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Abstract
We use force concept inventory (FCI) data to probe the consistency of com-
monsense physics as a knowledge system. The source of this data is the
administration of the FCI to first-year science university students. Data quality
was checked using item response theory and studying answer distributions for
each question. We find apparently paradoxical results: depending on how the
data is analysed, answers seem highly systematic or almost random-like. These
results are compatible with others found in the literature and can be construed
as arising either from a coherent knowledge system or from knowledge in
pieces. We hypothesise as a possible source of this apparent contradiction that
predictions and explanations use different resources: the former would use
reflex, low-cost cognitive resources while the latter would involve con-
ceptualisations. We show that the articulation of both resources may be crucial
for expert thinking productivity (the ability to apply a theory to novel situa-
tions). We sketch some consequences of the proposed structure of common-
sense thinking for teaching and further research.
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Introduction

It has been acknowledged for decades now that, prior to formal instruction, human beings
already have a vast commonsense knowledge system on movement and interactions which is
used to make predictions and explain phenomena, usually in conflict with Newtonian
mechanics. Nonetheless, the structure of this system and its evolution as a learner acquires a
Newtonian perspective remains controversial. Understanding this structure is crucial for
drawing pertinent recommendations for teaching. The force concept inventory (FCI) (Hes-
tenes et al 1992) allowed an impressive accumulation of evidence about the superiority of
interactive engagement courses over traditional ones (Hake 1998). But we still do not have a
deep understanding of the reasons for this superiority, which surely are to be found in the
understanding of commonsense knowledge and its interplay with formal instruction men-
tioned above. There are two dominant views about commonsense mechanics: a ‘coherentist’
perspective defended for instance in Ionnides and Vosniadou (2002), and a ‘pieces’ per-
spective exposed for instance in diSessa (2004). For an overview of its instructional con-
sequences see, for instance, Ozdemir and Clark (2007).

There is little doubt about the reliability and validity of the FCI: certified Newtonian
thinkers find it trivial (Hestenes er al 1992), FCI and mechanics baseline scores correlate well
(Hestenes and Wells 1992), there is a good correlation with the force and motion conceptual
evaluation (Thornton and Sokoloff 1998), (Thornton e al 2009), it has been validated with
extensive interviews and by comparison with the former mechanics diagnostic test (Halloun
and Hestenes 1985, Hestenes et al 1992), it shows global retest stability (Lasry ef al 2011a)
and low global context dependence (Stewart et al 2007), it has been shown to measure a
single construct (Wang and Bao 2010), and students scoring 85% or higher exhibit a fair
degree of coherence in their conception of force (Halloun and Hestenes 2009). Certainly,
explorations with the FCI have led to the discovery of striking regularities for courses
following similar pedagogy (Hake 1998).

Nevertheless, the analysis of FCI data keeps producing puzzling results: in spite of the
fact that interviews confirm that students interpret its responses in terms of a few ‘mis-
conceptions’, a factor analysis leads to almost no factorisation (Heller and Huffman 1995).
There is also a significant switch among distractors between test and retest (Lasry et al 2011a)
and individual questions are affected by context dependence especially in beginners (Bao and
Redish 2001). In this work we are presenting new evidence in this direction: the pattern of
answers by a non-Newtonian population is random-like from the point of view of most of the
‘misconceptions’ from the taxonomy in which the FCI is based, and none of them is used with
any degree of consistency. All this sheds light on the structure of commonsense physics.
There are some precedents in this line of reasoning: Huffman and Heller (1995) attributes the
lack of factorisation to a possible piece-like structure of commonsense physics, citing works
by Minstrell (1991) and diSessa (1993), Lasry et al (2011a) claim that their results support the
idea of resource activation (Redish 2004, Hammer et al 2005, Sabella and Redish 2007). Liu
and Maclsaac (2005) used data from FCI to compare the use of mental models and knowledge
in pieces in questions involving impetus distractors.

As a way to make sense of these puzzling results we have proposed (Badagnani
et al 2012) that commonsense predictions and explanations use separate cognitive resources:
while predictions would occur through reflex, low-cost operations with minimal intervention
of conceptual structures, and thus piece-like, explanations would be longer processes of
rationalisation than the reflex-like predictions and would imply theory-like structures as in
coherentist accounts of commonsense physics. This is not a compromise between the two
points of view but a completely different view of the internal workings of commonsense
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physics, which poses interesting questions about learning and the structuring of expert
knowledge. This view is compatible with the observation that response times in FCI post tests
are larger than in pre test: those longer times could be evidencing the subjects’ efforts of using
concepts acquired during instruction instead of low-cost commonsense predictions (Lasry
et al 2013). A similar interpretation can be found in Wood et al (2016), where they use the
theory of Kahneman (2011) that postulates the existence of two separated cognitive systems
with characteristics broadly similar to our 2012 proposal. Wood et al (2016) find evidence of
the usage of the so-called ‘system 1’ (low-cost, fast cognitive system in the theory of Kah-
neman) at solving the FCI by correlating it with an instrument designed to test the usage of
each system in problem solving.

