Busque entre los 169459 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2025-05-08T17:04:15Z | |
dc.date.available | 2025-05-08T17:04:15Z | |
dc.date.issued | 2024 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/178838 | |
dc.description.abstract | Early Risk Detection (ERD) on the Web aims to identify promptly users facing social and health issues. Users are analyzed post-by-post, and it is necessary to guarantee correct and quick answers, which is particularly challenging in critical scenarios. ERD involves optimizing classification precision and minimizing detection delay. Standard classification metrics may not suffice, resorting to specific metrics such as ERDEθ that explicitly consider precision and delay. The current research focuses on applying a multi-objective approach, prioritizing classification performance and establishing a separate criterion for decision time. In this work, we propose a completely different strategy, temporalfine-tuning, which allows tuning transformer-based models by explicitly incorporating time within the learning process. Our method allows us to analyze complete user post histories, tune models considering different contexts, and evaluate training performance using temporal metrics. We evaluated our proposal in the depression and eating disorders tasks for the Spanish language, achieving competitive results compared to the best models of MentalRiskES 2023. We found that temporal fine-tuning optimized decisions considering context and time progress. In this way, by properly taking advantage of the power of transformers, it is possible to address ERD by combining precision and speed as a single objective. | en |
dc.format.extent | 137-149 | es |
dc.language | en | es |
dc.subject | Intelligent Systems | es |
dc.subject | Machine Learning | es |
dc.subject | Transformers | es |
dc.subject | Early Risk Detection | es |
dc.subject | Mental Health | es |
dc.title | Temporal fine-tuning for early risk detection | en |
dc.type | Objeto de conferencia | es |
sedici.identifier.uri | https://revistas.unlp.edu.ar/JAIIO/article/view/17914 | es |
sedici.identifier.issn | 2451-7496 | es |
sedici.creator.person | Thompson, Horacio | es |
sedici.creator.person | Villatoro-Tello, Esaú | es |
sedici.creator.person | Montes-y-Gómez, Manuel | es |
sedici.creator.person | Errecalde, Marcelo Luis | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Sociedad Argentina de Informática e Investigación Operativa | es |
sedici.subtype | Objeto de conferencia | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.date.exposure | 2024-08 | |
sedici.relation.event | Simposio Argentino de Inteligencia Artificial y Ciencias de Datos (ASAID 2024) - JAIIO 53 (Universidad Nacional del Sur, 12 al 16 de agosto de 2024) | es |
sedici.description.peerReview | peer-review | es |