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Abstract

Anurans employ a wide variety of anti-predator mechanisms to defend themselves.
In casque-headed hylids, defence is thought to be a complex combination of sev-
eral anti-predator mechanisms. However, the defence traits of only a few species
are known; some hypotheses have yet to be addressed, whereas others, already
tested in some species, need to be tested in additional taxa. The anti-predator
mechanism of the casque-headed frog, Argenteohyla siemersi, is described here. It
is a complex mechanism consisting of (1) behavioural and ecological traits, includ-
ing secretive and semi-phragmotic habits and posture; (2) morphological features,
including cryptic and aposematic colourations, a skull covered with bony dermal
spines and protuberances that are associated with two types of granular venom
glands; and (3) physiological and chemical traits, such as a highly lethal skin secre-
tion. Our results are compared with those of previous studies of defence mecha-
nisms in casque-headed frogs in an effort to understand the mechanisms and
evaluate their potential phylogenetic signal in this group of anurans.

Introduction

Anuran anti-predator mechanisms include passive ones that
reduce the likelihood of being detected by the predator (e.g.
cryptic colouration and secretive habits), as well as active
mechanisms that reduce the chances of being consumed during
an encounter with a predator (Wells, 2007). Usually, anurans
employ both active and passive mechanisms in a sequential or
hierarchical defence strategy (Toledo, Sazima. & Haddad,
2011). Thus, an anuran may avoid predators by either crypsis
or secretive habits but, once detected, active anti-predator
mechanisms, such as aposematic colourations, defensive pos-
tures, and the release of toxic and distasteful skin secretions,
begin to play a role (Wells, 2007; Toledo & Haddad, 2009;
Toledo et al., 2011).
The red-spotted Argentina Frog, Argenteohyla siemersi

(Mertens, 1937), is a hylid treefrog found in Argentina, Para-
guay and Uruguay (Cei & Pierotti, 1955; Klappenbach, 1961;
Trueb, 1970a; Cajade et al., 2010). Typically, it has rounded,
coral-reddish spots on the legs, belly, flanks and vocal sacs.
Argenteohyla siemersi is included in the tribe Lophiohylini
Miranda-Ribeiro, 1926, together with Aparasphenodon, Cory-
thomantis, Itapotihyla, Nyctimantis, Osteocephalus, Osteopilus,
Phyllodytes, Phytotriades, Tepuihyla and Trachycephalus,

which form a monophyletic clade (Faivovich et al., 2005;
Duellman, Marion & Hedges, 2016) known as ‘casque-headed
frogs’ (Faivovich et al., 2005). Like some other casque-headed
frogs, A. siemersi (1) has a heavily ossified skull and sculp-
tured dermal bone that is co-ossified with the overlying skin
(Trueb, 1970a); (2) takes refuge in bromeliad leaf axils (Cei &
Pierotti, 1955; Cajade, Marangoni & Gangenova, 2013); and
(3) presumably displays phragmotic behaviour by backing into
axils and flexing the head at a right angle to the body (Bar-
bour, 1926; Firschein, 1951; Trueb, 1970b), as suggested by
Trueb (1973) and Lutz & Barrio (1966). However, this beha-
viour has not been observed in A. siemersi. Both phragmotic
behaviour and cranial co-ossification have been considered as
devices to decrease water loss in Aparasphenodon and Cory-
thomantis (Trueb, 1970b; De Andrade & Abe, 1997; Navas,
Jared & Antoniazzi, 2002) or as means for the frogs to defend
themselves from predators (Barbour, 1926; Trueb, 1970b).
There is strong evidence supporting the ‘defence hypothesis’ in
both of these taxa (Jared et al., 2005, 2015; Mendez et al.,
2016).
The defence traits in casque-headed frogs are known for

only a few species; consequently, some hypotheses have not
been addressed, whereas others, already tested in some species,
remain to be tested in others, such as Argenteohyla siemersi.

Journal of Zoology �� (2017) ��–�� ª 2017 The Zoological Society of London 1

Journal of Zoology. Print ISSN 0952-8369



Based on our field and laboratory observations of the anti-pre-
dator mechanisms of A. siemersi, we: (1) report and describe
the phragmotic behaviour (H1: phragmosis is a defensive beha-
viour, Jared et al., 2005); (2) describe the skull morphology
and histology of the skin on the head and body (H2: co-ossifi-
cation has a defensive function, Jared et al., 2005); (3)
describe the muscular and bony morphology of the posterior
region of the head (H3: 90˚ flexion of the head is correlated
with enlargement of the rhomboideus anterior muscle) (Trueb,
1970b); and (4) analyse the toxic power of the skin secretions
with an Ld 50-test (H4: the coral-reddish spots function as
aposematic colouration, Toledo & Haddad, 2009).

