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Nonrelativistic supersymmetry in noncommutative space
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Abstract

We analyze a model of nonrelativistic matter in (2 + 1)-dimensional noncommutative space. The matter fields interact with
gauge fields whose dynamics is dictated by a Chern–Simons term. We show that it is possible to choose the coupling constants
in such a way that the model has and extended supersymmetry and Bogomolnyi equations can be found.
 2005 Elsevier B.V. All rights reserved.

In the past few years, field theories defined in noncommutative (NC) space have received much attention mainly
in connection with the effective low energy description of string theories [1]. For the particular case of (2 + 1)-
dimensional space, it has also been argued that Chern–Simons theories in NC space can be used as an effective
description of the physics of the quantum Hall effect [2,3].

Motivated by these facts, the extension to NC space of the Jackiw and Pi model (JP) [4] of nonrelativistic matter
interacting with gauge fields whose dynamics is governed by Chern–Simons fields was first considered in [5].

In ordinary space, this model, which is related to the physics of the Aharonov–Bohm problem, provides a
nontrivial example of a gauge theory invariant under the action of the Galilean group [6]. Indeed, the space–time
invariance group is larger as the theory is also invariant under dilations and conformal transformations, at least at
the classical level. As it is the case for many gauge theories, the scale invariance of the action is broken by quantum
corrections. Interestingly, the invariance is recovered for a particular relation of coupling constants [7].

* Corresponding author.
E-mail addresses: lozano@df.uba.ar (G.S. Lozano), opiguet@yahoo.com (O. Piguet), fidelschaposnik@yahoo.co.uk (F.A. Schaposnik),

lsourrouille@yahoo.es (L. Sourrouille).
1 Associated with CONICET.
2 Associated with CICBA.
0370-2693/$ – see front matter  2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.physletb.2005.09.083

http://www.elsevier.com/locate/physletb
mailto:lozano@df.uba.ar
mailto:opiguet@yahoo.com
mailto:fidelschaposnik@yahoo.co.uk
mailto:lsourrouille@yahoo.es
http://dx.doi.org/10.1016/j.physletb.2005.09.083


G.S. Lozano et al. / Physics Letters B 630 (2005) 108–114 109
In NC space, the model looses some of the symmetries present in ordinary space. This is somewhat expected as
noncommutativity breaks explicitly the scale symmetry and the boost sector of the Galilean group (for a detailed
discussion see [8]). Despite this fact, both versions of the model share some important aspects, like the existence
of BPS equations for a particular relation of coupling constant [4,5,9].

In ordinary space, the JP model admits and N = 2 supersymmetric extension [10], providing another example
of the by know well established connection between BPS equations and supersymmetry [11–14]. This case is
particularly interesting as it provides a nontrivial explicit realization of the graded Galilean symmetry originally
discussed in [15].

In this Letter we shall examine possibility of building a supersymmetric extension of the JP model in noncom-
muative space. We shall show that indeed it is possible to do so precisely for the same relation of coupling constants
for which BPS equation exist.

We will be interested in d = 2 + 1 noncommutative space characterized by the relations

(1)[x1, x2] = iθ, [xi, t] = 0,

where θ is a real constant with dimension of length squared. It will be convenient to introduce complex variables z

and z̄

(2)z = 1√
2

¡
x1 + ix2¢, z̄ = 1√

2

¡
x1 − ix2¢,

which can be related to annihilation and creation operators â and â† acting on a Fock space,

(3)â = 1√
θ
z, â† = 1√

θ
z̄,

so that (1) becomes

(4)
£
â, â†¤ = 1.

In this way, through the action of a† on the vacuum state |0i, eigenstates of the number operator

(5)N̂ = a†a

are generated. With our conventions, derivatives in the Fock space are given by

(6)∂z = − 1√
θ

£
â†,

¤
, ∂z̄ = 1√

θ
[â, ],

and integration on the noncommutative plane should be interpreted as a trace

(7)
Z

d2x → 2πθ Tr .

We are interested in the model of nonrelativistic matter interacting with gauge fields whose dynamics is governed
by the Chern–Simons term that has been considered in [5]. The action associated to this model can be written as

(8)S = Scs +
Z µ

iφ†Dtφ − 1
2m

(Diφ)†Diφ + λ1
¡
φ†φφ†φ

¢¶
d3x.

