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It has been shown that a self-gravitating system of massive keV fermions in thermodynamic
equilibrium correctly describes the dark matter (DM) distribution in galactic halos (from dwarf
to spiral and elliptical galaxies) and that, at the same time, it predicts a denser quantum core
towards the center of the configuration. Such a quantum core, for a fermion mass in the range of
50 kev . mc2 . 345 keV, can be an alternative interpretation of the central compact object in Sgr
A*, traditionally assumed to be a black hole (BH). We present in this work the gravitational lensing
properties of this novel DM configuration in nearby Milky Way-like spiral galaxies. We describe
the lensing effects of the pure DM component both on halo scales, where we compare them to the
effects of the Navarro-Frenk-White and the Non-Singular Isothermal Sphere DM models, and near
the galaxy center, where we compare them with the effects of a Schwarzschild BH. For the particle
mass leading to the most compact DM core, mc2 ≈ 102 keV, we draw the following conclusions.
At distances r & 20 pc from the center of the lens the effect of the central object on the lensing
properties is negligible. However, we show that measurements of the deflection angle produced by
the DM distribution in the outer region at a few kpc, together with rotation curve data, could help
to discriminate between different DM models. In the inner regions 10−6 pc . r . 20 pc, the lensing
effects of a DM quantum core alternative to the BH scenario, becomes a theme of an analysis of
unprecedented precision which is challenging for current technological developments. We show that
at distances ∼ 10−4 pc strong lensing effects, such as multiple images and Einstein rings, may occur.
Large differences in the deflection angle produced by a DM central core and a central BH appear at
distances r . 10−6 pc; in this regime the weak-field formalism is no longer applicable and the exact
general-relativistic formula has to be used for the deflection angle which may become bigger than
2π. An important difference in comparison to BHs is in the fact that quantum DM cores do not
show a photon sphere; this implies that they do not cast a shadow (if they are transparent). Similar
conclusions apply to the other DM distributions for other fermion masses in the above specified
range and for other galaxy types.
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I. INTRODUCTION

Most of the intriguing problems in particle physics and
cosmology are related to the nature of the dark mat-
ter (DM) that composes approximately 80% of matter
in the Universe [1]. In a self-consistent particle DM
model aimed to understand the quasi relaxed DM halo
structures, the underlying phase-space distribution and
self-gravitation establishes how the DM distributes in
the galaxy. Namely, the distribution of DM inside the
galaxy (e.g. mass, density and pressure profiles) can
be obtained from the solution of the hydrostatic equilib-
rium equations and the corresponding (phase-space de-
pendent) equation of state (see e.g. [2]).

Before a DM halo enters in the steady state we ob-
serve, and due to the collisionless nature of the DM
particles, specific relaxation mechanisms such as violent
relaxation take place in a few dynamical times, giving
rise to quasi-stationary states which can be described by
(coarse grained) phase-space distributions of the Fermi-

Dirac type [3, 4]. Indeed, it has been recently shown
that a model of DM based on a self-gravitating system of
fermions in thermodynamic equilibrium accurately de-
scribes the distribution of DM in galactic halos, when
contrasted with observations [5–7]). In Ref. [5], it was
shown that such a self-gravitating system of fermionic
DM shows a general DM density distribution, hereafter
the RAR profile, with a compact core - diluted halo struc-
ture (see Sec. II for details). More recently, following
the more complex and realistic statistical approach ac-
counting for escape of particles, in Ref. [7] it was intro-
duced a cutoff in the fermion momentum distribution.
Such a momentum cutoff serves to account for the finite
size of galaxies, generalizing the previous RAR profile [5].
Both Refs. [5] and [7] have put constraints on the mass of
these fermions, hereafter called inos, using known obser-
vational properties of galaxies such as the flatness of the
rotation curves, the mass and radius of galaxies, as well as
observationally-inferred correlations involving many dif-
ferent galaxy types.
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On the other hand, gravitational lensing (GL) has been
widely used to determine the distribution of DM in galax-
ies and galaxy clusters [8, 9]. Hence, given a specific
density profile it is systematically possible to infer the
GL properties for any lens system or vice versa, i.e., if
we know the lensing signal, we can reconstruct the mass
distribution of the lens under some assumptions of it.
Moreover, it was presented a Bayesian statistical method
in [10] that permit to reconstruct a model independent
mass profile without initial assumptions by combining
measurements of magnification bias along with lens dis-
tortion. For instance, the gravitational lensing proper-
ties given by the phenomenological Navarro-Frenk-White
(NFW) profile, commonly used to describe the cold dark
matter (CDM) distribution of halos, have been very well
investigated (see, e.g., Ref. [11], and references therein).
The same applies to the non-singular isothermal sphere
(NSIS) profile [12]. Interestingly, the lensing data are
better fitted by the latter kind (see e.g. [13]), which is
cored-like (i.e. with a shallower inner DM halo density
profile in contrast to the more cuspy NFW one), in a way
similar to the RAR profile in that galaxy region (see Fig.
3 in [5]). Particular attention has been paid in the last
decade to single galaxies where strong lensing effects are
commonly present. Surveys such as SWELLS [14, 15] and
DiskMass [16], among others, have placed constraints on
the properties of spiral galaxies, revealing for instance the
DM fraction within 2.2 disk radii, the inner logarithmic
slope of the DM halo profile, as well as the stellar mass
component (disk plus bulge). Including kinematic anal-
ysis, it is also possible to break the disk-halo degeneracy
[14] and to put a more stringent constraint on the afore-
mentioned properties (see also [17] for a theoretical study
and [18] for a summary of the DM properties). Likewise,
the slope of the average DM projected density profile
in the innermost regions of massive early type galaxies,
has been constrained by using strong gravitational lens-
ing data along with stellar dynamics and stellar popula-
tion [19–21]. Recently, the DM density profile has been
constrained at a few kpc, contributing significantly in
the same way as the stellar component does [22, 23], ex-
hibiting that these types of galaxies have a non-negligible
amount of DM in their central regions.