Materials and methods

Specimens examined

Behavioural observations were conducted in the laboratory on
two adult frogs collected at ‘Selvas de Montiel’ (30°53042.73″
S, 59°34043.71″W), Entre R�ıos Province, Argentina, on 21
August 2012. In addition, we raised eight subadults from larval
Stage 41 (Gosner, 1960) in the lab; these were collected on 5
November 2014 at Riachuelito (27°33045.80″S; 58°34048.67″W),
Corrientes Province, Argentina. Samples for the study of the
skull and muscle morphology, and histology of the skin of the
head and body of adult A. siemersi were obtained from speci-
mens in the Herpetological Collection of Museo de La Plata
(MLP). We studied the toxicity of skin secretions of five adult
A. siemersi collected at ‘Reserva Natural Rincon Santa Mar�ıa’
(27°31031.62″S, 56°36018.65″W) on 29 July 2015.

Behavioural observations

Field observations were carried during fieldwork related to
other studies (Cajade et al., 2010, 2013). The colour patterns
were associated with several behavioural display contexts and
classified according to Toledo & Haddad (2009). Phragmotic
behaviour was observed in the field, as well as in eight frogs
in the laboratory, where each individual was provided a plastic
tube simulating a refuge. We touched the frog’s head with
tweezers to simulate a predator. Each individual was stimulated
at 10 s intervals for 5 min (= 300 s) and each response was
recorded. We term the response of head flexion to a nearly 90˚
angle to the trunk of the frog ‘induced phragmosis’. When a
frog engaged in this behaviour, we waited until it resumed its
normal posture before stimulating it again. The variables
recorded for each frog were time period (duration), frequency
of occurrence, and presence/absence of both body and head
secretions at the end of the experiment.

Morpho-histological analysis

Two frog heads were submerged in a 30% solution of sodium
hypochlorite for 24 h to remove the soft tissue to study the
dermal bone morphology. One head (MLP 5844;
Appendix S1) was mounted on a metal stub and sputter-coated
with gold and examined with a Zeiss Supra 40 with scanning
electron microscope (SEM). The other (MLP 5843;

Appendix S1) was examined under a Leica EZ4D stereoscopic
microscope, from which macroscopic, digital images were cap-
tured. To facilitate future comparisons with other casque-
headed frogs, the sculptured details of cranial roof bones are
described in detail using terminology adopted and modified
from Witzmann et al. (2010).
To study cranial co-ossification, we decalcified two addi-

tional heads (previously fixed in 4% formalin solution) in 5%
nitric acid for 96 h before immersing in 5% potassium alum
for 24 h, washing them with running water for 24 h, and then
processing them following traditional histological techniques
for light microscopy. Skin samples were taken from different
regions of the body for comparative examination, as follow:
cranial vault and loreal region (Fig. 1); jaws; middle back and
anterior back adjacent to occipital region of head; and hind
limbs, including samples from the dark background and red-
coral spots. Tissues were embedded in Paraplast Plus (Sigma)
and sectioned at 7 lm with a Microm HM 325 microtome.
Sections were stained with haematoxylin and eosin (H&E) or
modified Masson’s trichrome (MT) stain for general cytology
and histology. MT differs from the original Masson’s tri-
chrome in which the acid fuchsin solution also contains
Orange G and xylidine ponceau. In addition, the following
histochemical stains were applied to select sections to deter-
mine the secretory products of the different gland types: peri-
odic acid-Schiff (PAS; Kiernan, 1999) for neutral
glycoconjugates, Alcian blue 8 GX at pH 2.5 plus haema-
toxylin (AB; Kiernan, 1999) for primarily carboxylated acidic
glycosaminoglycans and Coomassie blue R250 (CB; Kiernan,

Figure 1 Dorsum of the skull of Argenteohyla siemersi. Black lines

with roman numerals indicate locations of histological sections.

Abbreviations: Na (nasal); Pmx (premaxilla); Mx (maxilla); Sph

(sphenethmoid); Fp (frontoparietal); Sq (squamosal). Dermal

sculpturing is not shown.
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1999) for proteins. Mucous glands and cartilage were used as
positive controls for PAS and AB; a keratinized portion of the
epidermis was used as a positive control for CB. Stained sec-
tions were examined using a Zeiss Primo Star microscope,
and images were captured using a Canon PowerShot A640
digital camera.
We made comparative observations of three additional

skeletons of Argenteohyla siemersi (MLP 5845-5847),
together with three Hypsiboas raniceps Cope, 1862 (MLP
2453, 4281, 3585) and three Trachycephalus typhonius (Lin-
naeus, 1758) (MLP 492, 3551, 3552; Appendix S1). These
specimens were double-stained for bone and cartilage using
the technique of Taylor & Van Dyke (1985), but the proce-
dure was terminated before clearing to examine the cranial,
axial and scapular muscles involved in head bending. Subse-
quently, the clearing process was completed to examine the
morphology of certain cranial bones (e.g. sculptured bones
and those in the occipital region). The two species of tree-
frogs selected for comparison also use bromeliads as refuge,
but they are not phragmotic.