In this work we will review the evidence presented in our previous Spanish-language
publication (Badagnani et al 2012) which led us to postulate a dual ‘pieces-for-predictions,
coherent-for-explanations’ commonsense knowledge system, expose in some detail how we
conceive the workings of such a system and its relation to expert knowledge, and sketch ways
to further probe our hypothesis with experiments and interviews. Finally, we discuss briefly
the implications for teaching.

Materials and methods

A reduced version of the FCI (Spanish version, with questions 8—11 omitted) was adminis-
tered to 352 first-year university students from Exact Sciences Faculty (Universidad Nacional
de La Plata, Argentina) prior to any physics teaching at university as part of an institutional
evaluation. It was anonymous and students were not compelled to answer all the questions
(we will call this sample CIBEX). We filled 1000 tests at random on a computer to be used as
control (we will call this sample RANDOM).

We analysed the distribution of answers from the perspective of Newtonian thinking and
according to each of the ‘misconceptions’ in the taxonomy in Hestenes et al (1992), the
rationale being that differences between distributions in CIBEX and RANDOM would signal
a systematic tendency to answer according (or against) the selected idea or group of ideas.

Results

For CIBEX the average score was 24.8% (as a reference, the score for random answering is
20%). Scores distribution for CIBEX and RANDOM are very similar, confirming that our
population is highly non-Newtonian (see figure 1).

Only two tests had to be discarded due to obvious unengaged performance (in one, all
answers were A, and in the other they showed a repetitive pattern). For the remaining 350, as
a consistency check, we compared the Newtonian responses for each question with the
prediction by the item response theory (IRT, see details in appendix B) metric for FCI from
Wang and Bao (2010). The correspondence (shown in figure 2 right) is quite good. So, in
spite of language, institutional and contextual differences, CIBEX response pattern is similar
to that obtained from English speaking, low-Newtonian college populations, and we can
assume that results from (Halloun and Hestenes 1985, Hake 1998, Heller and Huffman 1995,
Huffman and Heller 1995, Wang and Bao 2010, Lasry et al 2011a) and others apply to our
sample, and our results apply to theirs as well. In particular, figure 2 shows that the dis-
tribution of answers is far from random: if they were random a given option should receive
(20 £ 2.5)% answers with probability 99.7% for a sample of 350 respondents, as can be seen
from applying the central limit theorem to the binomial distribution with p = 0.2.
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Figure 1. Distribution of Newtonian answers for our sample (CIBEX) and a random
sample (RANDOM).
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Figure 2. Left: Distribution (%) of answers for each question. If answered at random,
for a sample of 350 respondents each question would receive (20 £ 2.5)% of the
answers with a 99.7% probability. Right: Percentage of Newtonian answers for each
question versus prediction from an IRT analysis. The grey band shows the region
where each Newtonian answer rate value would have taken, with a 99.7% probability,

if answered at random.

The number of questions left unanswered (see figure 3 left) is negligible for questions
1-18 (8-11 omitted), about 10% for questions 19-25 and rose up to 20% for the last five
questions. This is possibly due to tiredness. To check that this is not attributable to question
difficulty we show in figure 3 (right) the ‘guess’ parameter versus proportion of unanswered
questions. Both parameters are clearly uncorrelated (see details in appendix B).

In figure 4 we show histograms of distribution of answers compatible with each of the
‘misconceptions’ from the taxonomy introduced in Hestenes et al (1992) (see appendix A).
The aim is to observe to what extent those ideas are used with some consistency. If con-
sistency was high we should expect part of the population (those subjects holding that belief)
to answer all questions compatibly with the idea, while there would be no compatible answers
for the rest of the population. We did not expect that level of consistency, because it is known
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Figure 3. Left: Percentage of questions left unanswered as a function of question
number (in the order in which they were answered). Right: Percentage of questions left
unanswered versus ‘guess’ parameter from IRT analysis. Both graphs suggest that lack
of answer is not related to the question contents but to tiredness.