Observations also indicate that most galaxies host a
massive central compact object, usually assumed to be a
black hole (BH). Its presence substantially affects lens-
ing features such as the critical curves and the formation
(suppression) of an additional (existing) faint central im-
age, as predicted in [24] and already observed [25]. Re-
markably, such effects depend on the halo core radius and
a critical value of the mass of the BH [22, 24], leading to
a strong degeneracy between these parameters.

At this point we turn back to the discussion of DM
models on galaxy scales to recall an interesting feature
of the RAR model [7]: its DM central core, hereafter
DMCC, can be compact enough to correctly describe the
observational properties in the Galactic center, which are
usually associated with the existence of a massive BH

centered in Sgr A*. Namely, it can produce a gravita-
tional potential which suffices to explain the dynamics of
the stars closest to Sgr A*, the S-cluster stars (see Ref. [7]
for details). Thus, the RAR profile could, in principle,
explain the MW properties from the center all the way
to the halo.

It is thus natural to ask ourselves about the GL proper-
ties of nearby lensing galaxies modeled within the RAR
model. Without loss of generality, we compute in this
work the GL properties of DM halos for spiral type galax-
ies such as the MW. In addition to the inclusion of the
halo part, which is slightly but appreciably distinguish-
able from other DM models, we consider the lensing ef-
fects of the DM distribution near the GC where a maxi-
mum deflection of light is predicted, in contrast to stan-
dard models of DM such as NFW and NSIS. We also show
that, at such scales, the deflection angles are no longer
small so that the exact equations from general relativity
must be used.

This work is organized as follows: In Sec. II we describe
the general features of the novel model of DM fermions
and compare them with the ones obtained by the stan-
dard density profiles. We compute in Sec. III the gravita-
tional lensing properties of our DM distribution in Milky
Way-like galaxies and compare them in the halo with
those of the NFW and NSIS profiles and in the core with
those of a Schwarzschild BH as they have been predicted
for Sgr A* [26]. Finally we present a general discussion
in Sec. IV of the GL properties of the fermionic DM dis-
tribution in galaxies.

II. THE DENSITY PROFILES

We first recall the widely used phenomenological DM
density profile arising within the ΛCDM cosmological
paradigm, i.e. the NFW profile [27]

ρ(r) =
ρc

(r/rs)(1 + r/rs)2
, (1)

where ρc is the characteristic density and rs is the scale
radius. This density profile exhibits a sharp cusp in the
inner region ρ ∝ r−1 while in the halo part the density
scales as ρ ∝ r−3.

Another often adopted DM density profile which also
yields the asymptotic flatness of the rotation curves is
represented by the non-singular isothermal (NSIS) pro-
file [28]:

ρ(r) =
ρ0

1 + (r/r0)2
, (2)

where ρ0 is the central density and r0 is the core radius.
We turn now to the RAR profile [5, 7] which describes

the DM distribution along the entire galaxy in a contin-
uous way, i.e. from the halo part to the GC and without
spoiling the baryonic component which dominates at in-
termediate scales (see [7] for details).
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Assuming a self-gravitating system of massive fermions
(within the standard Fermi-Dirac phase-space distribu-
tion) in thermodynamic equilibrium, the DM density pro-
file was computed in [5]. By imposing fixed boundary
conditions at the halo and including the fulfillment of the
rotation curves data, the parameters of the system have
been constrained. This procedure was applied for differ-
ent types of galaxies from dwarfs to big spirals exhibit-
ing a universal compact core - diluted halo density pro-
file. An extended version of the RAR model was recently
presented [7], by introducing a fermion energy cutoff εc
in the fermion distribution. This is also motivated by
the formal stationary solution (Fermi-Dirac-like) of the
generalized statistics which includes the effects of escape
of particles and violent relaxation [4]. The new emerg-
ing density profile serves to account for the finite galaxy
sizes due to the more realistic boundary conditions, while
it opens the possibility to achieve a more compact solu-
tion for the quantum core working as a good alternative
to the BH scenario in Sgr A* (see Fig. 1).

