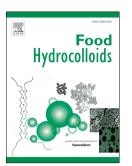
Accepted Manuscript

Gelatin based films capable of modifying its color against environmental pH changes

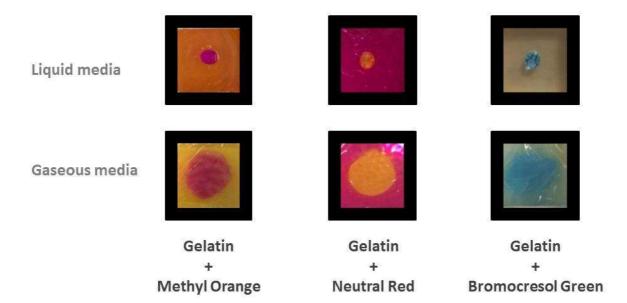
Yanina S. Musso, Pablo R. Salgado, Adriana N. Mauri

PII: S0268-005X(16)30262-4

DOI: 10.1016/j.foodhyd.2016.06.013


Reference: FOOHYD 3467

To appear in: Food Hydrocolloids


Received Date: 6 March 2016
Revised Date: 7 June 2016
Accepted Date: 8 June 2016

Please cite this article as: Musso, Y.S., Salgado, P.R., Mauri, A.N., Gelatin based films capable of modifying its color against environmental pH changes, *Food Hydrocolloids* (2016), doi: 10.1016/j.foodhyd.2016.06.013.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Gelatin films added with acid-base indicators modify their color when being in contact with media of different pH:

l	Gelatin based films capable of modifying its color against environmental pH
2	changes
3	
4	Yanina S. Musso, Pablo R. Salgado and Adriana N. Mauri*
5	
6	Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA),
7	CONICET CCT La Plata y Facultad de Ciencias Exactas, Universidad Nacional de La
8	Plata, 47 y 116 S/N°, (B1900JJ) La Plata, República Argentina.
9	Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av.
10	Rivadavia 1917, (C1033AAJ) Ciudad de Buenos Aires, República Argentina.
11	
12	*Author to whom correspondence should be addressed: Tel.: +54-221-4249287; fax:
13	+54-221-4254853. E-mail: anmauri@quimica.unlp.edu.ar
14	
15	

Abstract

The aim of this work was to develop biodegradable protein-based films capable of sense pH changes. These protein films were prepared by casting from aqueous solutions of bovine gelatin, glycerol and three acid-base indicators: methyl orange (MO), neutral red (NR) and bromocresol green (BCG), at pH 2, 6 and 11. All resulting protein films were homogeneous, thin and had different colors depending on pH and the indicator used. The response of these materials was evaluated simulating their contact with liquid and semisolid media, and with a container headspace at acid and alkaline pH. In all tests, developed protein films could modify their color after being in contact with media of different pH. The physicochemical properties of films were also affected differently by the presence of each acid-base indicator. While the addition of BCG did not significantly modify the properties of control gelatin films, except its color; the incorporation of MO and NR into film-forming solutions significantly improved mechanical properties and decreased the water solubility and moisture content of the resulting protein films without affecting their water vapor permeability.

32 Keywords: smart packaging, protein film, pH indicators, gelatin, food spoilage sensor.

1. Introduction

33

34	Innovations in food packaging technologies include the development of new active and
35	smart materials as well as the use of biopolymers as raw materials. These packaging
36	technologies attempts to ensure and extend the safety and quality of products during
37	shelf-life without affecting the environment, in response to new consumers' demands
38	(Brody, Bugusu, Han, Sand, & McHugh, 2008; Dainelli, Gontard, Spyropoulos,
39	Zondervan-van den Beuken, & Tobback, 2008; Restuccia et al., 2010).
40	Biopolymers-based systems can act as carriers of different types of additives. Thus,
41	numerous active packaging systems containing natural or synthetic antioxidant or
42	antimicrobials compounds, ethylene or oxygen captors, probiotics, flavors, etc., has
43	been developed (Campos, Gerschenson, & Flores, 2011; Mellinas et al., 2015; Salgado,
44	Ortiz, Musso, Di Giorgio, & Mauri, 2015; Silva-Weiss, Ihl, Sobral, Gómez-Guillén, &
45	Bifani, 2013). However, there are fewer studies on the development of smart systems
46	capable of monitoring the quality of the packaged food. They often attempt to sense
47	environmental changes or specific compounds generated during food packaging or
48	storage, in order to inform the freshness or microbiological quality of food to
49	manufacturers, retailers or consumers (Biji, Ravishankar, Mohan, & Srinivasa Gopal,
50	2015). Usually these smart devices provide qualitative information through visual
51	colorimetric changes and may be incorporated into the packaging materials or attached
52	to the inside or outside of the package (Ahvenainen, 2003; Biji, Ravishankar, Mohan, &
53	Srinivasa Gopal, 2015; Han & Scanlon, 2005; Kerry, 2008).

55	In this regard, the addition of synthetic acid-base indicators (bromocresol green, neutral
56	red, phenol red, bromocresol purple, cresol red, phenolphtalein, bromothymol blue,
57	xylenol blue, p-naphthol-benzein, hexamethoxy red, and their combinations) into
58	polymeric matrices such as polyvinyl alcohol, cellulose acetate, polyethylene and
59	polyethylene terephthalate has been studied by several authors to determine volatile
60	amines, CO ₂ , SO ₂ and other byproducts of bacterial growth (Booher & Gorski, 2011;
51	Eagland, 2004; Gorski & Booher, 2011; Pacquit et al., 2006, 2007). The above-
52	mentioned indicators have been used as model systems since they are not GRAS
63	compounds, but recently some natural compounds, such as grape, flowers and spinach
54	extracts or anthocyanins have been proved to be capable to react to external pH stimuli
65	(Maciel, Yoshida, & Franco, 2015; Veiga-Santos, Ditchfield, & Tadini, 2011; Zhang,
56	Lu, & Chen, 2014).
67	Even though many plant and animal proteins have been used as raw material for
58	producing active packaging (Campos, Gerschenson, & Flores, 2011; Mellinas et al.,
59	2015; Salgado, Ortiz, Musso, Di Giorgio, & Mauri, 2015; Silva-Weiss, Ihl, Sobral,
70	Gómez-Guillén, & Bifani, 2013; Mauri & Añon, 2012; Mauri, Salgado, Condés, &
71	Añón in press), as far as we know, there is no literature related to the formation of pH
72	colorimetric indicator films based on proteins.
73	Proteins are heteropolymers of α -amino acids which differ in their side groups. As they
74	can act as buffer systems due to their ionizable side groups, their film's responsiveness
75	to pH changes is uncertain. Moreover, the aminoacids' side groups could be highly
76	reactive against potential cross-linking or chemical grafting (Guilbert & Gontard, 2005).
77	This potential reactivity could inactivate additives added to the formulation to provide a
78	new functionality, or change protein network cross-linking, thus affecting the
79	physicochemical properties of films.