Here, Scs is the Chern–Simon action3

(9)Scs =
Z

d3x

µ
− κ

4ci

£
(∂tA)+A− − (∂tA)−A+

¤ − A0κB12

¶
,

3 Throughout this Letter we will be using the notation V ± = V 1 ± iV 2 where V 1 and V 2 are the components of any vector V in the plane.



110 G.S. Lozano et al. / Physics Letters B 630 (2005) 108–114
where

(10)B12 = 1
2i

(∂−A+ − ∂+A−) − e

2c
[A−,A+],

and φ denotes a complex bosonic field. The interaction with the gauge fields is introduced via the covariant deriv-
atives

(11)Dtφ = ∂tφ + ieA0φ, Diφ = ∂iφ − ieAiφ.

The model is invariant under gauge transformations,

(12)φ0 = Uφ, ψ 0 = Uψ, Ai = U−1AiU − i

e
∂iUU−1.

The model described by the action (8) is the realization in NC space of the one originally discussed in [4]. Notice
that in the NC case one needs to choose a particular ordering in the covariant derivative. For definiteness, we will
be working with the “fundamental” representation (11)–(12) but the other cases can be handled similarly.

In order to explore the possibility of building a supersymmetric extension of the model, we enlarge the field
content of the theory and include a nonrelativistic fermion ψ . The action of the model then becomes

S = Scs +
Z

d3x

µ
iφ†Dtφ + iψ†Dtψ − 1

2m
(Diφ)†Diφ − 1

2m
(Diψ)†Diψ + e

2mc
ψ†B12ψ

(13)+ λ1
¡
φ†φφ†φ

¢ + λ2
¡
φ†φψ†ψ

¢ + λ3
¡
φφ†ψψ†¢ + λ4

¡
ψ†ψψ†ψ

¢¶
.

This action is the simplest generalization to noncommutative space of the one studied in Ref. [10]. Notice that
terms of the potential proportional to λ2 and λ3 would be equivalent to each other in ordinary space and that the
term proportional to λ4 would be identically zero due to the anticommuting character of the fermion fields. We
have chosen a particular sign for the Pauli interaction (corresponding to a “down” spinor) which coincides with the
one in [10].

In a nonrelativistic setting the action of bosons and fermions are almost identical if it were not for the presence
of the Pauli term for fermions. As shown below, the supersymmetry variation of this last term is easily compensated
by the Chern–Simons term.

We will calculate the variation of the action under the following supersymmetry transformation:

(14)δ1φ = √
2mη

†
1ψ, δ1ψ = −√

2mη1φ, δ1A = 0, δ1A
0 = e√

2mcκ

¡
η1φψ† − η

†
1ψφ†¢.

It is trivial to show that,

δ1

Z µ
− κ

4ic

¡
(∂tA)+A− − (∂tA)−A+

¢ + iφ†∂tφ + iψ†∂tψ

¶
d3x = 0,

(15)δ1

Z µ
1

2m
(Dφ)†(Dφ) + (Dψ)†(Dψ)

¶
d3x = 0, δ1

Z µ
−A0κB12 + e

2mc
ψ†B12ψ

¶
d3x = 0.

Then the variation of the action reduces to

δ1S = √
2m

Z
d3x

µ
η1

·µ
− e2

2mcκ
− 2λ1 − λ3 + λ2

¶
φ†φψ†φ

(16)+
µ

e2

2mcκ
− λ3 + 2λ4 − λ2

¶
ψ†φψ†ψ

¸
+ h.c.

¶
.
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So the transformations in Eq. (14) correspond to a symmetry of the action if the following relations are satisfied:

(17)
e2

2mcκ
+ 2λ1 + λ3 − λ2 = 0,

e2

2mcκ
− λ3 + 2λ4 − λ2 = 0.

While the first condition coincides with the one arising in ordinary space, the second one is peculiar to noncom-
mutative space. It originates from the second term in Eq. (14) which is automatically zero in ordinary space due to
the Grassman character of ψ and ψ†.