Motivated by these features between the DM profiles,
we compute in the next section both the GL properties of
MW-type galaxies for the RAR model and the GL effect
of the DMCC in order to study the possibility of strong
lensing effects around the GC. We describe now the RAR
profile following Ref. [7].

The density ρ and pressure P for this system are given
by

ρ =
g

h3
m

∫ εc

0

fc(p)

(
1 +

ε(p)

mc2

)
d3p, (3)

P =
2

3

g

h3

∫ εc

0

fc(p)
1 + ε(p)/2mc2

1 + ε(p)/mc2
d3p, (4)

where g denotes as usual the particle spin degeneracy and
fc(p) is the phase space distribution function including
an energy cutoff:

fc(p) =

{
1−e(ε−εc)/kT
e(ε−µ)/kT+1

ε 6 εc,

0 ε > εc.
(5)

Here ε =
√
c2p2 +m2c4 −mc2 is the particle kinetic en-

ergy, m is the particle mass, µ is the chemical poten-
tial (with the particle rest mass subtracted off), T is the
temperature, k is the Boltzmann constant, and h is the
Planck constant.

Considering the spherically symmetric space-time de-
scribed by the metric

ds2 = eνdt2 − eλdr2 − r2dΘ2 − r2sin2Θ dφ2, (6)

along with the thermodynamic equilibrium conditions
eν/2T = const. and eν/2(µ+mc2) = const. and the equa-
tion of state given by Eqs. (3) and (4), the dimensionless
Einstein equations are finally obtained (see Ref. [7], for

details)

dM̂

dr̂
= 4πr̂2ρ̂, (7)

dθ

dr̂
= − [1− β0(θ − θ0)]

β0

M̂ + 4πP̂ r̂3

r̂2(1− 2M̂/r̂)
, (8)

dν

dr̂
= 2

M̂ + 4πP̂ r̂3

r̂2(1− 2M̂/r̂)
, (9)

β(r) = β0e
ν0−ν(r)

2 , (10)

W (r) = W0 + θ(r)− θ0, (11)

where we have introduced the temperature parameter
β = kT/mc2, the degeneracy parameter θ = µ/kT and
the cutoff parameter W = εc/kT . In addition, there have
been introduced the dimensionless quantities r̂ = r/χ,

M̂ = GM/(c2χ), ρ̂ = Gχ2ρ/c2 and P̂ = Gχ2P/c4 with
χ = 2π3/2(~/mc)(mp/m) and mp being the Planck mass.
The subscript 0 in the Einstein equations denotes the
initial condition values. Thus, the fermionic DM density
profile was computed numerically and characterized by
a quantum central core of almost constant density, an
intermediate transition region followed by an extended
plateau and a Boltzmannian density tail ρ ∝ r−α, with
α > 2 due to the cutoff condition (see Fig. 1). This lat-
ter feature, together with the addition of the standard
baryonic disk component, leads to the observed flat rota-
tion curves (see [7] for the specific analysis of the MW).
Based on this property, a family of solutions can be ob-
tained to guarantee the fulfillment of both the boundary
conditions of the halo part and rotation curve data, with
different central quantum cores of different compactness
presenting a clear dependence on the fermion mass (see
Fig. 1 for the case of the three solutions of interest).

The size of the degenerate quantum core depends on
the particle mass as can be seen in Fig. 1 for the case of
the MW. As shown in [7], for an ino mass in the range
of 48 keV. m . 345 keV, the DM core has a size (and a
mass) appropriate to describe the orbit of the S-cluster
stars around Sgr A* [29]. Thus, the DM core represents
a valid alternative to the central BH hypothesis. In addi-
tion, for such fermion masses the DM contribution prop-
erly reproduces the total rotation curve data, without
spoiling the baryonic components available above parsec
scale (see [7] for details and see [30] for the latest data
available in the MW).