80 In this context, the aim of the present work was to develop protein films capable of 81 sensing pH changes through the addition of acid-base indicators to film formulations. 82 Gelatin was selected as protein source since their films are colorless (Gómez-Guillén et al., 2009) – unlike plant protein based films which generally present certain color, 83 84 inherent to non-protein compounds extracted together with proteins (Salgado, Molina 85 Ortiz, Petruccelli, & Mauri, 2010). This colorless would allow films to take the indicator color without interference. Three synthetic acid-base indicators, with different 86 87 chemical structure and significant color variations in a wide pH range, were selected as 88 system models to activate protein films.

89

2. Material and Methods

91

92

90

2.1 Materials

Bovine gelatin with 240 Bloom (Kraft Foods, Argentina) was used as protein source. Its 93 94 protein content, as measured by the Kjeldahl method (AOAC, 1995), was 87.8±0.6% 95 (w/w, dry weight; N×5.5). Glycerol (Anedra, Argentina) was used as film plasticizer. 96 Three acid-base indicators were employed: methyl orange (MO, Benzenesulfonic acid, 97 4-[[(4-dimethylamino)phenyl]azo]-, sodium salt, Mallinckrodt Baker, USA), neutral red 98 (NR, 2,8-Phenazinediamine,N8,N8,3-trimethyl-, monohydrochloride, Pablo Zubizarreta 99 Ward, Argentina) and bromocresol green (BCG, Phenol, 4,4'-(2,2-dioxido-3H-1,2-100 benzoxathiol-3-ylidene)bis[2,6-dibromo-3-methyl], monosodium salt, Anedra, 101 Argentina). Table 1 shows their chemical structures, pKa values, pH dependence color, and λ_{max} in the visible region (Sabnis, 2007). All the other reagents used in this study 102 103 were of analytical grade.

104

105

106 Films were prepared by casting. Initially two aqueous solutions were prepared by 107 magnetic stirring, one containing 10% (w/v) gelatin at 100°C and the other containing 108 2.5 % (w/v) glycerol plus 0.04% (w/v) methyl orange, neutral red or bromocresol green 109 (MO, NR and BCG respectively) at room temperature. Equal volumes of both solutions 110 were then mixed by stirring for additional 30 min at room temperature and the pH was 111 adjusted to 2, 6 and 11, with 2 mol/L HCl or 2 mol/L NaOH. Finally, 10 mL of each 112 film-forming solution were cast onto polystyrene Petri dishes (64 cm²) and dried in an 113 oven with air flow circulation (Yamato, DKN600, USA) at 60°C for 3 h. Resulting films 114 were preconditioned 48 h at 20°C and 58% relative humidity (in desiccators with 115 saturated solutions of NaBr) just before being peeled from the casting surface and 116 characterized. 117 Furthermore, control gelatin films without the incorporation of acid-base indicators into 118 film-forming solutions, at pH= 2, 6 and 11, were obtained as described previously.

121

122

123

124

125

126

127

119

120

2.3 Films characterization

G+BCG) were performed.

Thickness: Film thickness was measured by a digital coating thickness gauge (Check Line DCN-900, USA). Measurements were done at five positions along the rectangular strips for the tensile test, and at the center and at eight positions round the perimeter for the water vapor permeability (WVP) determinations. The mechanical properties and WVP were calculated using the average thickness for each film replicate.

Three independent batches for each type of protein film (G, G+MO, G+NR, and

- 128 Moisture content (MC): Small specimens of films were collected after conditioning, cut
- and weighed before and after oven drying at 105°C for 24 h, ASTM D644-99, (ASTM
- 130 2004). MC values were determined in triplicate for each film, and calculated as the
- percentage of weight loss relative to the original weight.
- 132 Color: Film color was determined with a Konica Minolta Chroma Meter CR-400
- 133 (Konica Minolta Chroma Co., Osaka, Japan) set to C illuminant/2° observer. A CIE-Lab
- color scale was used to measure the degree of lightness (L^*) , redness $(+a^*)$ or greenness
- 135 (- a^*), and yellowness (+ b^*) or blueness (- b^*) of the films. The instrument was
- calibrated using a white standard plate with color coordinates of $L^*_{standard} = 97.55$,
- $a*_{standard} = -0.03$ and $b*_{standard} = 1.73$ provided by Minolta. Films color was measured on
- the surface of this standard plate and total color difference (ΔE^*) was calculated as
- 139 follow:

140
$$\Delta E^* = [(L^*_{film} - L^*_{standard})^2 + (a^*_{film} - a^*_{standard})^2 + (b^*_{film} - b^*_{standard})^2]^{0.5}$$
 (1)

- 141 Values were expressed as the means of nine measurements on different areas of each
- 142 film.
- 143 Visible absorption spectra: Each film specimen was cut into a rectangular piece and
- placed directly in a spectrophotometer test cell. A spectrum (from 400 to 800 nm) of
- each film was obtained in an UV-Vis spectrophotometer (Beckman DU650, Germany).
- 146 Measurements were performed using air as reference. All determinations were
- performed in triplicate.
- 148 Water vapor permeability (WVP): Water vapor permeability tests were conducted
- according to ASTM method E96-00 (ASTM, 2004) with some modifications. Each film
- sample was sealed over a circular opening of 0.00185 m² in a permeation cell that was
- stored at 20°C in desiccators. To maintain a 75% relative humidity (RH) gradient across

152 the film, anhydrous silica (0% RH_c) was placed inside the cell and a saturated NaCl 153 solution (75% RH_d) was used in the desiccators. The RH inside the cell was always 154 lower than outside, and water vapor transport was determined from the weight gain of the permeation cell. When steady-state conditions were reached (about 1 h), eight 155 156 weight measurements were made over 5 h. Changes in the weight of the cell were recorded and plotted as a function of time. The slope of each curve ($\Delta m/\Delta t$, g H₂O s⁻¹) 157 158 was obtained by linear regression and the water vapor transmission rate (WVTR) was calculated from the slope divided by the permeation cell area (A, in m²). WVP (g H₂O 159 Pa⁻¹ s⁻¹ m⁻¹) was calculated as: 160

161
$$WVP = [WVTR / (P_V^{H2O}. (RH_d - RH_c))] . d$$
 (2)

- Where: WVTR = water vapor transmission rate (g H_2O s⁻¹ m⁻²), P_V^{H2O} = saturation water vapor pressure at test temperature (2339.27 Pa at 20 °C), RH_d - RH_c = relative humidity gradient across the film -expressed as a fraction- (0.75), A = permeation area (m²), and d = film thickness (m). Each WVP value represents the mean value of three samples taken from different films.
- Water solubility (WS): WS was determined as was described by Gontard, Duchez, Cuq,

 & Guilbert (1994) with slight modifications. Three pieces of films were weighed

 (diameter = 2 cm; ~0.03-0.05 g) and immersed in 50 mL of distilled water. The system

 was sealed, shaken at 100 rpm for 24 h at 20°C (Ferca, TT400 model, Argentina), and

 then filtered through Whatman n°1 filter paper (previously dried and weighed) to

 recover the remaining undissolved film, which was desiccated at 105°C for 24 h. WS

 was calculated as follows:

174
$$WS = [(P_0 \cdot (100 - MC)) - P_f] \cdot 100 / [P_0 \cdot (100 - MC)]$$
 (3)

Where P_0 = initial film weight (g), P_f = final dry film weight (g), MC = moisture content (%). All tests were carried out in triplicate.

