rn−2 and d(r) = m2 rn. The operator A

in (32) turns out to be

Aψ = − 1

rn
∂r (r

n ∂rψ)−
1

r2
∆Snψ +m2 ψ ,

which formally is nothing but −∆+m2.

Now, for n ≥ 1, we have that

∫ +∞

a(r) dr = +∞ and

∫

0

dr

b(r)
= +∞ . Then it

immediately follows from theorem 3.2 that A is a q.e.s.a. operator for every m2 ≥ 0

and every n ≥ 1.

We turn now to explore whether A is an e.s.a. operator too. Taking into account

that d(z)/a(z) = m2,

∫

0

a(z) dz =

∫

0

rn dz < +∞ and

∫ +∞

a(z) dz = +∞, we can

apply corollary 3.22.

Now, for 0 < r1 < +∞, we have

β0(r) =

∫ r1

r

du

b(u)
=















− ln

(

r

r1

)

if n = 1

r1−n − r1
1−n

n− 1
if n ≥ 2

.

Thus,
∫ r1

0

β 2
0 (r)a(r)dr < +∞

if and only if n = 1, 2. Therefore, it immediately follows from corollary 3.22 that A is

an e.s.a. operator only if n ≥ 3. This is a well known result, see for instance [13, 14].
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6.2. (n + 2)-dimensional anti-Schwarzschild (M < 0) spacetime

Here we consider the (n+ 2)-dimensional spacetime with line element

ds2 = −
(

1 +
rn−1
s

rn−1

)

dt2 +

(

1 +
rn−1
s

rn−1

)−1

dr2 + r2 dΩ2
Sn ,

where −∞ < t < +∞, 0 < r < +∞, rs is a positive constant and n ≥ 2∗. This

spacetime has a naked timelike singularity at r = 0 where some components of the Weyl

tensor diverge.

In this case, Ω = (0,∞) × Sn and we get from (33) that the coefficients of the

operator A are

a(r) =
r2n−1

rn−1 + rn−1
s

, b(r) = r(rn−1 + rn−1
s ) , c(r) = rn−2 and d(r) = m2 rn .

We get therefore
∫

0

dr

b(r)
= +∞ and

∫ +∞

a(r) dr = +∞.

Then it immediately follows from theorem 3.2 that A is a q.e.s.a. operator for every

m2 ≥ 0 and every n ≥ 2.

Form = 0 and n = 2, we have already proved in [9] that A is not an e.s.a. operator.

Here, we shall analyze the general case.

We first consider the case m = 0. Taking into account that
∫

0

a(r) dr < +∞ ,

∫ +∞

a(r) dr = +∞ and d(z) = 0,

we can apply corollary 3.22.

For 0 < r < rs, we have

β0(r) =

∫ rs

r

ds

b(s)
=

−1

rn−1
s (n− 1)

ln

(

2 rn−1

rn−1 + rn−1
s

)

,

and
∫ rs

0

β 2
0 (r)a(r)dr < +∞ .

Thus, in the massless case, A is not an e.s.a. operator for every n ≥ 2 thanks to the

corollary 3.22.

For m2 > 0 we cannot apply corollary 3.22 since d(z)/a(z) is not bounded near

0. Nevertheless, the ordinary differential equation (9), satisfied by the function α(z) of

lemma 3.13, becomes in this case

−
(

r (rn−1 + rn−1
s )α′(r)

)′

+m2 rn α(r) = 0 ,

and a straightforward computation shows that

α(z) = α(0)

(

1 +
m2 r2s

(n+ 1)2

(

r

rs

)n+1

− m2 r2s
2n(n+ 1)

(

r

rs

)2n

+ . . .

)

∗ The case n = 1 is 3-dimensional Minkowski spacetime already discussed in 6.1
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near 0. Furthermore, since by lemma 3.13 α(r) is positive and increasing in (0, rs), and

by definition α(rs) = 1, we get that 0 < α(0) < 1.

Therefore

β(r) = α(r)

∫ rs

r

ds

b(s)α(s)2
<

1

α(r)

∫ rs

r

ds

b(s)
<

1

α(0)
β0(r)

and
∫ rs

0

β 2(r)a(r)dr <
1

α(0)2

∫ rs

0

β 2
0 (r)a(r)dr < +∞ .