The fact that is less evident is the existence of a second supersymmetry. Let us examine the variation of the
action under the following transformation:

δ2φ = i√
2m

η
†
2D+ψ, δ2ψ = − i√

2m
η2D−φ,

δ2A
+ = 2e√

2mκ
η2φψ†, δ2A

− = − 2e√
2m

η
†
2ψφ†,

(18)δ2A
0 = ie

(2m)3/2cκ

¡
η2φ(D+ψ)† + η

†
2(D+ψ)φ†¢.

Again it is easy to show the invariance of the kinetic terms

(19)δ

Z µ
− κ

4ic

¡
(∂tA)+A− − (∂tA)−A+

¢ + iφ†∂tφ + iψ†∂tψ

¶
d3x = 0.

After some algebra, one can see that the variation of the remaining part of the action can be written as

(20)δ2S = δ
(1)
2 S + δ

(3)
2 S,

where δ
(1)
2 S is linear in fermion fields and δ

(3)
2 S is cubic:

(21)

δ
(1)
2 S = i√

2m
η2

Z
d3x

µ
ψ†

µ
e2

2mcκ
2φ(D+φ)†φ + φφ†(D−φ)

¶

− 2λ1
¡
φ(D+φ)†φ + φφ†(D−φ) + (D−φ)φ†φ

¢ + λ2(D−φ)φ†φ − λ3(D−φ)φφ†
¶

+ h.c.,

(22)

δ
(3)
2 S = i√

2m
η2

Z µ
d3x ψ†

µ
e2

2mcκ

¡
φ(D+ψ)†ψ + 2ψ(D+ψ)†φ

¢ + λ2ψ(D+ψ)†φ + λ3φ(D+ψ)†ψ

− 2λ4
¡
φ(D+ψ)†ψ + φψ†(D−ψ) + ψ(D+ψ)†φ

¢¶¶
+ h.c.

From Eq. (21), we obtain

(23)
e2

mcκ
− 2λ1 = 0,

e2

2mcκ
− 2λ1 − λ3 = 0, −2λ1 + λ2 = 0,

while from Eq. (22) we get

(24)
e2

2mcκ
+ λ3 − 2λ4 = 0, λ4 = 0, − e2

mcκ
+ λ2 − 2λ4 = 0.

The solution for this system is

(25)λ1 = e2

2mcκ
, λ2 = e2

mcκ
, λ3 = − e2

2mcκ
, λ4 = 0,

which also satisfies the system of Eqs. (17).
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The results in ordinary space, namely

(26)
e2

2mcκ
+ 2λ1c − λ2c = 0, λ1c = e2

2mcκ
,

can be recovered by noticing that the potential in ordinary space becomes

(27)V = λ1φ
†φφ†φ + (λ2 − λ3)φφ†ψψ†,

so that λ2c = λ2 − λ3 can be identified. After this identification, the ordinary space results follow.
The relation of coupling constants which make the model N = 2 supersymmetric is connected to the BPS point.

This can be most easily seen by writing the Hamiltonian of the model as

(28)H =
Z

d2x

µ
1

2m
(Diφ)†Diφ + 1

2m
(Diψ)†Diψ − e

2m
ψ†Bψ + V (φ,ψ)

¶
,

where

(29)V [φ,ψ] = −λ1φ
†φφ†φ − λ2φ

†φψ†ψ − λ3φφ†ψψ† − λ4ψ
†ψψ†ψ

and

(30)B = − e

κ

¡
φφ† − ψψ†¢.

Using the identity

(31)(Diφ)†Diφ = (D±φ)†D±φ ± eφ†Bφ,

the Hamiltonian can be re-written (up to surface terms) as

H =
Z

d2x

µ
1

2m
(D±φ)†D±φ + 1

2m
(D±ψ)†D±ψ −

µ
λ1 ± e2

2mκ

¶
φ†φφ†φ − λ2φ

†φψ†ψ

(32)+
µ

−λ3 ± e2

mκ
− e2

2mκ

¶
φφ†ψψ† +

µ
−λ4 ± e2

2mκ
− e2

2mκ

¶
ψ†ψψ†ψ

¶
.

In the bosonic sector of the theory, we then have

(33)H =
Z

d2x

µ
1

2m
(D±φ)†D±φ −

µ
λ1 ± e2

2mκ

¶
φ†φφ†φ

¶
.