177	Glass transition temperature (Tg): Tg was determined by differential scanning
178	calorimetry, using a DSC TA 2010 calorimeter Q100 V9.8 Build 296 (TA Instrument,
179	New Castle, Del., USA) controlled by a TA 5000 module with a quench cooling
180	accessory. Temperature and heat flow calibration of the equipment were carried out
181	according to ASTM methods, using lauric and stearic acids and indium as standards.
182	Hermetically sealed aluminum pans containing 5 mg of films were prepared, and the
183	capsules were scanned at 10°C/min over the range -80 to 150°C. Tg, defined as the
184	inflexion point of the base line, caused by the discontinuity of the specific heat of the
185	sample (ASTM D3418-03 (ASTM, 2004)), was calculated using the Universal Analysis
186	V4.2E software (TA Instruments, New Castle, Del., USA). All the assays were
187	performed at least in duplicate.
188	Mechanical properties: Tensile strength (TS), elastic modulus (EM) and elongation at
189	break (EAB) of films were determined following the procedures outlined in the ASTM
190	method D882-02 (ASTM, 2004), using a texture analyzer TA.XT2i (Stable Micro
191	Systems, Surrey, England) equipped with a tension grip system A/TG. Films probes of
192	90 mm length and 6 mm width were used. The initial grip separation was set at 50 mm
193	and the crosshead speed at 0.4 mm s ⁻¹ . Measurements were made at 20°C in a
194	temperature-controlled room.
195	The curves of force (N) as a function of distance (mm) were recorded by the Texture
196	Expert V.1.15 software (Stable Micro Systems, Surrey, England). Tensile properties
197	were calculated from the plot of stress (tensile force/initial cross-sectional area) versus
198	strain (extension as a percentile of the original length). TS and EAB were determined
199	directly from the stresses-train curves, and EM was determined as the slope of the initial
200	linear portion of this curve. Reported values are the average of at least twelve
201	replications taken from different films for each formulation.

202	2.4 Films' response to pH changes
203	Each film was faced with liquid, semisolid and gaseous media of different pH: i) adding
204	a drop of 2 mol/L HCl or 2 mol/L NaOH directly on films; ii) placing the films in
205	contact with gels prepared from gelatin solutions at 7.5% w/v at pH= 2.5, and 11; and
206	iii) exposing the films to gaseous atmospheres generated by acetic acid glacial (C ₂ H ₄ O ₂ ,
207	pK _a ~4.8, Anedra, Argentina) and ammonia (NH ₃ , pK _a ~9.3, Anedra, Argentina).
208	Photographs of films before and after (30 minutes) contacting it with those media of
209	different pH were taken with a digital camera (Kodak M853, USA) and color variations
210	were measured using a colorimeter (Konica Minolta Chroma Meter CR-400), as
211	described above, at the same time films were photographed.
212	
213	2.5 Statistical analysis
214	Results were analyzed by two-way ANOVA (two factors: pH and presence of acid-base
215	indicator, in three and four levels, respectively: pH=2, 6 and 11; control films (G) and
216	those added with MO, NR and BCG (G+MO, G+NR and G+BCG, respectively). Means
217	were tested with the Tukey's HSD (honestly significant difference) test for paired
218	comparison, with a significance level α =0.05, using the Statgraphics Plus version 5.1
219	software (Statgraphics, USA).
220	
221	3. Results and Discussion
222	3.1 Appearance and optical properties of films
223	All gelatin films prepared with or without methyl orange, neutral red and bromocresol
224	green acid-base indicators at pH 2, 6 and 11 were homogeneous, thin, flexible, and
225	transparent. Figure 1 shows their visual appearance. Control gelatin films (G) were
226	clear and colorless for all pHs tested. The addition of methyl orange (MO), neutral red

227

231

241

(NR) and bromocresol green (BCG) to film-forming solutions allowed to obtain transparent films with different and well defined colors, dependent on the nature of each 228 229 acid-base indicator and the solutions pH (2, 6, and 11). Even the color of films matches to the inherent color of the indicators at each pH, reported in **Table 1**. Color parameters 230 (L^*, a^*, b^*) and ΔE^* and the absorption spectra in the visible range of protein films are 232 shown in Table 2 and Figure 2 respectively. Regardless of the pH of the film-forming 233 solutions, control gelatin films (\mathbf{G}) showed a high brightness (high L^*), absence of color (low values of a^* , b^* , and ΔE^*) (p>0.05), and no signal in their absorption spectra in 234 235 the visible range (data not shown). But these protein films acquired a specific coloration 236 with the addition of the acid-base indicators to the formulations, characterized by 237 different values of a^* and b^* , and a significant lower brightness than G films (p<0.05). 238 The absorption spectra of these colored films showed peaks at different wavelengths in 239 the visible range, which were related to their colorations. Gelatin films incorporated 240 with MO (G+MO) were orange at pH 2, yellow at pH 6, and purple at pH 11, with maximum absorptions (λ_{max}) at 510 nm, 430 nm, and 570 nm in their respective spectra (Figure 2.A). It is worth noting that films with MO at alkaline pH showed a purple 242 color not reported for this indicator in the cited literature (Sabnis, 2007). On the other 243 244 hand, gelatin films incorporated with NR (G+NR) were yellow at pH 11, and purple at pH \leq 6, with λ_{max} at 460 nm and 520 nm in their respective visible spectra (Figure 2B). 245 246 But it is possible to note, that those films prepared at pH 2 showed a higher absorption peak and a higher intensity of the hue (with higher values of a^* and lower values of b^*) 247 248 than those prepared at pH 6. Finally, gelatin films incorporated with BCG (G+BCG) 249 were barely yellow at pH 2 and blue at pH 6 and 11, with maximum absorptions at 440 250 nm and 620 nm respectively (Figure 2C). For this indicator, films at pH 11 showed a