Therefore, the narrow particle mass range provides sev-
eral solutions to satisfy either the rotation curve data in
the halo part or both sets of data, namely including ad-
ditionally the orbits of the S-cluster stars such as the
S2 star, necessary to establish the compactness of the
DMCC. A comparison between the RAR model, NFW
profile and NSIS for MW-like spiral galaxies is also shown
in Fig. 2, describing the outstanding inner structure be-
low parsec scale for the inos profile.
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FIG. 1. Density profiles for MW-type galaxies for differ-
ent particle mass values that satisfy the boundary condi-
tions: MDM (r = 20kpc) = 9 × 1010M� (or equivalently
MDM (r = 40kpc) = 2 × 1011M�), with a DMCC of mass
Mc = 4.2 × 106M�. The set of initial conditions: θ0 =
32.2;β0 = 2.7 × 10−7;W0 = 58.5, θ0 = 37.1;β0 = 1.04 ×
10−5;W0 = 65, 20, θ0 = 45.8;β0 = 4.0 × 10−3;W0 = 76.049
for m = 10 keV, m = 48 keV and m = 345 keV, respectively,
have been here adopted from the original solutions computed
in [7].

FIG. 2. Distribution of DM in MW-type galaxies predicted
by the RAR model. The solid line, inos MC in the legend,
refers to the most compact (MC) solution for m = 345 keV.
For comparison, we show with the the dotted brown line, the
solution for m = 48 keV which we refer to as inos in the leg-
end. There are also shown the NFW and NSIS profiles given
by the formulas (1) and (2), respectively. The free parameters
in these profiles were taken from [30] and [31], respectively,
satisfying the same (total) rotation curve data as in the RAR
case, with the corresponding considerations of bulge and disk
counterparts.

III. GRAVITATIONAL LENSING PROPERTIES

As the RAR density profile cannot be given analyti-
cally, we here compute numerically the general GL prop-
erties for this model. The lensing effect causes the im-
age of the source to be displaced, magnified (or de-
magnified), and sometimes splitted. Interestingly, these

effects can be quantified and contrasted with observa-
tions; however, we do not focus on any particular lens
system but rather on describing the GL properties of the
RAR solutions in nearby MW-type spiral galaxies. To
do so, we consider the particular solutions provided by
the particle mass value m = 345 keV and m = 48 keV to
account also for the central compact object. In subsec-
tions III A and III B we use the standard lensing formal-
ism which is based on the assumption that the gravita-
tional field is so weak that the deflection angles are small.
In subsection III C we consider light rays that come so
close to the central object that this approximation is no
longer valid; there we have to calculate the deflection an-
gles with the exact equations from general relativity. We
also make a comparison of our results with the respective
ones of the NFW and NSIS profiles as lensing models, in
order to infer significant differences that might help us,
along with rotation curve data, to discriminate between
these DM galactic profiles. Henceforth, we will consider
in all computations that the source and lens position are
located at zs = 2 and zl = 0.3, respectively, which corre-
spond to typical separations for both the source and the
lens. The cosmological parameters have been taken from
the last results of Planck [1]: H = 67.80 km s−1 Mpc−1,
Ωm = 0.3 and ΩΛ = 0.7 to determine the angular diame-
ter distances of the system. For this cosmology, the scale
in the lens plane is 1 arcsec = 4.74 kpc.

A. Surface mass density and convergence

Considering the lens system as an axially symmetric
lens, the planar distribution of matter, i.e. the projected
surface density, is obtained by integrating the three-
dimensional density profile ρ(r)1 along the line of sight
[32]

Σ(ξ) = 2

∫ ∞
0

ρ(ξ, z)dz, (12)

where ξ is the impact parameter measured from the cen-
ter of the lens. For this configuration, the mean surface
density inside the radius ξ is

Σ̄(ξ) =
1

πξ2

∫ ξ

0

2πξ′Σ(ξ′)dξ′. (13)

A useful dimensionless quantity that characterizes the
system is the convergence, defined as the ratio of the
surface density and the critical density

k(ξ) =
Σ(ξ)

Σcr
, (14)

1 Here the radial coordinate r is related to cylindrical polar coor-
dinates by r =

√
ξ2 + z2.
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where Σcr = c2

4πG
Ds

DlDls
and c is the speed of light. Ds,

Dl and Dls are the angular diameter distances of the ob-
server to the source, of the observer to the lens, and of
the lens to the source, respectively. Based on these defi-
nitions, we compute the convergence as a function of the
impact parameter ξ for all the above density profiles (see
Fig. 3). It is common to give the impact parameter in
units of a reference length ξ0. For the RAR model, how-
ever, ξ0 has not yet been identified, in contrast e.g. to
the NFW profile. For this reason, all quantities related to
lensing properties are plotted as a function of the physical
impact parameter ξ instead of the usually used dimen-
sionless radius ξ/ξ0. The influence of the DMCC of the
RAR profile on the convergence can be clearly seen in
Fig. 3. If κ > 1, multiple images and Einstein rings may
be formed. It is common to speak of “strong lensing” in
such situations. Note, however, that we are still in the
regime where the gravitational field is weak and bending
angles are small. From the diagram we read that for the
RAR profile strong lensing effects start to be notorious at
a radius smaller than 10−4 pc, whereas in the halo part
only weak lensing takes place, for all the density profiles,
as expected [33].