Cutaneous secretion and lethality

Samples of skin secretions were extracted from adult frogs
following the protocol of Jared et al. (2005). A single sample
of milky secretion, obtained from the mix of all individual
secretions, was centrifuged and the clear supernatant was col-
lected, lyophilized, and stored at –70°C. The resulting dried
secretion was used to determine lethality. For this, laboratory
mice (male Balb/C isogenic) were donated by the Facultad de
Veterinaria (Universidad Nacional del Nordeste, Argentina).
Mice weighed between 18 g and 22 g, and were 7 or 8 weeks
old. We followed the international animal welfare recommen-
dations for the treatment and maintenance of mice and frogs
(Stitzel, Spielmann & Griffin, 2002). The lethal toxicity of the
secretion of Argenteohyla siemersi was assessed by intraperi-
toneal injection of various secretion concentrations (1, 1.8,
3.16, 5.6, 8.4, 10, 15 lg/animal) in 200 lL of 0.85% NaCl
solution; negative control mice received only saline solution.
Six animals were used for each secretion dose. The death-sur-
vival ratio was determined after 48 h, and Lethal Dose 50
(LD50) and its confidence limits were estimated using the
Spearman-Karber method (World Health Organization, 1981).
LD50 was expressed as micrograms of toxin per mouse
(20 � 2 g) necessary to kill 50% of the population of tested
animals.

Results

Studies and observations on behaviour

The frogs were observed either in reproductive activity or
hidden inside a bromeliad. The bright coral-reddish coloura-
tion of Argenteohyla siemersi is concealed when the frog is
in resting posture or inside the refuge (cf. plates in Cajade
et al., 2013). The bright colours (coral-reddish) are revealed
when the frog jumps or swims, and are especially obvious in
males calling from the water surface (Cajade et al., 2010; cf.

plates in Cajade et al., 2013). When the frog takes refuge
(e.g. in a bromeliad), it is cryptic because retracts its limbs
toward its body thereby hiding the bright colouration and
exposing only the dark brown head and back of the body. If
the frog is submerged in the water accumulated in a brome-
liad, the head and body appear homochromic with the shad-
owy environment of the microhabitat; thus, the frog is
difficult to detect, unless it is illuminated with a flashlight
(Fig. 2).
Although phragmosis was not observed in Argenteohyla sie-

mersi found inside bromeliads and umbellifers, the frogs usu-
ally adopt the phragmotic posture (with the head flexed to
nearly 90˚) as they are captured. During laboratory experi-
ments, all frogs displayed induced phragmosis (Fig. 3). The
frogs react to the stimulus in one of three different ways
(Supplemental Material). (1) They flex the head to a nearly
90˚ angle to the body, but return to normal position immedi-
ately after the stimulus ends (brief phragmosis). (2) They flex
the head to a nearly 90˚ angle to the body and remain in this
position for varying periods of time (persistent phragmosis)
(3) they do not display the phragmotic posture (i.e. moving
the body and legs). All the frogs displayed persistent phrag-
mosis at least once (Table 1). The mean number of stimuli

(a)

(b)

Figure 2 Refuge behaviour of Argenteohyla siemersi in a bromeliad

(Aechmea disthichantha) in natural (a) and artificially illuminated (b) light

conditions. [Colour figure can be viewed at wileyonlinelibrary.com].
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made were 14.6 (SD = 2.85; min = 11, max = 17; n = 8) with
a mean response number of persistent phragmosis of 7.3
(SD = 3.5; min = 2, max = 12; n = 8) and with a mean
duration of the persistent phragmosis of 23.1 s (SD =
13.4 min = 2, max = 72; n = 59). Neither body nor head skin
secretions were detected on the specimens during the experi-
ment. Additionally, the laboratory-reared frogs usually dis-
played the phragmotic posture when they were manipulated
by hand.

Dermal skull

The cranium of Argenteohyla siemersi is strongly ossified with
a casque of sculptured dermal bone that composes the skull
table, except for a region immediately anterior to the fron-
toparietals (the endochondral sphenethmoid) (Fig 3a), and the
pars dentalis of the maxilla (Fig. 4c). Sculptured roofing bones
are characterized by different patterns such as ridges, pits,
emergent protuberances, spiny projections and pores. The skull
table bears sculptured ridges (Fig. 4c), whereas the loreal
region is covered with individual spiny projections in addition
to ridges (Fig. 4d). The ridges can be interconnected and the
intersections between them define rounded, polygonal pits of
different sizes (Fig. 5a). The floor of the pit usually has one to
three pores of variable sizes (Fig. 5a). The squamosal, along
with the ventrolateral surface of the nasal and the adjacent pars
facialis of the maxilla, the sculptured ridges are interconnected
longitudinally, but lack transverse connections, to form a pat-
tern of parallel, longitudinal pits of varying size. (Fig. 5a). A
supraorbital flange, composed of the frontoparietal, extends
laterally over the orbit, the sculpted margin of which is com-
posed of the nasal, pars facialis of the maxilla and the zygo-
matic ramus of the squamosal. (Fig. 4b). There are emergent
protuberances along the tops of the ridges (Fig. 5). The smooth
surface of the protuberances has a vitreous appearance,
whereas the rest of the sculptured dermal bone is wrinkled and
opaque (Figs 4f and 5b).