251	more intense coloration than those at pH 6, evidenced by an increase in its absorption
252	peak, a more negative b^* value and a higher a^* value.
253	Coloration of films could be considered as an additional attribute for some commercial
254	applications. These materials can act as barriers to visible light, protecting food
255	products from oxidation (Cian, Salgado, Drago, González, & Mauri, 2014).
256	
257	3.2 Films' response to pH changes
258	Figure 3 shows the response of all developed films when placed in contact with acid
259	and alkali liquids, semisolids and gases. This assay allows verifying the ability of these
260	films to sense pH changes, simulating that these changes could occur in a liquid or
261	semisolid food, or in the headspace of a food container as the result of the reaction
262	products of food spoilage. Thus, the material could inform indirectly about the quality
263	and safety of the product during its storage and distribution chain until be consumed.
264	All color changes seen in Figure 3, which were reversible, were confirmed by
265	colorimetric measurements. Hunter color parameters L*, a* and b* are shown as
266	supplementary material.
267	Gelatin films incorporated with MO, NR, and BCG could change their color after being
268	in contact with alkali or acid solutions of NaOH or HCl respectively, gaseous
269	atmospheres of acetic acid or ammonia, and gelatin gels at pH 2.5 and 11, except for
270	those in which the pH of the medium and film were similar. These film responses were
271	immediately and markedly with liquid and gases of different pH, but less evident and
272	slower with semisolid media. Slower turning kinetics of acid-base indicators against
273	semisolid media could probably be attributed to limited diffusive processes.
274	Figure 3.A shows changes in color of gelatin films incorporated with MO (G+MO)
275	after being in contact with different pH media. For example, films obtained at pH 6

276	resulted initially yellow, but became orange or purple by placing a drop of HCl or
277	NaOH solutions on them respectively. The same behavior was observed when the films
278	were exposed to acidic or alkaline gaseous atmospheres. It is noteworthy that acidic
279	gaseous atmosphere produced by acetic acid did not alter the color of the yellow film at
280	pH 6 and turned purple to yellow film at pH 11, not reaching the characteristic orange
281	color of MO in acidic medium. This could be attributed to the pKa of acetic acid (pKa ~
282	4.8) that is higher than the pH at which MO turns to its acid form (pKa=3.7).
283	Films at pH 6 and 11 in contact with semisolid medium at pH 2.5 veered to the same
284	yellow acquired by acidic films, instead of the expected orange coloration. This could
285	be attributed to the diffusion of the indicator to the gel during the assay, which also
286	provided color to the media. Meanwhile against semisolid media at pH 11, films at pH 6
287	reached the alkaline purple coloration, but those of pH 2 turned yellow. It seemed that
288	these acid films failed to achieve the pH of the gel or that their structural characteristics
289	favored the diffusion of the indicator, according to the observations previously
290	mentioned.
291	Figure 3.B shows how gelatin films with NR in their formulation (G+NR) could sense
292	the pH of the surrounding medium. They modified their color by placing a drop of acid
293	or alkali on them or when subjected to acidic or alkaline gaseous atmospheres. As noted
294	above, the changes in films color were less evident when they were contacted with
295	semisolids, at different pHs.
296	Gelatin films incorporated with BCG (G+BCG) showed similar behavior than G+NR
297	films (Figure 3.C). They changed their color clearly and immediately after being in
298	contact with acid and alkaline liquids and gaseous media. These color changes were
299	very noticeable since the films turned from barely yellow (at acidic pH) to blue (at

300	neutral or alkaline pH) or vice versa, being these changes less evident when films were
301	contacted with semisolid media.
302	Microbial growth often influence the pH of the medium due to metabolites produced by
303	microorganisms, for example lactic acid, hydrogen sulfide, volatile amines, etc. (Biji,
304	Ravishankar, Mohan, & Srinivasa Gopal, 2015; Han & Scanlon, 2005; Kerry & Butler,
305	2008). If packaging material could sense this change through a change in its color, it
306	would inform producers, sellers and consumers about the quality and safety of the
307	packaged food (Biji, Ravishankar, Mohan, & Srinivasa Gopal, 2015; Kerry & Butler,
308	2008)
309	
310	3.3 Effect of pH and acid-base indicators addition on the physicochemical properties of
311	films
312	Regardless of the presence of acid-base indicators in formulations, pH of film-forming
313	solutions affects the ionization state and the conformation of proteins, thus conditioning
314	the interactions that can occur between polypeptide chains and among proteins and
315	other components during film formation. Protein-protein interactions involved in film
316	matrix stabilization determine the cross-linking degree and the hydrophylic-
317	hydrophobic character of the films, which correlate with their physicochemical,
318	mechanical, and barrier properties (Mauri & Añón, 2006, 2008). Furthermore, the
319	incorporation of additives into materials formulation attempting to confer specific
320	functionalities on films -such as antioxidants, antimicrobials, vitamins,
321	microorganisms, probiotics, flavors, and pigments- could also affect protein cross-
322	linking and therefore modify the physicochemical properties of the resulting materials
323	(Salgado, Ortiz, Musso, Di Giorgio, & Mauri, 2015; Mauri , Salgado, Condés & Añón
324	in press).

325	Thickness, moisture content (MC), water solubility (WS), water vapor permeability
326	(WVP) and glass transition temperature (Tg) of developed films are showed in Table 3.
327	No modification in films thickness (~ 50 $\mu m)$ was observed with the addition of acid-
328	base indicators used (p>0.05) neither with the pH of the film-forming dispersion
329	(p>0.05). Moisture content of control gelatin films (G) -without acid-base indicator
330	addition— were $\sim\!20\%$. The addition of MO and NR into formulations significantly
331	decreased the moisture content of the resulting films (G+MO and G+NR) (p<0.05) at
332	all studied pH, while the incorporation of BCG did not modify their moisture content
333	respect to G films (p>0.05). Variation on pH only modified the moisture content of G
334	and G+BCG films (p<0.05) slightly. In both cases, films obtained at pH 6 shows the
335	highest MC values (p<0.05).
336	Control gelatin films (G) showed interesting water solubilities –between 37 and 49 $\%$
337	depending on the pH of film-forming solutions - which resulted lower than others
338	values reported in the literature for this protein films (Nur Hanani, Roos, & Kerry,
339	2012). The addition of the acid-base indicators into the formulations caused different
340	effects on the water solubility of the resulting films. MO provoked a significantly
341	decrease in water solubility of the resulting films (p<0.05), being this effect higher at
342	pH 11 (ca. 60%) than at pH 2 and 6 (ca. 40%). NR did not affect the water solubility of
343	gelatin films (p>0.05) and BCG caused differential behaviors on water solubility
344	depending on the pH of the film-forming solutions: increased it $\sim\!25\%$ at pH=11
345	(p>0.05), decreased it \sim 40% at pH=6 (p>0.05), and did not modify it at pH=2 (p<0.05).
346	Control gelatin films and those colored by MO and NR prepared at acidic pH were
347	more soluble than those obtained at neutral or alkaline pH (p<0.05). But those colored
348	by BCG showed similar water solubilities at pH 2 and 11, higher than at pH 6 (p<0.05).