The density of the RAR profile is, at small distances,
several orders of magnitude higher than that of the NFW
and NSIS counterparts. Hence, the compactness of the
DM compact core may eventually lead to the additional
formation of (relativistic) Einstein rings or (relativistic)
multiple images, similarly to the case of a supermassive
BH. This possibility will be analyzed in Sec. III C via
a general relativity treatment beyond the weak-field ap-
proximation.

On the other hand, an interesting quantity that char-
acterizes the system is the shear

γ(ξ) =
Σ̄(ξ)− Σ(ξ)

Σcr
. (15)

which determines the distortion of images. For our DM
fermionic configuration, the formation of peaks in the
shear (which correspond to the formation of Einstein
rings) appears presumably in zones where the surface
density changes abruptly due to the dominance of DM
(in the central and halo part). This feature is similar to
that of the deflection angle plotted in Fig. 4.

B. Deflection angle and magnification

The deflection angle can be written as

α̂(ξ) =
4G

c2
2π
∫ ξ

0
Σ(ξ′)ξ′dξ′

ξ
=

4GM(ξ)

c2ξ
, (16)

with M(ξ) being the mass enclosed by a circle of radius ξ.
For any given density profile ρ(r) we may (numerically)
first calculate Σ(ξ) and then M(ξ) which, by (16), gives
us the deflection angle α̂(ξ). The results are shown for
the NFW, NSIS and RAR profiles in Fig. 4 where the

FIG. 3. Convergence for the NFW, NSIS and RAR density
profiles. The condition of strong lensing is achieved for the
RAR profile (inos MC) below 10−4 pc while the halo part is
characterized by weak lensing effects as well as for the other
profiles.

FIG. 4. Deflection angle for the NFW, NSIS and RAR density
profiles. It can be seen the relation between the deflection
angle and the rotation curve as it was found in [34]. See also
Ref. [5] for the rotation curve behavior. The units for α̂ are
given in arcsec.

deflection angle is plotted as a function of the position
angle in the sky, θ = ξ/Dl. For the RAR profile it can be
observed that the deflection angle becomes larger when
a light ray is close to the DMCC in comparison to one in
the halo part, giving rise to one extra Einstein ring, see
below. This is a unique feature of the GL produced by
the RAR profile, since for the other profiles the maximum
deflection angle is obtained in the halo part near the flat
part of the rotation curve. The maximum deflection in
the RAR profile case has the value 9.49×104 arcsec (α̂ =
0.46 rad), at radius 0.30 nano-arcsec (1.42 × 10−6 pc)
which is slightly underestimated because in this regime
the weak-field approximation is actually no longer valid.
An exact relativistic treatment will be given in the next
section.

In the halo part, all the DM density profiles must fit
as a first condition the rotation curve data. Moreover, a
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complementary requirement can be added by considering
the light deflection by the galactic halo. With this ex-
tra information at disposal we can in principle discrim-
inate between different halo models [35, 36] which pre-
dict slightly different deviations of light (of 0.1 arcsec)
as can be seen in Fig. 4. On the other hand, starting
from 2 mili-arcsec (20 pc) the RAR profile produces a
constantly increasing deflection in logarithmic scale, to-
ward the central part, reaching the maximum value at
0.30 nano-arcsec (1.42×10−6 pc) due to the DMCC grav-
itational potential (see Fig. 4).

Looking at the halo part, the deflecting angle (in arc-
sec) for each profile is computed (according to the best fit
parameters) at a distance RGC = 8.3 kpc (our distance
from the galactic center) where the circular velocity is
near its maximum value

α̂NFW (RGC) ≈ 0.26′′, (17)

α̂NSIS(RGC) ≈ 0.69′′, (18)

α̂inos(RGC) ≈ 0.15′′. (19)

We recall that at such a radius scale the total circular
velocity must fulfill Vc ≈ 220 km s−1, which implies that
lensing data could serve as a discriminator between dark
matter models. Interestingly, it has been recently in-
ferred the model parameters, i.e. the total (disk+bulge)
stellar mass, the DM halo asymptotic circular velocity,
and the core radius among others, for the spiral galaxy
lens SDSS J2141000 system by using either strong lens-
ing data, kinematics data, or both combined [14]. This
analysis shows that the uncertainty associated with the
circular velocity when the optical emission and absorp-
tion line spectroscopy is considered only, is commonly
less than that of strong lensing data (see table 5 in [14]
for comparison). It implies directly that we can fit very
well data from strong lensing since the RAR profile fits
the rotation curves with a good precision [7].