that incompatible ideas seem to be activated depending on the context, but since competing
ideas are few we still expected some level of consistency. What we found instead was a
distribution hardly different from RANDOM. If the idea is essentially absent, as in 14 where
almost no respondent answers any question compatibly the difference with RANDOM is
noticeable. But in cases where the idea seems to be present (almost all respondents answer at
least one question compatibly), as in IS5 there is a difference with RANDOM but it is never
spectacular. Observe that we are not trying here to check whether the distributions are
compatible or not with random answering, since we already know that answering is far from
random. What we find remarcable is that, when answer decisions are analysed from the
perspective of the ideas involved rather than from individual questions, the information seems
to blur, showing that the misconceptions are a poor organiser of answering decisions. This is
in sharp contrast with the extent to which these ideas are organisers of answer justifications,
which form part of the extensive validation studios of the FCIL

Discussion

At first sight, results like those shown in figures 1 and 4 could lead one to believe that students
are just guessing their answers. We believe there is hardly any guessing, as can be seen from
the fact that students answer virtually all questions (at least until they become tired for the last
few), the pattern of item responses is far from random, students can always give reasons for
their choices in interviews (Halloun and Hestenes 1985, Thornton and Sokoloff 1998) and
there is no significative correlation between the ‘guess parameter’ from IRT fit and test-retest
change in answers (Lasry et al 2011b). We have not found correlation between the same
parameter and the number of questions left unanswered (see figure 3 left and appendix B).
Then, the ‘guess parameters’ are indeed guesses only from the perspective of Newtonian
theory.

Once commonsense answers to the FCI are established not to come just at random, the
apparent inconsistency is puzzling. The very concept of ‘misconception’ as a belief brings the
implicit idea that it is normative, but then the FCI would not measure a single construct for
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Figure 4. Answer distributions from the perspective of each of the ‘misconceptions’
used as distractors in the construction of the FCI, both for our sample (CIBEX) and the
random sample (RANDOM). The horizontal axis is the number of questions answered
compatibly with the misconception.

scores below 85%, which is the proposed threshold for Newtonian thinking (Halloun and
Hestenes 2009). Even for quite low score populations one-dimensional IRT models work
quite well (figure 2 right shows that this is so even for extremely non-Newtonian populations
like CIBEX). The hypothesis of resources activation accounts for the success of one-
dimensional IRT models for low proficiency (Wang and Bao 2010), the high context sen-
sitivity (Bao and Redish 2001), test-retest answer switching (Lasry et al 2011a), problem
classification by ‘novices’ according to surface characteristics of the problems instead of by
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solving strategies (Chi ez al 1981), and the apparent random use of ‘misconceptions’ shown in
this work.

But, on the other hand, the systematic use of arguments compatible with the ‘mis-
conception’ taxonomy from Hestenes et al (1992) in interviews, and researches such as that of
Ionnides and Vosniadou (2002) revealing high levels of conceptualisations since early
childhood, makes it difficult to ignore the hypothesis of existence of theory-like structures in
the commonsense physics knowledge. In fact, it seems impossible to explain the occurrence
of such a bounded taxonomy as the one presented in Hestenes er al (1992) only from the
hypothesis of resources activation. There is empirical evidence of the possible coexistence of
both knowledge systems: Anderson ef al (1992) found considerable coherence in problem
solving involving explanations and low coherence when problems involved predictions. Liu
and Maclsaac (2005) found evidence in this sense from the analysis of FCI data. Results in
Wood et al (2016) point in the same direction.

Our hypothesis that commonsense predictions are essentially reflex is compatible with
the model of contextual resources activation. On the other hand, it requires a sophisticated
conceptual apparatus to make sense of the huge and disparate mass of reflex responses and
express them in words. As a matter of fact, the analysis of mutual forces between a small, fast
moving car and a large, static truck is not a phenomenon (the forces cannot be observed), and
it is impossible to make sense of the question of which is larger without a conceptualisation of
the term ‘force’. Our point is then that there are complex conceptual theory-like structures in
commonsense physics, but such structures are not normative, and are not productive for
predictions.