149	These results suggest a different protein cross-linking degree dependent on the presence
350	of the acid-base indicators and pH of film-forming solutions.
351	Unlike water solubility and moisture content results, no significant differences in water
352	vapor permeability (WVP) of films were observed (\sim 8.2 10^{-11} g H_2O s ⁻¹ m ⁻¹ Pa^{-1}) with
353	the addition of acid-base indicators (p>0.05) or changing the pH of film-forming
354	solutions (p>0.05).
355	Mechanical properties of developed gelatin films are presented in Figure 4. Control
356	gelatin films (G) showed moderate tensile strength (TS), Young's modulus (EM), and
357	elongation at break (EAB). These properties were affected by both the presence and
358	type of acid-base indicator (p<0.05) as by the initial pH of protein dispersion (p<0.05).
359	Incorporation of MO or NR into formulations improved the mechanical properties of
360	these materials. This colored films showed higher tensile strength and Young's modulus
861	but lower elongation at break than control films (G) (p<0.05). These improvements
362	were most notable at neutral and alkaline pH than at acidic pH. G+NR films showed the
363	best mechanical properties of films developed. In particular, addition of NR to gelatin
364	film-forming solutions at pH=11 markedly increased tensile strength (ca. 400%) and
365	Young's modulus (ca. 2000%) of resulting films (p<0.05), in detriment of its elongation
366	at break (ca. 40% decrease) (p<0.05). Moreover, G+BCG films had similar mechanical
367	properties than respective control films (p>0.05). And it is worth noting that gelatin-
368	based films added or not with different acid-base indicators obtained at pH 6 and 11
369	showed higher tensile strength than those prepared from acidic film-forming solutions
370	(p<0.05).
371	These results suggest that studied acid-base indicators, with different chemical
372	structures (shown in Table 1), could interact differently with gelatin in the protein
373	network. Addition of MO and NR to formulations seems to favor protein cross-linking,

374 leading to more resistant and less water soluble films, with lower moisture content and 375 without affecting their water vapor permeability. Whereas BCG addition seems not 376 interfere in protein matrixes obtained at pH 6 and 11, but favor certain plasticizing 377 effect in acidic films. 378 Glass transition temperatures (Tg) of studied films are presented in Table 3. All films 379 showed separation just Tg, suggesting phase one that 380 observed (Tapia-Blácido, Mauri, Menegalli, Sobral, and Añón, 2007). Neither the 381 presence and type of acid-base indicators nor pH of the film-forming solutions modified 382 Tg of the materials (p>0.05), except for G+MO and G+BCG films at pH 6 that showed 383 slightly higher Tg than control films (p<0.05). These results did not represent the 384 greater cross-linking or the possible plasticizing effect on protein matrix suggested 385 above when analyzing moisture content, water solubility and mechanical properties of 386 films. The different moisture content of films also is affecting the Tg value. These 387 results suggest that MO and NR molecules could be acting as physical and/or chemical 388 entanglements not modifying the mobility of polypeptide chains.

389

390

391

392

393

394

395

396

397

398

4. Conclusions

Gelatin-based films capable of sensing changes in the surrounding pH medium were developed by addition of methyl orange, neutral red and bromocresol green –known acid-base indicators– in their formulation. All films modified its color reversibly when they were in contact with liquid, gaseous and semisolid media of different pHs. The addition of these compounds also modifies the physicochemical properties of the resulting materials. In particular, methyl orange and neutral red could be acting as physical and/or chemical entanglements, increasing the tensile strength and reducing the water solubility of the resulting films, without affecting their water vapor permeability

399	and their capacity to change their color against the pH of the surrounding medium.
400	These smart materials, used as food packaging or coatings, could inform about the
401	safety and quality of any product whose deterioration mode caused a change in the pH
402	of the media, such as microbial growth.
403	Evidence that the protein matrix did not interfere with the discoloration of the acid-base
404	indicators when being in contact with a medium of different pH, pushed to find food
405	grade dyes that could replace the synthetic ones analyzed in this work and to probe this
406	materials as packaging of real systems.
407	
408	Acknowledgements
409	The authors are thankful to the National Agency of Scientific and Technological
410	Support (PICT-2010-1837, PICT-2013-2124) and the Universidad Nacional de La Plata
411	(11/X618) for their financial support.
412	
413	References
414	Ahvenainen, R. (2003). Novel food packaging techniques. Elsevier Ltd.
415	AOAC.(1995). Official methods of analysis of AOAC international. (16th ed.),
416	Horowitz, Washigton DC, USA.
.10	Trote witz, washington be, est in
417	ASTM. (2004). Annual book of ASTM standards. ASTM International: Philadelphia,
418	
	PA, USA.
419	PA, USA. Biji, K. B., Ravishankar, C. N., Mohan, C. O., & Srinivasa Gopal, T. K. (2015). Smart
419 420	
	Biji, K. B., Ravishankar, C. N., Mohan, C. O., & Srinivasa Gopal, T. K. (2015). Smart

- 422 Booher J, GorskiJ. R. (2011). Polymeric indicators for detecting the presence of
- 423 metabolic byproducts from microorganisms. Patent US20110042344.
- 424 Brody, A. L., Bugusu, B., Han, J. H., Sand, C. K., & McHugh, T. H. (2008). Innovative
- food packaging solutions. *Journal of Food Science*, 73, R107-R116.
- 426 Campos, C., Gerschenson, L., & Flores, S. (2011). Development of edible films and
- coatings with antimicrobial activity. Food and Bioprocess Technology, 4, 849–875.
- 428 Cian, R. E., Salgado, P. R., Drago, S. R., González, R. J., & Mauri, A. N. (2014).
- 429 Development of naturally activated edible films with antioxidant properties prepared
- from red seaweed *Porphyra columbina* biopolymers. *Food Chemistry*, 146, 6–14.
- Dainelli, D., Gontard, N., Spyropoulos, D., Zondervan-van den Beuken, E., & Tobback,
- 432 P. (2008). Active and intelligent food packaging: legal aspects and safety concerns.
- 433 Trends in Food Science and Technology, 19, S103–S112.
- Eagland D. (2004). Polymeric materials incorporating a pH indicator dye. Patent
- 435 US20070276207.
- 436 Gómez-Guillén, M. C., Pérez-Mateos, M., Gómez-Estaca, J., López-Caballero, E.,
- Giménez, B., & Montero, P. (2009). Fish gelatin: a renewable material for developing
- active biodegradable films. *Trends in Food Science & Technology*, 20, 3–16.
- Gontard, N., Duchez, C., Cuq, J., & Guilbert, S. (1994). Edible composite films of
- 440 wheat gluten and lipids water-vapor permeability and other physical-properties.
- 441 *International Journal of Food Science and Technology*, 29, 39–50.