In addition, the source is also magnified by a factor

µ(θ) =
1

(1− k(θ))2 − γ(θ)2
. (20)

To first order, the magnification depends on the conver-
gence only. Negative values of µ correspond to inverted
images and for large values of θ, µ→ 1 and the source is
weakly affected by the lensing potential, while for θ = θE ,
the magnification diverges, corresponding to the forma-
tion of an Einstein ring. We calculate the magnification
for all profiles and note the emergence of one extra Ein-
stein ring due to the DMCC in addition to the halo part.
The angular position of such an Einstein ring depends
strongly on the compactness of the DMCC subject to the
particle mass value between 48 kev . mc2 . 345 keV.
As we can see, the lensing signal is highly demagnified
and its effect is indeed comparable to that produced by a
SMBH. This remarkable result is plotted in Fig. 5 which
clearly shows the effect of the compact DM core near
10−7 pc for the more compact solution. This result is
also in agreement with the expected demagnified central

FIG. 5. Magnification factor for all the profiles listed in the
legend and computed by Eq. (20).

image, since the central image flux depends inversely on
the square of the surface density whereby concentrated
density profiles should cause central images to be very
faint [22, 24, 25]. We stress that Eq. (20) is only valid
in the weak field limit, hence a general description must
be used to account for the fully relativistic effects in the
more compact solution, i.e, the one derived in the regime
of large bending angles. Nevertheless, computing the
magnification and the angular position of the additional
Einstein ring in the full description of GR2, provides a
value of θE = 0.36 nano-arcsec, which is only 18% above
the one calculated within the weak field limit approxima-
tion, i.e. θE = 0.30 nano-arcsec.

It is important to note that we have used in all the
calculations the standard lensing formalism, based on the
assumptions that the gravitational field is weak and that
the deflection angle is small. With this, it is possible to
describe the properties of our fermionic DM gravitational
lens system, which is expected to account for such effects
very well in the halo part3. However, below 10−5 pc
strong bending must be taken into account to predict
properly the deflection angle due to the DM distribution
in that region. This will significantly affect the lensing
properties of the DMCC. In the next section we calculate
these lensing properties and compare them to those of a
black hole.

C. The regime of large bending angles: dark
matter central core versus massive black hole

In this part we study lensing due to a fermionic DM
core in a galactic center when a light ray approaches it

2 See for instance section II in [26], where is described the ex-
act equations for computing the magnification of images in this
regime.

3 or at least far enough away from the DMCC to avoid strong
bending effects
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very closely. For a compact object the bending angle
may become large, even exceeding several multiples of
2π meaning that the light ray makes several turns around
the center. Therefore we have to use the full formalism of
general relativity, beyond the weak-field approximation.
Images associated with light rays that make at least one
full turn around the center are often called “relativistic
images” although “higher-order images” would be a bet-
ter nomenclature. We will compare, in the regime where
such images occur, the lensing features of a fermionic DM
core with those of a black hole. The latter have been
studied in great detail in the Schwarzschild BH scenario
for Sgr A* [26], where relativistic images and relativistic
Einstein rings are formed. Hence, a natural question that
arises here is whether the DMCC compactness is large
enough to account for the formation of such relativistic
images. Hence, we attempt to answer this question by
computing the deflection angle of light rays passing very
closely by the DMCC and even inside of it since it is
treated as transparent. To do so, we use the formula de-
rived from the static spherically symmetric metric as a
function of the closest light ray distance of approach r0

[37]

α̂(r0) = 2

∫ ∞
r0

eλ/2dr√
(r4/b2)e−ν − r2

− π. (21)

where b is the impact parameter:

b = r0 exp [−ν(r0/2)]. (22)

In the case of the central BH hypothesis (as analyzed in
[26]), the metric outside is described by the Schwarzschild
solution

eν(r) = 1− 2GM

c2r
, (23)

eλ(r) =

(
1− 2GM

c2r

)−1

, (24)

where M = 4.2 × 106M� is the BH mass4. Instead,
the metric coefficients for the fermionic model we are in-
terested in here are obtained by solving the system of
equations Eqs. (7)-(11) along with the equations for the
density and the pressure, Eq. (3) and Eq. (4). The result
for the deflection angle is plotted in Fig. 6 where we can
see that the deflection caused by the DM central core is
small in comparison to that of a black hole, although con-
siderably beyond the validity of the weak-field formalism
which assumes that α̂ may be identified with tan α̂. The
maximum deflection, α̂ ≈ 0.62 (distinct from that ob-
tained by the weak-field approach α̂ = 0.46) is achieved
at r0 ≈ 7.18GM/c2 inside the DMCC. Not surprisingly, a

4 For this mass, the Schwarzschild radius, rs = 4.019 × 10−7 pc.

FIG. 6. Comparison between BH and fermionic DM quantum
core of the inos MC configuration. The vertical line indicates
the core radius of the DMCC: rc ≈ 9GM/c2. The deflections
are given in radians.

similar feature was observed as in the case of other com-
pact objects such as fully degenerate fermion stars as well
as boson stars [38, 39] (see also Ref. [40] and references
therein for a general discussion of compact objects and
their gravitational lensing effects). Interestingly, still at
distances larger than rc, the deflection angles are appre-
ciably different from the BH ones due to the contribution
of the DM distribution leading to a slight difference in its
gravitational potential. This is illustrated in Fig. 7.