(a) (b)

(c)
(d)

Figure 3 Induced phragmotic posture in Argenteohyla siemersi in the

laboratory (a–c) and the milky secretion on the head induced by

massaging the frog’s head (d). [Colour figure can be viewed at

wileyonlinelibrary.com].

Table 1 Summary of the laboratory experience conducted in

Argenteohyla siemersi to induce phragmotic posture

Individual

Time

experience

(s)

Stimulus

(n�)
Behavioural

pattern (n�) Duration (s)

1 300 16 12 (3) 12.8 � 6.8 (5–25)

2 340 17 2 (14) 47.5 � 13.4 (38–57)

3 410 11 6 (2) 26.8 � 10.9 (14–45)

4 300 19 11 (7) 7.1 � 4.9 (2–20)

5 314 12 10 (12) 22.5 � 22.7 (8–72)

6 300 16 4 (2) 11.5 � 13.3 (3–31)

7 300 14 8 (3) 21.8 � 16.9 (4–51)

8 338 12 6 (5) 35.5 � 23.5 (11–64)

(a)

(d) (e) (f)

(b)

(c)

Figure 4 Cranial structure and dermal ornamentation of Argenteohyla

siemersi. Regions without dermal structures: sphenethmoid (Sph; a),

maxillary pars dentalis (Mpd; c). Dermal structures: spines (Sp; d),

orbital sculptural ridge (Oer; b). Details: crystallized secretion of Type

II granular gland (e). Vitreous protuberances (f). Skull table and

sphenethmoid (a). Orbital sculptural ridge (oer; b). Pars facialis (Mpf)

and pars dentalis (Mpd) of maxill (c). Spines (Sp; d). [Colour figure

can be viewed at wileyonlinelibrary.com].
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Body and head skin histology

The skin of adult Argenteohyla siemersi has four or five layers
of epidermal cells; the superficial layers are partially kera-
tinized (Figs 6 and 7). The dermis consists of a stratum spon-
giosum and a stratum compactum; the former bears three
different dermal glands – viz., mucous glands and two types
of granular glands (Figs 6 and 7). Mucous glands are dis-
tributed over the body and head, and are typical of those of
other amphibians (Fig. 6a); mucocytes are only positive for
detection of neutral glycoconjugates (Fig. 6b). The two types
of granular glands are structurally similar, having a syncytial
secretory compartment within the acinus, which is surrounded
by myoepithelial cells. However, the types of granular glands
differ in their locations and histochemical staining properties
(Fig. 7). Type I granular glands have a granular, acidophilic
content (Fig. 7a) and are only positive for detection of proteins
(Fig. 7b). In contrast, Type II granular glands are bigger, have
a content with striated appearance that fills the glandular
lumen, stain positive for neutral glycoconjugates (Fig. 7c), and
are highly positive for detection of proteins (Fig. 7d). Granular
glands have a characteristic distribution that is summarized in
Table 2.
In the cranial vault region, some parts of the stratum com-

pactum are replaced by dermal bone, which fuses or co-ossi-
fies the skin with underlying bones (e.g. frontoparietal,
sphenethmoid, nasals, squamosals) (Fig. 8). Other parts of the
cranium are not co-ossified; the stratum compactum is only

(a)

(b) (c)

Figure 5 SEMs of cranial ornamentation of Argenteohyla siemersi.

(a) Details of ornamentation, a protuberance (b), and a sculptural

ridge (c). Abbreviations: Ep (emergent protuberance); Lp (longitudinal

pit); Rpp (rounded polygonal pit); Pr (pores).