It follows from theorem 3.9 (ii) that A is not an e.s.a. operator for every n ≥ 2 and

m2 ≥ 0.

Remark 6.1 Note that the estimate

β(z) = α(z)

∫ 1

z

ds

b(s)α(s)2
<

1

α(z)
β0(z) ,

when α(0) 6= 0, also gives a necessary and sufficient condition for e.s.a. in terms of

β0(z) only.

For analytic b(z) and d(z), as in our example, α(0) 6= 0 if one of the roots of the

indicial polynomial of (9) is zero and the other non positive, which requires that

lim
z→0+

z2d(z)

b(z)
= 0 and lim

z→0+

z b′(z)

b(z)
≥ 1 .

6.3. (n + 2)-dimensional Schwarzschild-Tangherlini spacetime

Here we consider the (n+ 2)-dimensional spacetime with line element

ds2 = −
(

1− rn−1
s

rn−1

)

dt2 +

(

1− rn−1
s

rn−1

)−1

dr2 + r2 dΩ2
Sn ,

where rs is a positive constant, −∞ < t < +∞, 0 < r < rs or rs < r < +∞ and

n ≥ 2. This spacetime has a spacelike irremovable singularity at r = 0 where some

components of the Riemann tensor diverge and an event horizon at r = rs, the latter

may be removed by introducing suitable coordinates and extending the manifold to

obtain a maximal analytic extension [15]. As already mentioned, our wave formulation

only makes sense in the static region (rs < r < +∞), and we will use it to explore the

properties of the wave equation (31) in this region.

Thus, we consider the operator A given by (32) in Ω = (rs,∞) × Sn, and we see

from (33) that

a(r) =
r2n−1

rn−1 − rn−1
s

, b(r) = r(rn−1 − rn−1
s ) and d(r) = m2 rn .

Now, we get from (34) that

T (r → rs) =

∫ r

rs

(

a(s)

b(s)

)
1

2

ds =

∫ r

rs

sn−1

sn−1 − rn−1
s

ds = +∞ .

Therefore, it immediately follows from theorem 5.5 that A is an e.s.a. operator in

Ω = (rs,∞) × Sn for every n ≥ 2 and any m2 ≥ 0, and the Cauchy problem is well-

posed without requiring any boundary condition at the event horizon.
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6.4. (n + 2)-dimensional Reissner-Nordström spacetime

Here we consider the (n+ 2)-dimensional spacetime with line element

ds2 = −
(

1− rn−1
s

rn−1
+

q2n−2

4 r2n−2

)

dt2 +

(

1− rn−1
s

rn−1
+

q2n−2

4 r2n−2

)−1

dr2 + r2 dΩ2
Sn ,

where rs and q
2 are positive constants and n ≥ 2♯. If q2 > r2s the metric is non-singular

everywhere except for the timelike irremovable repulsive singularity at r = 0. If q2 ≤ r2s ,

the metric also has singularities at r+ and r−, where r
n−1
± = (rn−1

s ±
√

r2n−2
s − q2n−2)/2;

it is regular in the regions defined by ∞ > r > r+, r+ > r > r− and r− > r > 0 (if

q2 = r2s only the first and the third regions exist). As in the Schwarzschild case, these

singularities may be removed by introducing suitable coordinates and extending the

manifold to obtain a maximal analytic extension [16, 17]. The first and the third regions

are both static, whereas the second region (when it exists) is spatially homogeneous but

not static.

We shall study the properties of the wave equation in the static regions. For

convenience we shall analyze separately the three cases. Note that, in the three cases

this spacetime is asymptotically flat.

6.4.1. Case q2 > r2s This spacetime has only a naked timelike irremovable repulsive

singularity at r = 0. In this case, we consider the operator A given by (32) in

Ω = (0,∞)× Sn, and from (33) we have

a(r) =
rn

1− rn−1
s

rn−1
+

q2n−2

4 r2n−2

, b(r) = rn − rn−1
s r +

q2n−2

4 rn−2
and d(r) = m2rn .