So, how could we characterise learning of a scientific theory? Observe that coherentist
approaches tend to take for granted that ‘thinking’ is ‘reasoning’, that is, operating at the level
of the meanings of propositions. On the other hand, the ‘pieces’ approaches (which originated
from efforts in the field of artificial intelligence) tend to think of ‘thinking’ as a sort of
hierarchical sets of reflex-like responses, where the hierarchies are reorganised by teaching.
We are postulating here that even for the most conspicuously commonsense thinkers there is
an interplay between a pre-reflexive structure (that might consist on the pieces postulated in
diSessa (1993) or any other reflex-like system like Kahneman’s ‘system 1°) and a complex
conceptual apparatus. Observe that anyone able to comunicate orally about movement and
interactions is already ‘instructed’, in the sense that they have aquired conceptual categories
from their culture, and only through those categories questions can be interpreted and answers
can be produced. So, the interplay between culturally aquired concepts and private, reflex-like
representations during instruction should be quite intrincate, and we should wonder how, in
experts, reflexes and concepts get integrated in a single system. What is the role of reflex-like
proceses in expert thinking? Are they simply suppressed or are they somehow important? An
expert thinker is convinced that he thinks in a formal logical way, but since reflex processes
are low cost, fast and mostly subconscious processes, that conviction is far from making us
rule out an important, or even key, role for these processes.

We can give a strong argument in favour of a key role of reflex-like processes in expert
thinking, which lies at the root of the very concept of ‘applying’ a theory, which is that the
theory can be applied to potentially infinite systems and situations, including scenarios
unconceivable at the time it was proposed. Such ‘applicability’ can be thougth of as the
colloquial expression of its normativity, and implies virtually infinite productivity (in the
same sense that in linguistics). How does an expert ‘apply’ a theory to a specific situation?
Observe that a formal theory poses a few abstract concepts, so there is a process of inter-
pretation and modelling that takes commonsense descriptions of systems to a set of variables
amenable to a theoretic treatment. There is no systematic procedure for doing so. Typically,
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teaching involves a few ‘examples of applications’, and the students are expected to produce
for themselves other applications. Their ability for doing so is typically viewed by educators
as a discriminator between rote and meaningful learning. What is going on in the expert’s
mind during this non-systematic process of aplying a theory to novel contexts? If the process
is mainly unconscious, such processes are strong candidates for reflex-like processes playing
a role in expert thinking. If this is the case, experts should exert a sort of control on such
reflexes.

Since fast reflexes are mainly unconscious, in order to see them manifested thinking
aloud interviews are not enough. The hallmark of such processes is short duration. In order to
study them we designed experiment-like interviews where fast responses are singled out.
Those interviews, which support our hypothesis of a dual resource structure in novice thinkers
and gives further clues on the underlying processes, will be shown elsewhere (they are briefly
exposed in our Spanish-language publication Badagnani et al 2012).

Understanding this dual structure and its evolution from novices to experts is crucial to
make pertinent teaching recommendations based on this kind of research. It seems immediate
that neither mere cognitive conflicts nor mere training can work for most learners. The
superiority of interactive engagement courses evidenced in studies like Hake (1998) suggests
that social interactions play a key role in expert learning, maybe supplying each student ways
of controlling or directing their reflex-like processes, but working out the details of how this
happens (if it does) remains a challenge.

Conclusions

We have proposed as a possible explanation for the apparently paradoxical results from the
FCI that there are two different knowledge structures operating in commonsense physics: a
pre-reflexive fast, low-cost, unconscious and context-dependent structure for predictions and
a ‘coherent’ slow, concept-based, conscious structure for explanations and rationalisations of
predictions. In order to explain the paradoxes the second structure must not be normative, that
is, explanations should not influence or guide predictions. We point out that if this is the case,
commonsense physics is not simply just a compromise between pre-reflexive and coherent
knowledge but something quite different in which the two systems work simultaneously (it is
not either one or the other that is activated, but rather both are necessary to produce com-
monsense answers). This poses the question of what happens with both structures as novices
become experts, and we argue that is is a reorganisation of both, where conceptual thinking
becomes normative through some sort of feedback on the pre-reflexive processes. If this is the
case, learning does not occur by mere training nor by mere resolution of cognitive conflicts.
Understanding this is the key for drawing conclusions for teaching.

In order to probe this proposed knowledge structure we have designed experiment-like
interviews in which we isolated fast time processes from the standard thinking aloud pro-
tocols. We have described briefly the procedure and some results in Badagnani et al (2012)
and provide supporting evidence for our hypothesis: predictions coming from fast imagery,
not challenged by their concept-based explanations.
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Appendix A. The ‘misconceptions taxonomy’ of Hestenes

The FCI questionnaire had some changes: three questions were removed, four added, and
their order was very much altered since the 1992 version. The page www.modeling.asu.edu,
where the FCI is officially distributed, mantains a table with the set of ‘misconceptions’ which
the FCI is intended to probe, together with a suggested table of answers compatible with each.
This is open to some interpretation, and the page even encourages users to send proposals for
improvement. The table added even a ‘misconception’ absent in Hestenes e al (1992): K4
(ego-centred reference frame). We here list the ‘misconceptions’ in the present state of the
table and list, for each ‘misconception’, the list of compatible answers that we used for
constructing the histograms of figure 4 in our reduced 26 items version. Observe that the
question numbers in the list below correspond to that in the complete current Spanish version.
To make them to correspond to question numbers used in this paper, you should substract 4 to
numbers from and above 12.