The deflection angle for the DMCC can be computed
approximately by the Einstein deflection angle provided
r0 is large, i.e, in the weak field limit5

α̂(r0) =
4GM

c2r0
+O

(
G2M2

c4r2
0

)
, (25)

which at second order implies the value α̂(r0) ≈ 0.18 for
r0 = 25GM/c2, as can be also seen from Fig. 6. Hence
Eq. (25) underestimates just a few percent level the de-
flection angle compared to that given for the full descrip-
tion Eq. (21) at r0 = 25GM/c2. Below this radial scale
Eq. (25) is no longer valid since it exceeds in more than
10% the correct relativistic result given by Eq. (21).

We recall that, for a Schwarzschild BH, relativistic im-
ages are formed due to large bending of light near the
photon sphere at r = 3GM/c2. In this scenario, for the
closest distance of approach r0 = 3.21GM/c2 the de-
flection angle takes the value α̂(r0) ≈ 3π/2 which gives
rise to the first relativistic Einstein ring. This somewhat
gives a rough estimate of the compactness of the lens.
By analogy, the compactness of the DMCC can be ob-
tained as c2rc/(GM) ≈ 9. However, the light rays can

5 It is important to note that this formula is strictly valid only
for the Schwarzschild metric. However, at large radius values
the fermionic solution tends to match the exterior Schwarzschild
one.
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FIG. 7. Gravitational potential comparison between the cen-
tral BH and the fermionic DM configuration. The vertical
line indicates the core radius of the DMCC: rc = 9GM/c2.

pass through the DMCC since it does not possess an
event horizon, implying a vanishing deflection angle as
the light rays approach the very center of the configura-
tion. This means that there is no photon sphere, neither
inside nor outside the DMCC. This analysis leads to the
expected result that the DMCC does not produce such
strong bending effects as a central BH. Therefore, the
computed deflection of light rays may be used to discrim-
inate the different core compactness, if (highly accurate)
observations of the light deflection are available on such
short scales.

Such accurate measurements could be reached in the
near future by the Event Horizon Telescope (EHT)
project for the MW and for M 876. It is also important
to note that we only quantified the gravitational signal
effect through the deflection of light, but a more robust
study must be done, i.e. including the motion of stellar
or gas components near the MW center, in order to fig-
ure out realistic features that may be discriminant from
observations.

Finally, we compute in a general way the deflection
angle both for a BH and for the DMCC along the entire
galaxy in order to estimate the contribution of these com-
pact objects in comparison to the DM halo, see Fig. 8.
In both cases, we use the exact formula (21). Apart from
a very small region near the center, the two solutions
agree well up to reaching the regime where the contribu-
tion from DM halo cannot be neglected in comparison to
the contribution from the BH. Of course, the fermionic
model has to be compared with a combination of black
hole and a conventional DM model.

6 http://www.eventhorizontelescope.org

FIG. 8. Comparison between the BH lensing contribution
along the entire galaxy as well as the most compact solution
for the inos profile and the NFW profile. The deflection angle
is given in arcsec.

IV. CONCLUDING REMARKS

In this paper we studied for the first time the gravi-
tational lensing properties of the fermionic DM distribu-
tion (RAR model) in galaxies [5, 7]. The RAR model
describes correctly the properties of galactic DM halos
of galaxies (including the flatness of the rotation curves)
and, at the same time, it predicts a denser quantum core
towards the center of the distribution. As it has been
shown in Ref. [7], the compactness of the quantum core,
for a fermion mass in the range 50 kev . mc2 . 345 keV,
is high enough to explain the dynamics of the S-cluster
stars, the closest to the Galactic center. Thus, it repre-
sents an alternative scenario of the central compact ob-
ject in Sgr A*, traditionally assumed to be a BH.

We focused on the effect of the DM distribution in the
lensing properties of hypothetical and nearby Milky Way-
like spiral galaxies. We first studied the lensing effects
caused by the DM halo region (i.e. neglecting the bulge
and disk contributions to the net lensing). Then we per-
formed the analysis of the strong bending features near
the much denser lens represented by the DM quantum
core at the galaxy center. We computed lensing prop-
erties such as convergence, deflection angle and magnifi-
cation. We compared and contrasted the results for the
RAR profile with the ones of phenomenological profiles
such as the NFW and the NSIS ones.

