Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2025-05-08T17:04:15Z
dc.date.available 2025-05-08T17:04:15Z
dc.date.issued 2024
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/178838
dc.description.abstract Early Risk Detection (ERD) on the Web aims to identify promptly users facing social and health issues. Users are analyzed post-by-post, and it is necessary to guarantee correct and quick answers, which is particularly challenging in critical scenarios. ERD involves optimizing classification precision and minimizing detection delay. Standard classification metrics may not suffice, resorting to specific metrics such as ERDEθ that explicitly consider precision and delay. The current research focuses on applying a multi-objective approach, prioritizing classification performance and establishing a separate criterion for decision time. In this work, we propose a completely different strategy, temporalfine-tuning, which allows tuning transformer-based models by explicitly incorporating time within the learning process. Our method allows us to analyze complete user post histories, tune models considering different contexts, and evaluate training performance using temporal metrics. We evaluated our proposal in the depression and eating disorders tasks for the Spanish language, achieving competitive results compared to the best models of MentalRiskES 2023. We found that temporal fine-tuning optimized decisions considering context and time progress. In this way, by properly taking advantage of the power of transformers, it is possible to address ERD by combining precision and speed as a single objective. en
dc.format.extent 137-149 es
dc.language en es
dc.subject Intelligent Systems es
dc.subject Machine Learning es
dc.subject Transformers es
dc.subject Early Risk Detection es
dc.subject Mental Health es
dc.title Temporal fine-tuning for early risk detection en
dc.type Objeto de conferencia es
sedici.identifier.uri https://revistas.unlp.edu.ar/JAIIO/article/view/17914 es
sedici.identifier.issn 2451-7496 es
sedici.creator.person Thompson, Horacio es
sedici.creator.person Villatoro-Tello, Esaú es
sedici.creator.person Montes-y-Gómez, Manuel es
sedici.creator.person Errecalde, Marcelo Luis es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2024-08
sedici.relation.event Simposio Argentino de Inteligencia Artificial y Ciencias de Datos (ASAID 2024) - JAIIO 53 (Universidad Nacional del Sur, 12 al 16 de agosto de 2024) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)