0. Kinematics

K1. Position-velocity undiscriminated 19 BCD

K2. Velocity-acceleration undiscriminated 19 A; 20 BC

K3. Nonvectorial velocity composition —

K4. Ego-centred reference frame 14 AB

1. Impetus

I1. Impetus supplied by ‘hit’ 5 CDE; 27 D; 30 BDE

12. Loss/recovery of original impetus 7 D; 21 A; 23 AD

13. Impetus dissipation 12 CDE; 13 ABC; 14 E; 23 D; 24 CE; 27 B
4. Gradual /delayed impetus build-up 21 D; 23 E; 26C; 27 E

I5. Circular impetus 5 CDE; 6 A; 18 CD

2. Active forces

AF1. Only active agents exert forces 15D; 16 D; 17 E; 18 A; 28 B; 29 A; 30 A
AF2. Motion implies active force 5 CDE; 27 A

AF3. No motion implies no force 29 E

AF4. Velocity proportional to applied force 22A;26A

AFS5. Acceleration implies increasing force 3B

AF6. Force causes acceleration to terminal velocity 3A;22D;26D

AF7. Active force wears out 22 CE

3. Action/reaction pairs

ARI1. Greater mass implies greater force 4 AD; 15 B; 16 B; 28 D
AR2. Most active agent produces greatest force 15C;16C; 28 D

4. Concatenation of influences

CI1. Largest force determines motion 17 AD; 25 E

CI2. Force compromise determines motion 6D;7C; 12A;14C; 21C

CI3. Last force to act determines motion 21 B;23C
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Figure B1. FCI score (% of Newtonian responses) as a function of proficiency as
predicted by IRT (Wang and Bao 2010) for our 26 questions version.

(Continued.)

5. Other influences on motion

CF Centrifugal force
Ob. Obstacles exert no force

5 E; 6 CDE; 7 CDE; 18 E
4C;5A; 15E; 16 E; 18 A; 29 A

Resistance

R1. Mass makes things stop
R2. Motion when force overcomes resistance
R3. Resistance opposes force /impetus

27 AB
25 ABD; 26 B
26 B

Gravity

G1. Air pressure-assisted gravity

G2. Gravity intrinsic to mass

G3. Heavier objects fall faster

G4. Gravity increases as objects fall

G5. Gravity acts after impetus wears down

3E; 17 D; 29 CD
3D; 13 E
1A;2BD
3B;13B
12D;13B; 14 E

Appendix B. IRT analysis of our data

In order to estimate the proficiency parameter for our sample we calculated the predicted
score (as percentage of Newtonian responses) for our 26 item test as a function of proficiency.
This is simply the average of the IRT probability for all 26 questions at the given proficiency.
We show this function in figure B1. Observe that, for extreme low proficiency, linearity must
be badly broken: in our sample the average of Newtonian responses is about 6.5 out of 26,
while for proficiency minus infinity that figure is given by the average of ‘guess’ parameters
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and leads to about 3.6 Newtonian answers out of 26. From the function shown in figure B1,
our sample should correspond to a proficiency of —1.85. The plot shown in figure 2(A) was
produced using that proficiency, while the error bar corresponds to values between profi-
ciencies of —2 and —1.75, wich correspond to scores between 24% and 26% respectively. In
the horizontal axis of figure 2 (right) we represent the observed Newtonian responses for each
question renormalized not considering the defaulted questions, which is not a possibility
contemplated in the IRT parametrization.

The figure 3 (right) shows the relation of the ‘guess’ parameter ¢ of IRT with the
questions left unanswered. Since the subjects were not asked to answer all questions, some of
them may decide not to answer instead of guessing. So, if ¢ is indeed strictly a ‘guess level’
we should observe both quantities positively correlated. Instead of that, both sets of data are
slightly negatively correlated. The correlation is about —0.2, and since there exist a strong
correlation between defaulted questions and question order number (figure 3 left), this mild
correlation could be understood as due to the purely casual correlation between the ‘guess’
parameter ¢ and question number, which is about —0.15. The clear correlation between
default and question number, which grows quite abruptly at the end, might be construed as
due to tiredness (most subjects employed far more than half an hour in completing the
questionnaire, and showed quite a compromise). So we think of the label ‘guess parameter’ as
a nickname: our subjects nearly did not guess and were convinced of most of their responses.
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