- 442 GorskiJ. R., BooherJ. (2011). Processes for preparing a polymeric indicator film. Patent
- 443 US20110274593.
- 444 Guilbert, S., & Gontard, N. (2005). Agro-polymers for edible and biodegradable films.
- Review of agricultural polymeric materials, physical and mechanical characteristics.
- 446 Innovations in Food Packaging, 263–276.
- 447 Han, J., & Scanlon, M. (2005). Mass transfer of gas and solute through packaging
- 448 materials. In Han, J. (Ed.). Innovations in food packaging (pp. 12-23). Elsevier
- 449 Academic Press.
- 450 Kato, E. T., Yoshida, C. M., Reis, A. B., Melo, I. S., & Franco, T. T. (2011). Fast
- detection of hydrogen sulfide using a biodegradable colorimetric indicator system.
- 452 Polymer International, 60, 951–956.
- 453 Kerry J. & Butler, P. (2008). Smart packaging technologies for fast moving consumer
- 454 goods. J. Wiley.
- 455 Maciel, V. B. V., Yoshida, C. M. P., & Franco, T. T. (2015). Chitosan/pectin
- polyelectrolyte complex as a pH indicator. *Carbohydrate Polymers*, 132, 537-545.
- 457 Mauri A. N. & Añon M. C. (2012). Proteínas como envases alimentarios. In Olivas
- 458 Orozco G.I., González-Aguilar G.A., Martín-Belloso O. and Soliva-Fortuny R.
- Películas y recubrimientos comestibles: propiedades y aplicaciones en alimentos. (pp.
- 460 95-124). Editorial Clave.
- 461 Mauri A. N., Salgado P.R., Condés M.C & Añón M.C. (in press). Films and coatings
- 462 from vegetable proteins. In Montero M.P., Gómez-Guillén M.C., López-Caballero M.E.

- 463 &. Barbosa-Cánovas G.V. (Eds.). Edible films and coatings: Fundamentals and
- applications. CRC Press, Taylor & Francis Group.
- 465 Mauri, A. N., & Añón, M. C. (2006). Effect of solution pH on solubility and some
- 466 structural properties of soybean protein isolate films. Journal of Science of Food and
- 467 Agriculture, 86, 1064–1072.
- 468 Mauri, A. N., & Añón, M. C. (2008). Mechanical and physical properties of soy protein
- 469 films with pH-modified microstructures. Food Science and Technology International,
- 470 14, 119–125.
- 471 Mellinas, C., Valdés, A., Ramos, M., Burgos, N., Garrigós, M. del C., & Jiménez, A.
- 472 (2015). Active edible films: Current state and future trends. *Journal of Applied Polymer*
- 473 Science, 132, 42631.
- Nur Hanani, Z. A., Roos, Y. H., & Kerry, J. P. (2012). Use of beef, pork and fish gelatin
- sources in the manufacture of films and assessment of their composition and mechanical
- properties. *Food Hydrocolloids*, 29, 144–151.
- 477 Pacquit, A., Lau, K. T., McLaughlin, H., Frisby, J., Quilty, B., & Diamond, D. (2006).
- Development of a volatile amine sensor for the monitoring of fish spoilage. *Talanta*, 69,
- 479 515–20.
- 480 Pacquit, A., Frisby, J., Diamond, D., Lau, K., Farrell, A., Quilty, B., & Diamond, D.
- 481 (2007). Development of a smart packaging for the monitoring of fish spoilage. Food
- 482 *Chemistry*, 102, 466–470.

- Restuccia, D., Spizzirri, U. G., Parisi, O. I., Cirillo, G., Curcio, M., Iemma, F., & Picci,
- 484 N. (2010). New EU regulation aspects and global market of active and intelligent
- packaging for food industry applications. *Food Control*, 21, 1425–1435.
- 486 Sabnis R.W. (2007). Handbook of acid-base indicators. CRC Press.
- 487 Salgado, P. R., Molina Ortiz, S. E., Petruccelli, S., & Mauri, A. N. (2010).
- 488 Biodegradable sunflower protein films naturally activated with antioxidant compounds.
- 489 *Food Hydrocolloids*, 24, 525–533.
- 490 Salgado, P. R., Ortiz, C. M., Musso, Y. S., Di Giorgio, L., & Mauri, A. N. (2015).
- 491 Edible films and coatings containing bioactives. Current Opinion in Food Science, 5,
- 492 86–92.
- 493 Silva-Weiss, A., Ihl, M., Sobral, P. J. A., Gómez-Guillén, M. C., & Bifani, V. (2013).
- Natural additives in bioactive edible films and coatings: functionality and applications
- in foods. *Food Engineering Reviews*, 5, 200–216.
- 496 Tapia-Blácido D., Mauri A.N., Menegalli F.C., Sobral P.J.A., & Añón M.C. (2007).
- 497 Contribution of the starch, protein, and lipid fractions to the physical, thermal, and
- 498 structural properties of amaranth (Amaranthus caudatus) flour films. Journal of Food
- 499 Science, 72, 293-300.
- Veiga-Santos P., Ditchfield C., Tadini C.C. (2011). Development and evaluation of a
- 501 novel pH indicator biodegradable film based on cassava starch. Journal of Applied
- 502 Polymer Science, 120, 1069-1079.
- Zhang, X., Lu, S., & Chen, X. (2014). A visual pH sensing film using natural dyes from
- *Bauhinia Blakeana Dunn. Sensors and Actuators B: Chemical*, 198, 268–273.

505	
506	Figure legends
507	
508	Figure 1. Appearance of control gelatin-based films (G) and those added with methyl
509	orange (G+MO), neutral red (G+NR), and bromocresol green (G+BCG) at pH 2, 6 and
510	11.
511	
512	Figure 2. Visible absorption spectra (400-800 nm) of gelatin-based films added with
513	methyl orange (A), neutral red (B) and bromocresol green (C) at pH 2, 6, and 11
514	respectively.
515	
516	Figure 3. Response of gelatin-based films added with methyl orange (G+MO, A),
517	neutral red (G+NR, B), and bromocresol green (G+BCG, C) at pH 2, 6 and 11 after
518	being in contact with liquid, gaseous and semisolid media of different pHs.
519	
520	Figure 4. Mechanical properties of gelatin-based films obtained at different pH (2, 6
521	and 11) added or not with different acid-base indicators (MO, NR, and BCG). A)
522	Tensile strength (TS). B) Young's modulus (EM). C) Elongation at break (EAB).
523	
524	Table captions
525	
526	Table 1. Chemical structure, pKa, pH dependence color, and λ_{max} in the visible region
527	of methyl orange (MO), neutral red (NR) and bromocresol green (BCG), used in this
528	manuscript as pH indicators.

529	
530	Table 2. CIE-Lab color parameters (L^* , a^* and b^*) and total color difference (ΔE^*) of
531	gelatin-based films added or not with different acid-base indicators (MO, NR, BCG)
532	obtained at different pH (2, 6 and 11).
533	
534	Table 3. Thickness, moisture content (MC), water solubility (WS), water vapor
535	permeability (WVP) and glass transition temperature (Tg) of gelatin-based films (G)
536	added or not with methyl orange (MO), neutral red (NR), and bromocresol green (BCG)
537	at pH 2, 6 and 11.
538	
539	Supplementary Table. CIE-Lab color parameters (L*, a* and b*) of gelatin (G) films
540	added with methyl orange (MO), neutral red (NR) and bromocresol green (BCG) at pH
541	2, 6, and 11 and their corresponding responses against acid or alkali liquid, gaseous and
542	semisolid media.
543	

24

Table 1. Chemical structure, pKa, pH dependence color, and λ_{max} in the visible region of methyl orange (MO), neutral red (NR) and bromocresol green (BCG), used in this manuscript as pH indicators (*).