(a)

(b)

Figure 6 Skin glands of Argenteohyla siemersi from histological

section number I (Fig. 1). (a) Detail of mucous (Gm) and granular

glands (Gg) stained with H&E. Morphology is typical of anurans, with

mucocytes (mucous cells) surrounding the lumen. (b) Detail of

mucous and granular glands stained with PAS. Note that mucocytes

and the lumen content stained positive for detection of neutral

glycoconjugates. Abbreviations: De (dermis); Ep (epidermis); Gg I

(Type I granular gland); Gm. [Colour figure can be viewed at

wileyonlinelibrary.com].
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replaced with dermal bone in its more inner portion, forming
a basal layer of bone on which there is a layer of collagen
fibres (Fig. 8a). The connective tissue that separates the par-
tially ossified taenia tecti marginalis from the dermal fron-
toparietal (Fig. 8a–c) has abundant collagen fibres and
chondrocyte-like cells with eccentric nuclei (Fig. 8b). This
binding tissue stains positive for acidic glycoconjugates
(Fig. 8c) and occupies a considerable space between the endo-
and exocranium. Posteriorly, in the occipital region, muscles

lie between the dermal casque and the endocranium (Fig. 8d).
In the frontal region, bony protuberances are intermingled with
enlarged Type I and II granular glands, but the most abundant
glands are Type I (Fig. 8). A similar pattern occurs in the lor-
eal region of the nasal, where the stratum compactum is com-
pletely or partially ossified (Fig. 9a,b). Some of the spines
extend into the epidermis and nearly pierce the skin in areas
where the epidermis is thinner and composed only of the ker-
atin layer (Fig. 9c). Histological sections of the region of the

(a) (b)

(c) (d)

Figure 7 Different types of granular glands in the skin of Argenteohyla siemersi from histological section number II (Fig. 1). (a, b) Type I granular

gland (Gg I) section stained with H&E (a) and CB (b). The gland content is acidophilic and granular in appearance, with a slight staining of

glandular content for protein detection. (c) Section stained with PAS. The contents of a Type II granular gland (Gg II) are positive for detection

of neutral glycoconjugates, and a bony spine (star) in the dermis reaches the epidermis (Ep). (d) Detail of Gg II highly positive for detection of

proteins with CB. Abbreviations: De (dermis); Ep (epidermis); Gg I; Gg II; Gm (mucous gland); Me (melanophores); star (bony spine). [Colour

figure can be viewed at wileyonlinelibrary.com].

Table 2 Morphological characteristics of the skin from different parts of the body of Argenteohyla siemersi

Region of the body Bone spines Type of dermal gland Pigmentary cell

Dorsum of cranium at region of cranial vault Present Mucous gland, Type I and II granular glands Melanophores

Loreal Present Mucous gland, Type I and II granular glands Melanophores

Perimandibular Absent Mucous gland, Type I and II granular glands Melanophores

Immediate postcranial Absent Mucous gland, Type I and II granular glands Melanophores

Middle region of dorsum Absent Mucous gland, Type I granular gland Melanophores

Hindlimb with coral colouration Absent Mucous gland, Type I granular gland Xantophores

Hindlimb with dark colouration Absent Mucous gland, Type I granular gland Melanophores
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cranium that lacks dermal sculpturing (endchondral spheneth-
moid, Fig. 4a) show that the dermis has two rows of enlarged
Type II granular glands and that the stratum compactum is
not ossified (Fig. 9d).
The hindlimbs have different types of pigment cells in the

upper portion of the dermis (Fig. 10). The dark ground colour
of the skin is formed by melanophores (Fig. 10a,b). The coral
spots are rich in xantophores (Fig. 10c,d), which are empty
cells with eccentric nuclei in the upper portion of the stratum

spongiosum (Fig. 10d). Only Type I granular glands occur in
the skin of the hindlimbs, and these glands are distributed in
both colours (Fig. 10).

Otoccipital region of the skull, occipital–
atlas junction and related muscles

The bony morphology of the occipital region of the three spe-
cies is similar except for subtle differences in the occipital

(a) (b)

(c) (d)

Figure 8 Skin co-ossification (Co-o) in the frontal region of Argenteohyla siemersi from histological sections number IV, V, and VI (Fig. 1). (a, b)

anterior zone, sections stained with MT. a, note that some parts of the stratum compactum (Sc) are completely replaced with dermal bone and

the bony spines are present (star; Co-o). In contrast to other parts of the dermis, only the basal portion of the Sc is ossified, and dense collagen

fibres remain in the upper Sc. The (*) indicates the tissue that binds the partially ossified taenia tecti marginalis (T t mar; neurocranium) with the

frontoparietal (Fp; dermal bone). b, detail of the binding tissue in A. Notice the presence of abundant collagen fibres and chondrocyte-like cells

(arrow), with eccentric nucleus. c, anterior zone, section stained with AB shows that the binding tissue between endocondral and dermal bone

is positive for detection of acidic glycoconjugates. d, posterior zone, section stained with H-E. Note the presence of muscle (Mu) between the

