Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2020-05-08T14:23:39Z
dc.date.available 2020-05-08T14:23:39Z
dc.date.issued 2019
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/95419
dc.description.abstract La desnaturalización en frío de las proteínas globulares es un fenómeno intrigante que merece especial atención. Asimismo, el efecto hidrofóbico es considerado la principal fuerza impulsora del plegamiento y la estabilidad proteica, así como la responsable de la pérdida de estabilidad conformacional en la proteína cuando esta es enfriada. La evidencia experimental y teórica reconoce el rol que desempeña la densidad del agua en dependencia con la temperatura, ya que está en gran medida determinada por las características energéticas y geométricas de los enlaces de hidrógeno. Por lo tanto, hay quienes argumentan que el modelo propuesto por Frank y Evans en 1945 confirma que los enlaces hidrógeno en la capa de hidratación de solutos no polares (Shell) son más fuertes y ordenados en relación a las aguas alejadas de esta región (bulk) una vez ocurre la desnaturalización en frío. Sin embargo, el modelo de Muller y algunos datos experimentales indican que la capa de hidratación está más desordenada o rota, que las del agua bulk. Por lo tanto, existe una discrepancia en el modelo microscópico para la desnaturalización en frío. Con la intención de comprender este fenómeno, hemos elegido como enfoque alternativo las simulaciones en dinámica molecular (DM) utilizando el paquete Gromacs-2018 y analizando la desnaturalización en frío de la frataxina Yfh1 de S. cerevisiae. En este estudio, creamos dos sistemas a 225 K y 1 bar. Para el primer sistema, la proteína se sumergió en la caja con agua en estado líquido que contenía una semilla de hielo Ih en estado sólido. Mientras tanto, el segundo sistema se hidrató agregando moléculas de agua al azar en estado netamente líquido. Después de 1 µs de simulación, el primer sistema se cristalizó totalmente en hielo Ih (congelación), mientras que el segundo sistema (sin semilla) permaneció en estado líquido. Nuestras simulaciones por MD muestran detalles de la cantidad de enlaces de hidrógeno en la capa de hidratación y la reorganización de estos en los pares interactuantes agua-agua y agua-proteína durante el enfriamiento. Mostrando además, una disminución en la densidad del agua debido a un aumento en la fracción de moléculas de agua con una perfecta coordinación tetraédrica que modifican el área superficial en la proteína accesible al solvente en dependencia con el efecto hidrofóbico. es
dc.format.extent 61-61 es
dc.language es es
dc.subject Desnaturalización en frío es
dc.subject Efecto hidrofóbico es
dc.subject Proteína globular es
dc.title Descripción microscópica de la desnaturalización en frío de proteínas globulares es
dc.type Articulo es
sedici.identifier.uri https://revistas.unlp.edu.ar/InvJov/article/view/6853 es
sedici.identifier.issn 2314-3991 es
sedici.creator.person Espinosa Silva, Yanis Ricardo es
sedici.creator.person Grigera, José Raúl es
sedici.creator.person Carlevaro, Carlos Manuel es
sedici.subject.materias Ciencias Exactas es
sedici.description.fulltext true es
mods.originInfo.place Universidad Nacional de La Plata es
sedici.subtype Comunicacion es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.relation.event Encuentro de Becarios de la UNLP (EBEC) (La Plata, 2018) es
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Investigación Joven es
sedici.relation.journalVolumeAndIssue vol. 6, número especial es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)