Then
∫

0

dr

b(r)
+ a(r) + d(r) dr < +∞ .

Hence it follows from theorem 3.2 (ii) that A is not even a q.e.s.a. operator in this case,

for every n ≥ 2 and any m2 ≥ 0. Therefore, in contrast to the anti-Schwarzschild case,

in order to have a well-possed Cauchy problem a boundary condition at the singularity

must be given.

6.4.2. Case r2s = q2 (extreme case) This spacetime also has a removable singularity

at r∗ = 2
−1

n−1 rs. In this case, we consider the operator A given by (32) in two regions

Ω = (0, r∗)× Sn or Ω = (r∗,∞)× Sn.

We get from (33) that

a(r) =
r3n−2

(

rn−1 − rn−1
∗

)2 , b(r) =
(rn−1 − rn−1

∗ )
2

rn−2
and d(r) = m2 rn .

♯ The case n = 1 is again 3-dimensional Minkowski spacetime already discussed in 6.1
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We first consider the outer region (r∗ < r < +∞). In this case, we get from (34)

that

T (r → r∗) =

∫ r

r∗

(

a(s)

b(s)

)
1

2

ds =

∫ r

r∗

s2n−2

(

sn−1 − rn−1
∗

)2 ds = +∞ .

Therefore, it follows from theorem 5.5 that A is an e.s.a. operator in Ω = (r∗,∞)× Sn

for every n ≥ 2 and anym2 ≥ 0, and the Cauchy problem is well-posed without requiring

any boundary condition at the event horizon.

Regarding the inner region 0 < r < r∗, we get that
∫

0

(

1

b(z)
+ d(z) + a(z)

)

dz < +∞ .

Hence it follows from theorem 3.24 that A is not even a q.e.s.a. operator, for every

n ≥ 2 and any m2 ≥ 0.

However, we have
∫ r∗

a(r) dr =

∫ r∗ r3n−2

(

rn−1 − rn−1
∗

)2 dr = +∞ ,

so it follows from remark 3.23 that in order to have a well-posed Cauchy problem in

Ω = (0, r∗)× Sn a boundary condition at the singularity (r = 0) must be given but not

at the horizon (r = r∗).

6.4.3. Case r2s > q2 This spacetime has, besides the timelike irremovable repulsive

singularity at r = 0, two removable singularities at r+ and r−. In this case, we consider

the operator A given by (32) in two regions Ω = (0, r−)× Sn or Ω = (r+,∞)× Sn, by

abuse of notation we call A these two different operators.

From (33) we can write

a(r) =
r3n−2

(

rn−1 − rn−1
−

) (

rn−1 − rn−1
+

) , b(r) =

(

rn−1 − rn−1
−

) (

rn−1 − rn−1
+

)

rn−2

and d(r) = m2 rn .

We first consider the outer region (r+ < r < +∞). In this case, we get from (34)

that

T (r → r∗) =

∫ r

r∗

(

a(s)

b(s)

) 1

2

ds =

∫ r

r+

s2n−2

(

sn−1 − rn−1
−

) (

sn−1 − rn−1
+

) ds = +∞ .

Therefore, it follows from theorem 5.5 that A is an e.s.a. operator in Ω = (r+,∞)×Sn

for every n ≥ 2 and anym2 ≥ 0, and the Cauchy problem is well-posed without requiring

any boundary condition at the event horizon.

Regarding the inner region 0 < r < r−, we get
∫

0

(

1

b(z)
+ d(z) + a(z)

)

dz < +∞ .

Hence it follows from theorem 3.24 that A is not even a q.e.s.a. operator, for every

n ≥ 2 and any m2 ≥ 0.
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However, we have
∫ r∗

a(r) dr =

∫ r∗ r3n−2

(

rn−1
− − rn−1

) (

rn−1
+ − rn−1

) dr = +∞ ,

so it follows from remark 3.23 that in order to have a well-posed Cauchy problem in

Ω = (0, r−)×Sn a boundary condition at the singularity (r = 0) must be given but not

at the horizon (r = r−).
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