Fp and prootic (Pro) bones. Abbreviations: Co-o; Ep (epidermis); Fp; Gg I (type I granular gland); Mu; Pro; Sc; T t mar. [Colour figure can be

viewed at wileyonlinelibrary.com].
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condyles (Fig. 11). The condyles of Argenteohyla siemersi are
more rounded and located in lower position respect to the fora-
men magnum than in the two non-phragmotic species. The
dorsal margins of the condyles of Trachycephalus typhonius
and Hypsiboas raniceps are lower than the mid-height of the
foramen. In fact, the condyles of these non-phragmotic species
are oval instead of round and, in both cases, the long axes of
the condyles and the angle of the long axis to the ventral/hori-
zontal plane are more acute than those in A. siemersi (Fig. 12).
The shape of the articular facets of the first presacral vertebra
(atlas) reflects the differences in the occipital condyles of A.
siemersi in contrast to the non-phragmotic T. typhonius and H.
raniceps (Fig. 12).
We examined the axial, appendicular and hyobranchial

muscles that insert on or originate from the occipital region

of the skull, in addition to the muscles that connect the
hyoid and the mandible, and the pectoral girdle and the
hyoid. The origins, insertions and general observations about
these muscles in Argenteohyla siemersi are summarized in
Table 3. In contrast to A. siemersi, the m. rhomboideus ante-
rior of Trachycephalus typhonius inserts anterior to the
insertion of the m. longissimus dorsi, and in both T. typho-
nius and Hypsiboas raniceps some fibres of the m. rhom-
boideus anterior reach a fascia on the m. levatorae
mandibulae internus.
The relationship between the myological architecture of

Argenteohyla siemersi and the ability of the frog to flex the
head at a 90˚ angle to the body is not apparent. The contrac-
tion of the intertransversarius capitis superior, levator scapu-
laris inferior, levator scapularis superior, opercularis and

(a) (b)

(c) (d)

Figure 9 Skin co-ossification (Co-o) in the loreal region of the nasal Argenteohyla siemersi from histological sections number II and III (Fig. 1). (a)

Section stained with MT, showing the skin co-ossification with the nasal (Na), and the presence of the bony spines (star). In other parts of the

dermis, only the basal portion of the stratum compactum (Sc) is ossified, and dense collagen fibres remain in the upper Sc. The big glands

between bony spines are Type II granular glands (Gg II). (b) Section stained with AB, showing bony spines (stars) that almost pierce the

epidermis. (c) Detail of the bony spine (star) in b. (d) Section stained with MT of the head region without dermal sculpturing, the endochondral

sphenethmoid (Fig. 3a). There is an accumulation of Gg II forming two rows of glands in the dermis. Abbreviations: De (dermis); Ep (epidermis);

Gg I (Type I granular gland); Gg II; Na; Sc; Sph (sphenethmoid). [Colour figure can be viewed at wileyonlinelibrary.com].
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Petrohyoidei I–IV surely produce the downward movement of
the skull. The group of muscles that contract and lift the
head seems to be the rhomboideus anterior, longissimus
dorsi, Intercruralis I and intertransversarius capitis superior.
These muscles connect the axial, appendicular and hyobran-
chial skeletons with the occipital region. There are no signifi-
cant differences among them in the three species examined
(Fig. 11).

Envenomation symptoms and skin secretion
lethality

The individuals manipulated to extract skin secretions produced
a milky substance, principally on the head (Fig. 3). The esti-
mated LD50 for Balb/C mice was 4.75 (3.64–6.19) (Table 4).
In large doses (10 and 15 lg), the secretion quickly killed the
mice, with the death usually being preceded by signs of
prostration and neurological disorder evidenced by disrupted
movements.

Discussion

Phragmotic behaviour was first described in insects that block-
ade the entrance of a burrow or a hole using a part of the

body (Wheeler, 1927). Anurans practice phragmosis when they
block the entrance of burrows and refuges using their heads
(Barbour, 1926; Trueb, 1970b). Within hylids, phragmosis usu-
ally is considered a striking anti-predator mechanism, as was
observed for Triprion petasatus (Cope, 1865) and Corythoman-
tis greeningi (Stuart, 1935; Jared et al., 2005). As a comple-
ment, the exposed head offers a dense net of spiny projections
usually associated with toxic gland secretions (Jared et al.,
2005, 2015). Because most casque-headed hylids inhabit arid
environments, some authors have hypothesized that phragmosis
evolved as a mechanism to prevent water loss in extreme arid
conditions (Duellman & Klaas, 1964; Trueb, 1970b; Seibert,
Lillywhite & Wassersug, 1974). However, Argenteohyla sie-
mersi inhabits humid environments that are rich in umbellifers
and bromeliads within which this frog takes refuge; conse-
quently, previous authors supposed that A. siemersi lacks
phragmotic behaviour (Trueb, 1970a,b; Cajade et al., 2010).
Phragmosis should be most effective if the frog uses a tunnel-
like structure to shelter itself (Toledo et al., 2011). However,
A. siemersi never has been seen in a phragmotic posture in the
decidedly untunnel-like refuges it frequents (Cei & Pierotti,
1955; Lutz & Barrio, 1966; Williams & Bosso, 1994; present
work). Nonetheless, the frog can flex its head nearly perpen-
dicular to its trunk when it is handled (phragmotic posture),

(a) (b)

(c) (d)

Figure 10 Dermal glands in skin of the hindlimbs of Argenteohyla siemersi. (a, b) Section of the dark-coloured skin stained with H&E.