For the fermion mass producing the most compact
quantum DM core of the RAR profile (see Fig. 1), mc2 ≈
345 keV, which can explain the Milky Way properties
from the center all the way to the halo [7], we conclude:

1. At distances r & 20 pc from the center of the
galaxy, in the very inner DM halo regions where
the diluted fermionic regime settles, the effect of
the central object on the lensing properties, e.g.
the deflection angle, is negligible (see, e.g., Figs. 4
and 8).
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2. Accurate measurements of the deflection angle in
regions r & few kpc where DM starts to dominate,
together with rotation curve data, could help to dis-
criminate between different DM models (see Fig. 4).

3. The deflection angle at distances r . 20 pc from
the center of the Galaxy increases in the case of the
RAR model while it decreases for the phenomeno-
logical ones (see Figs. 4 and 8). The reason for this
fundamental difference is the presence of the com-
pact DM quantum core whose effects start to be
appreciable below those distances (see next conclu-
sions).

4. In the region of 10−6 pc . r . 20 pc, the lensing ef-
fects of a quantum core and a central BH become a
theme of unprecedented precision (see Fig. 6). The
reason for this is that in this region the difference
between the two cases is very small (see Fig. 7).
This implies that the DM quantum core can affect
lensing features such as the critical curves and the
formation (suppression) of an additional (existing)
faint central image in the same fashion as a central
BH.

5. The maximum deflection produced by the DM
quantum core occurs at r ≈ 7GMc/c

2 ≈ 1.4 ×
10−6 pc (see Fig. 6; Mc is the mass of the DM
core). This is produced with a characteristic de-
magnified signal as in the case of a central BH (see
Fig. 5).

6. The effects of strong lensing (multiple images and
Einstein rings) are important at short distances ∼
10−4 pc for the more compact solution, when the
condition κ > 1 is achieved (see Fig. 3).

7. Large differences in the deflection angle produced
by a DM central core and a central BH appear at
distances r . 10−6 pc (see Fig. 6). Inside this re-
gion the density of the DM quantum core is nearly
constant (see Fig. 1) and its associated gravita-
tional potential becomes weaker with respect to the
one of a BH with the same mass (see Fig. 7). The
reason is that the DMCC does not possess an event
horizon, i.e it is regular at the center in contrast to
the central BH, implying a vanishing deflection an-
gle as the light rays approach the very center of the
DMCC.

8. The quantum DM core does not show a pho-
ton sphere but it can generate multiple images
and Einstein rings (see Fig. 5). Interestingly, the
proposed Event Horizon Telescope uses a Very
Long Baseline Interferometry (VLBI) array of (sub-
)millimeter telescopes that could resolve the pre-
dicted shadow of the central BH within the next
years with the inclusion of the Atacama Large

Millimeter/submillimeter Array (ALMA). The ex-
pected angular resolution is 20–30 µarcsec [41],
whereas the predicted angular diameter of the
shadow is 54 µarcsec. If a BH shadow will not be
observed, then it will open a window for alternative
scenarios regarding the nature of the SgrA* central
object including the DM quantum core predicted
by the RAR model.

Analogous conclusions apply as well to the RAR pro-
files obtained for other fermion masses in the range
50 kev . mc2 . 345 keV and for other galaxy types
such as dwarf and elliptical galaxies, due to the univer-
sal behavior of the RAR density profiles (see Fig. 2 in
[7]). The latter opens the interesting possibility to use
the lensing data for single galaxies from surveys such as
SWELLS [14, 15] and DiskMass [16].

We have considered in this work the gravitational lens-
ing produced by fermionic DM distributions within the
RAR model for isolated galaxies. Since the lensing is en-
hanced in clusters of galaxies, the generalization of the
RAR profile in presence of galaxy interactions deserves
to be explored in future works.

In Ref. [7] it has been shown that, for a fermion mass
range 50 kev . mc2 . 345 keV, the RAR profile is consis-
tent both with the Milky Way data and, when applied to
other galaxies, with observed galaxy correlations such as
the MBH−MDM relation and the constancy of the central
surface DM density. Interestingly, in the case of a fermion
mass of mc2 ≈ 50 keV, the DM core becomes gravitation-
ally unstable to BH formation when it reaches a mass of
≈ 2.3 × 108 M�. This led to the hypothesis made in
Ref. [7] that supermassive BHs (M & 108 M�) hosted
at the center of active galaxies could be formed from a
BH seed given by this DM collapse. Such a newly born
BH, soon after its formation, can accrete baryonic and
DM from its surroundings. In that case, the fermionic
DM density profile will be affected by the presence of,
and accretion on to, the central BH. We are planning to
perform an analysis of the lensing properties of such a
accretion-modified RAR profile, as well as its feedback
on the BH shadow properties (see, e.g., Ref. [42], for the
case of a NFW density profile) in a future publication.
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[5] R. Ruffini, C. R. Argüelles, and J. A. Rueda, MNRAS
451, 622 (2015), arXiv:1409.7365.
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