Acid-base indicator	Chemical structure	λ_{max}	pKa	Color change
Methyl	Ø 0	507-522 nm	_	Red at pH<3.0
Orange	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-		3.7	
(MO)		464 nm		Yellow at pH>4.4
Neutral	CH₃	529-544 nm		Red at pH<6.8
Red	H_3C		7.4	
(NR)	N CH ₃	454 nm		Yellow at pH>8.0
Bromocresol	HO Br OH	423-444 nm		Yellow at pH<3.8
Green	Br		4.6	
(BCG)		617 nm		Blue at pH>5.4

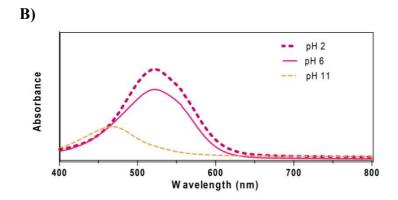
^(*) Data from Sabnis [29].

Table 2. CIE-Lab color parameters (L^* , a^* and b^*) and total color difference (ΔE^*) of gelatin-based films added or not with different acid-base indicators (MO, NR, BCG) obtained at different pH (2, 6 and 11).

Film	pН	L*	a*	<i>b</i> *	ΔE*
	2	$94.41 \pm 0.21^{a/x}$	$-0.79 \pm 0.06^{a/x}$	$2.10 \pm 0.17^{a/x}$	$2.06 \pm 0.12^{a/x}$
G	6	$93.35 \pm 0.55^{a/x}$	$-0.94 \pm 0.07^{a/x}$	$2.70 \pm 0.61^{a/x}$	$1.85 \pm 0.52^{a/x}$
-	11	$93.87 \pm 0.58^{a/x}$	$-1.07 \pm 0.07^{a/x}$	$2.05 \pm 0.11^{a/x}$	$2.64 \pm 0.22^{b/x}$
	2	$80.30 \pm 0.50^{a/y}$	$26.50 \pm 0.04^{a/y}$	$61.70 \pm 1.62^{a/y}$	$11.8 \pm 0.09^{a/y}$
G+MO	6	$79.67 \pm 0.28^{a/y}$	$17.11 \pm 0.26^{b/y}$	$65.27 \pm 0.08^{b/y}$	$11.30 \pm 0.05^{b/y}$
-	11	$47.02 \pm 0.29^{b/y}$	$58.34 \pm 0.37^{\text{c/y}}$	$-4.17 \pm 0.18^{c/y}$	$2.41 \pm 0.29^{c/x}$
	2	$50.63 \pm 0.72^{a/z}$	$58.01 \pm 0.52^{a/z}$	$4.64 \pm 0.37^{a/x}$	$5.48 \pm 0.17^{a/z}$
G+NR	6	$62.69 \pm 0.64^{b/z}$	$23.12 \pm 0.92^{b/z}$	$25.85 \pm 0.49^{b/z}$	$5.18 \pm 0.17^{b/z}$
-	11	$64.93 \pm 0.98^{c/z}$	$16.81 \pm 0.85^{c/z}$	$20.32 \pm 0.74^{c/z}$	$3.25 \pm 0.10^{\text{c/y}}$
	2	$91.53 \pm 0.46^{a/w}$	$-5.73 \pm 0.02^{a/w}$	$31.57 \pm 0.84^{a/z}$	$6.18 \pm 0.13^{a/w}$
G+BCG	6	$57.41 \pm 0.23^{\text{b/w}}$	$-10.66 \pm 1.13^{\text{b/w}}$	$-32.33 \pm 1.89^{\text{b/w}}$	$12.94 \pm 0.50^{b/z}$
-	11	$43.33 \pm 1.24^{\text{c/w}}$	$-5.21 \pm 0.42^{\text{c/w}}$	$-47.01 \pm 0.48^{\text{c/w}}$	$14.63 \pm 0.09^{c/z}$

Reported values for each gelatin film are means \pm standard deviation (n=9). Different letters (a, b, c, d) in the same column indicate significant differences (p<0.05) among the different acid-base indicators for the same pH of film-forming dispersion, according to Tukey's test. Different letters (w, x, y, z) in the same column indicate significant differences (p<0.05) among the different pH of film-forming dispersion for the same film formulation, according to Tukey's test.

Table 3. Thickness, moisture content (MC), water solubility (WS), water vapor permeability (WVP) and glass transition temperature (Tg) of gelatin-based films (G) added or not with methyl orange (MO), neutral red (NR), and bromocresol green (BCG) at pH 2, 6 and 11.


	pН	Thickness	MC	WS	WVP *10 ¹¹	Tg	
Film		(μm)	(%)	(%)	(gH ₂ O/s.m.Pa)	(°C)	
	2	$49.5 \pm 3.9^{a/x}$	$19.2 \pm 0.5^{a/x}$	$49.6 \pm 1.6^{a/x}$	$7.63 \pm 0.84^{a/x}$	$-7.9 \pm 0.7^{a/x}$	
G	6	$51.0 \pm 3.0^{a/x}$	$22.1 \pm 0.6^{a/y}$	$37.6 \pm 2.7^{a/y}$	$6.54 \pm 0.34^{a/x}$	$-6.3 \pm 2.0^{a/x}$	
	11	$47.8 \pm 3.4^{a/x}$	$21.5 \pm 0.3^{a/y}$	$37.6 \pm 1.8^{a/y}$	$7.96 \pm 0.36^{ab/x}$	$-6.8 \pm 0.7^{a/x}$	
	2	$45.4 \pm 2.2^{a/x}$	$16.9 \pm 0.8^{b/x}$	$30.7 \pm 2.9^{b/x}$	$8.28 \pm 0.86^{a/x}$	$-7.3 \pm 1.0^{a/x}$	
G+MO	6	$48.1 \pm 2.3^{a/x}$	$16.3 \pm 0.5^{b/x}$	$23.2 \pm 1.4^{b/y}$	$7.00 \pm 0.96^{a/x}$	$-5.1 \pm 0.5^{\text{b/x}}$	
	11	$51.1 \pm 3.0^{a/x}$	$17.3 \pm 0.3^{\text{b/x}}$	$15.2 \pm 0.1^{b/z}$	$6.71 \pm 0.19^{a/x}$	$-6.9 \pm 0.5^{a/x}$	
	2	$49.7 \pm 3.3^{a/x}$	$17.4 \pm 0.6^{b/x}$	$53.5 \pm 4.4^{a/x}$	$8.90 \pm 0.94^{a/x}$	$-7.7 \pm 0.5^{a/x}$	
G+NR	6	$50.2 \pm 1.8^{a/x}$	$17.5 \pm 1.1^{b/x}$	$38.1 \pm 1.9^{a/y}$	$8.83 \pm 0.75^{a/x}$	$-5.7 \pm 1.2^{a/x}$	
	11	$50.7 \pm 1.9^{a/x}$	$16.5 \pm 0.1^{b/x}$	$34.1 \pm 1.0^{a/y}$	$8.58 \pm 0.78^{\text{bc/x}}$	$-6.7 \pm 0.1^{a/x}$	
	2	$46.0 \pm 2.1^{a/x}$	$20.5 \pm 0.7^{a/x}$	$51.3 \pm 0.9^{a/x}$	$9.12 \pm 0.13^{a/xy}$	$-6.2 \pm 1.1^{a/x}$	
G+BCG	6	$49.5 \pm 3.7^{a/x}$	$23.3 \pm 1.2^{a/y}$	$21.5 \pm 0.5^{\text{b/y}}$	$8.62 \pm 0.25^{a/x}$	$-4.2 \pm 0.5^{\text{b/x}}$	
	11	$49.4 \pm 6.5^{a/x}$	$20.3 \pm 0.2^{a/x}$	$49.8 \pm 5.6^{\text{c/x}}$	$9.90 \pm 0.70^{\text{c/y}}$	$-6.5 \pm 1.1^{a/x}$	