Thus, taking the lower sign,

(34)H =
Z

d2x
1

2m
(D±φ)†D±φ

leads to the BPS equation

(35)D−φ = 0.

The particular choice of sign in Eq. (33) which leads to the “antiselfdual” Eq. (35) is related to our earlier choice
of sign for the Pauli interaction. Changing this sign and redefining the SUSY transformations accordingly leads to
the “selfdual” BPS equation.

In ordinary space, the choice that makes the model N = 2 supersymmetry invariant allows to write the full
Hamiltonian (i.e., bosons + fermions) as a sum of squares [10], just the first two terms in (32). Nevertheless, in NC
space, one obtains

(36)

H =
Z

d2x

µ
1

2m
(D−φ)†D−φ + 1

2m
(D−ψ)†D−ψ − e2

mκ
φ†φψ†ψ − e2

mκ
φφ†ψψ† − e2

mκ
ψ†ψψ†ψ

¶
.
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The extra terms cancels in the commutative limit.
In order to write down the supersymmetry algebra, we start by defining Poisson brackets. Calling F,G the

supersymmetry charges or their Hermitian conjugates, we have

(37){F,G} = i
X
j

Z
d2x

µ
δF

δΩj (x, t)

δG

δΠj (x, t)
− (−1)fj

δF

δΠj (x, t)

δG

δΩj (x, t)

¶
,

with

(38)Ω =
µ

φ,ψ,

r
κ

2
A+

¶
, Π =

µ
iφ†, iψ†, i

r
κ

2
A−

¶
, f = (0,1,0).

Using Noether’s theorem, the supersymmetric transformations (14) and (18) lead to the charges Q1 and Q2,

(39)Q1 = i
√

2m

Z
d2x φ†ψ,

(40)Q2 = 1√
2m

Z
d2x (D−φ)†ψ.

Using (37) one gets for the Q1 bracket

(41)
©
Q1,Q

†
1
ª = 2m

Z
d2x

¡
φ†φ + ψ†ψ

¢ ≡ 2M,

where we have introduced the total mass M .
Concerning the Q2 bracket, one has

(42)
©
Q2,Q

†
2
ª = 1

2m

Z
d2z

µ
(D+ψ)†(z)D+ψ(z) + (D−φ)†(z)D−φ(z) − 2e2

κ
φ†ψ†ψφ

¶
.

Now, identity (31) allows us to rewrite Eq. (42) in the form

(43)

©
Q2,Q

†
2
ª = 1

2m

Z
d2z

µ
(Diψ)†(z)Diψ(z) + (Diφ)†(z)Diφ(z) − 2e2

κ
φ†ψ†ψφ + eφ†Bφ − eψ†Bψ

¶
,

which, after using the Gauss law (Eq. (30)) becomes

(44)
©
Q2,Q

†
2
ª = H.

Finally, the only nonvanishing remaining bracket gives

(45)
©
Q1,Q

†
2
ª = 1

2i

Z
d2x

¡
φ†D−φ − (D−φ)†φ + ψ†D−ψ − (D−ψ)†ψ

¢ = P−,

being Pi the momentum.
As in the ordinary space case notice that the configurations of fields (φ,ψ) such that

(46)D−φ = 0, ψ = 0

is left invariant by the supersymmetric transformation Eqs. (18).
In summary, we have been able to show that a N = 2 supersymmetric extension of model for nonrelativistic

matter interacting with Chern–Simons gauge fields can be built. This was achieved for a particular relation of
coupling constants given in Eq. (25), which in the commutative space limit θ = 0 reduces to the ordinary space
result [10]. In NC space, even for a U(1) gauge group one has different possibilities to couple gauge and matter
fields according to the choice of the covariant derivative (in the fundamental, the antifundamental or the adjoint
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representation) and this can in principle lead to different sets of BPS equations and their corresponding solutions.
Also, since the NC extension of the Jackiw–Pi model [4] could be of relevance in connection with the physics of
the quantum Hall effect, the case of nonrelativistic matter interacting with non-Abelian gauge fields would be of
much interest. In this respect, we believe that our results can be extended to the case of a U(N) group as it was
done in ordinary space for the SU(N) case [16]. We expect to report on these issues in the future.
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