Melanophores (Me) lie deep to the epidermis and the only type of granular glands present are Type I (Gg I). (c, d) Sections of the skin of coral

spots. Xantophores (Xa) lie deep to the epidermis (arrowhead) and Gg I. Abbreviations: Ep (epidermis); Gg I; Me; Sc (stratum compactum); Ss

(stratum spongiosum); Xa. [Colour figure can be viewed at wileyonlinelibrary.com].
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thereby suggesting that the phragmotic posture in A. siemersi
is primarily a mechanism to deflect predators. Some authors
consider head flexion as a part of phragmotic behaviour and
have termed it as ‘chin-tucking behaviour’ employed by the
frog to avoid capture and to direct the glands toward the
predator (Toledo et al., 2011). Like Lutz & Barrio (1966), we
consider A. siemersi to be a semi-phragmotic, being a species
capable of assuming a phragmotic posture, but incapable of
displaying phragmotic behaviour owing to the architecture of
their refuges.
Trueb (1973) defined three modes of hyperossification of the

anuran skull. (1) Casquing involves the marginal extension of
dermal roof bones to form a ‘casqued’ appearance. (2) Co-ossi-
fication integrates the skin with underlying dermal bones by
ossification of the stratum compactum of the dermis, which
fuses to underlying dermal bones. (3) Exostosis occurs when
additional membrane bone is laid down over dermal cranial
elements to form ridges, crests and spines. Like Trueb (1970a),
we observed partial co-ossification in the cranium of

Argenteohyla siemersi; thus, the stratum compactum is entirely
replaced by dermal bone in certain areas of the skull, mainly
at sites where spines and protuberances are present (Fig. 7a).
Histology reveals that spines, ridges, protuberances, pits and
pores of A. siemersi principally comply with Trueb’s definition
of exostosis, rather than co-ossification, as was proposed by
Jared et al. (2005, 2015). Such structures may be inferred from
plates published by Jared et al. (2005, 2015), who studied the
dermal histology of the skulls of Corythomanthis greeningi
and Aparasphenodon brunoi. Comparing the three species,
A. siemersi and C. greeningi share sculptural ridges with sinu-
ate edges and spiny projections on roofing bones. Argenteohyla
siemersi differs from Aparasphenodon brunoi in lacking den-
ticulate ridges on the terminal portion of the snout and a radial
pattern of ridges on the skull table. All three species have
granular glands (Table 2; but not predominantly mucous glands

Figure 11 - Posterior view of the skull of Argenteohyla siemersi (a),

Trachycephalus typhonius (b), and Hypsiboas raniceps (c). Left side of

each figure illustrates the arrangement of posterior cranial bones,

whereas the right side illustrates the hyobranchial, appendicular and

axial muscles that insert in this region. Muscles were immediately

adjacent to their points of insertion. Abbreviations: Con (condyle); Do

(dermal ossification of frontoparietal); Ct (crista parotica); Ex

(exoccipital); Fm (foramen magnum); Fp (frontoparietal); Ici

(m. intertransversarius capitis inferior); Ics (m. intertransversarius

capitis superior); Ld (m. longissimus dorsi); Lsi (m. levator scapularis

inferior); Lss (m. levator sapularis superior); Mch (muscular channel);

Op (m. opercularis); Ot (prootic); Ow (oval window); PhI–IV (m.

petrohyoideus I–IV); Ra (m rhomboideus anterior). Arrows indicate

the middle ear opening.
Figure 12 Frontal view of the first vertebra (atlas) of Argenteohyla

siemersi (a), Trachycephalus typhonius (b) and Hypsiboas raniceps (c).

Abbreviations: Cot (cotyle); Na (neural arch); Nc (neural channel); Ns

(neural spine); Pzp (postzygapophysis); Vb (vertebral body). Black

lines indicate the angle of the long axis of the ovoid cotyle.
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as reported by Trueb (1970a)). Argenteohyla siemersi has two
types of granular glands, whereas studies on A. brunoi and
C. greeningi have not reported whether these species have dif-
ferent types of granular glands. Granular glands in Argenteo-
hyla siemersi are interspersed among the dermal ornaments
and are intimately associated with the spines from which the
venom secretions could be delivered as it is in A. brunoi and
C. greeningi (Jared et al., 2015). Argenteohyla siemersi differs
from the other two species in having fewer spiny projections,
and projections that primarily are restricted to the loreal region
of the nasal; in addition, the maxilla is not expanded. Experi-
mental evidence suggests that the expanded, spiny maxilla of
C. greeningi and Aparasphenodon brunoi (Jared et al., 1999;
Navas et al., 2002) provide an efficient mechanism for keeping
the animal safe inside a refuge (Jared et al., 2005). Argenteo-
hyla siemersi lacks such a modification and does not take
refuge in tunnel-like refuges.
Early studies of casque-headed hylid frogs by Trueb (1970b)