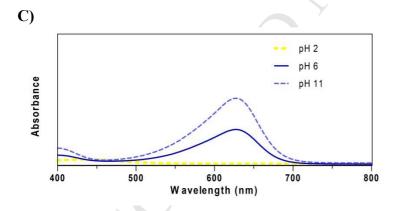
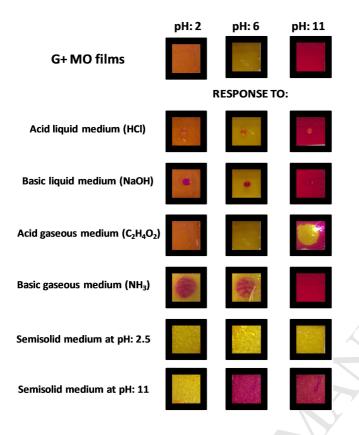

Reported values for each gelatin film are means \pm standard deviation (n=9 for thickness; n=3 for MC, WS and WVP; n=2 for Tg). Different letters (a, b, c) in the same column indicate significant differences (p<0.05) among the different acid-base indicators for the same pH of film-forming dispersion, according to Tukey's test. Different letters (x, y, z) in the same column indicate significant differences (p<0.05) among the different pH of film-forming dispersion for the same film formulation, according to Tukey's test.

Figure 1. Appearance of control gelatin-based films (G) and those added with methyl orange (G+MO), neutral red (G+NR), and bromocresol green (G+BCG) at pH 2, 6 and 11.



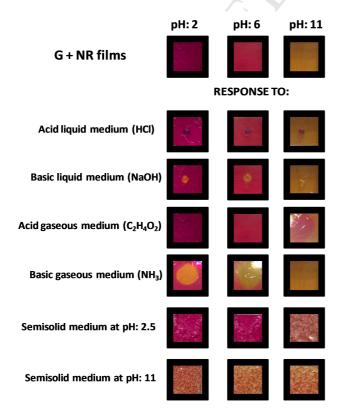
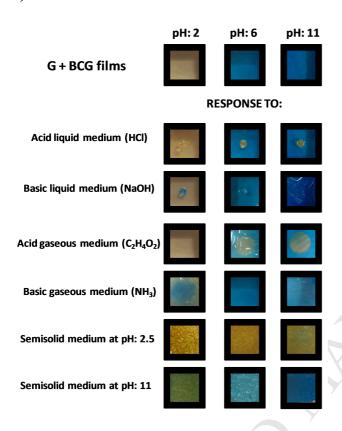
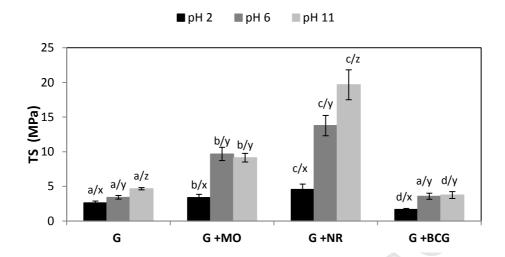


Figure 2. Visible absorption spectra (400-800 nm) of gelatin-based films added with methyl orange (**A**), neutral red (**B**) and bromocresol green (**C**) at pH 2, 6, and 11 respectively.


A)

B)



C)

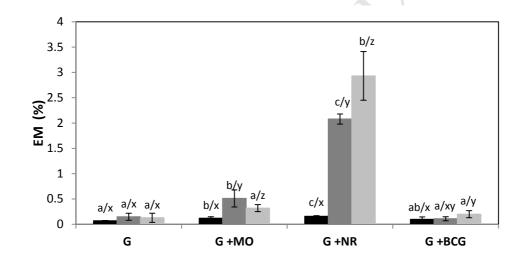
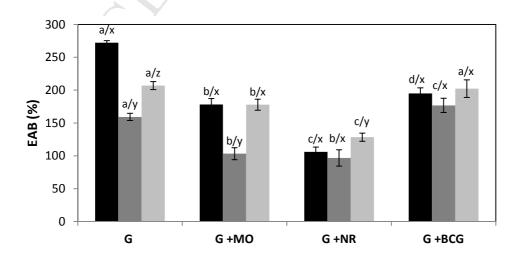


Figure 3. Response of gelatin-based films added with methyl orange (G+MO, **A**), neutral red (G+NR, **B**), and bromocresol green (G+BCG, **C**) at pH 2, 6 and 11 after being in contact with liquid, gaseous and semisolid media of different pHs.


A)

B)

C)

Figure 4. Mechanical properties of gelatin-based films obtained at different pH (2, 6 and 11) added or not with different acid-base indicators (MO, NR, and BCG). **A)** Tensile strength (TS). **B)** Young's modulus (EM). **C)** Elongation at break (EAB).

Reported values for each gelatin film are means \pm standard deviation (n=12). Different letters (a, b, c, d) indicate significant differences (p<0.05) among the different acid-base indicators for the same pH of film-forming dispersion, according to Tukey's test. Different letters (x, y, z) indicate significant differences (p<0.05) among the different pH of film-forming dispersion for the same film formulation, according to Tukey's test.

Highlights

- Smart gelatin films added with synthetic acid-base indicators were developed
- Films modified their color after being in contact with media at different pHs
- Films' response was evaluated against gaseous, liquid and semisolid media
- Protein matrix didn't interfere with the discoloration of the acid-base indicators
- Acid-base indicator's presence affected the physicochemical properties of films