suggest that phragmosis is enabled by the contraction of the
particularly enlarged m. rhomboideus anterior, which seems
particularly well developed in phragmotic species. With refer-
ence to Pternohyla Boulenger 1882, and Triprion spatulatus
G€unther, 1882, Trueb (1970b:702) said that ‘In most of these
frogs this muscle is moderately to greatly enlarged, which
enables the frogs to flex the head up to nearly a 90-degree
angle to the body.’ The horizontal orientation of this muscle
dorsal to the point of flexure (occipital-vertebral juncture) of
the skull suggests that contraction of the muscle should move
the head up instead of down, as should occur when the frog
practices phragmosis. In addition, the m. rhomboideus anterior
of the species we studied differs from Trueb’s observations
(1970b). In fact, A. siemersi (phragmotic) has a less-developed
m. rhomboideus anterior than the two non-phragmotic species
that we studied. The single morphological feature that might
be related to phragmotic behaviour of A. siemersi is the config-
uration of the occipital condyles and the atlantal cotyles, which
are smaller, relatively lower, and more rounded than in the
two non-phragmotic species. Conversely, the atlantal cotyles
on which the condyles pivot, are dorsoventrally enlarged, taller

and more ovoid in A. siemersi than in the non-phragmotic
study species.
The skin glands over the entire body and head of Argenteo-

hyla siemersi produce a highly lethal secretion that is several
times more potent than the venoms of some other animals,
such as snakes and scorpions (Table 4). The secretions of
A. siemersi are more powerful than that of some dendrobatid
anurans but less powerful than that of other dendrobatids
(Table 4). In comparison to casque-headed frogs for which
there are data, the lethality of the secretion of A. siemersi is
similar to that of A. brunoi, but about 10 times more potent
than that of C. greeningi (Jared et al., 2005, 2015) (Table 4).
These values correlate with the most toxic species being the
more colourful and the less toxic being less colourful, as has
been demonstrated in dendrobatids (Summers & Clough,
2001). Aparasphenodon brunoi seems to be an exception to
this observation; it has a similar toxicity to Argenteohyla sie-
merisi, yet it is a plain brownish colour. However, the LD50
values of these two taxa may not be exactly comparable
because that of Aparasphenodon brunoi is based on a concen-
trated chemical compound (protein), whereas that of Argenteo-
hyla siemersi is based on full skin secretions. Among the other
factors that may be involved, a fewer number of spiny projec-
tions could be offset by a high toxicity of the secretions, as
were argued for Aparasphenodon brunoi and Corythomantis
greeningi (Jared et al., 2015), and which is consistent for
A. siemersi. The link between aposematic colouration and diur-
nal activity is associated with predators such birds, mammals,
and fishes that locate their prey visually (Toledo & Haddad,
2009). The bright colouration, together with the high toxicity
in the red-spotted Argentina frog is compatible with an apose-
matic mechanism to protect the frogs during explosive repro-
ductive events (Cajade et al., 2010).

Acknowledgements

We thank Diego Barrasso for comments on early versions of the
paper, and three anonymous reviewers for the comments. Jorge
D. Williams provided access to specimens housed at the

Table 4 Comparison of LD50 values and details of protocols in Argenteohyla siemersi, frogs, and other animals

Animals Species LD50 (lg/mouse) Mice CEPA Test time (HS) Confidence limits Source

Frogs Argenteohyla siemersi 4.75 Balb/C 48 (3.64–6.19) This studya

Corythomantis greeningi 69.75 Balb/C 72 (68.42–71.08) Jared et al. (2005)a

Aparasphenodon brunoi 3.12c Swiss Not specified – Jared et al. (2015)b

Aparasphenodon brunoi 4.36d Swiss Not specified –

Corythomantis greeningi 51.94c Swiss Not specified –

Corythomantis greeningi 49.34d Swiss Not specified –

Ameerega flavopicta 75.0 – 24 – Mortari et al. (2004)a

Phyllobates terribilis 0.1 – – – Daly, Spande &

Garraffo (2005)
b

Vipers Bothrops alternatus 230.7 CF2 48 (200–258.3) Sanchez et al. (1992)a

Bothrops diporus 128.2 CF2 48 (111.0–162.8)

Scorpions Tityus confluens 14.0 NIH 24 (9.0–21.0) De Roodt et al. (2009)a

Values of LD50 calculated from: ug/mouse of full secretion (a) and ug/mouse of chemical compose concentrated (b).
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Supporting Information

Additional Supporting Information may be found in the online
version of this article:

Appendix S1. Material examined.
Video S1. Brief phragmosis.
Video S2. Persistent phragmosis.
Video S3. Without phragmosis.
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