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Abstract. We present a Computational Fluid Dynamics (CFD) modeling strategy for onshore wind
farms aimed at predicting and optimizing the production of farms using a CFD model that includes me-
teorological data assimilation, complex terrain and wind turbine effects. The model involves the solution
of the Reynolds-Averaged Navier-Stokes (RANS) equations together with a κ-ε turbulence model spe-
cially designed for the Atmospheric Boundary Layer (ABL). The model involves automatic meshing and
generation of boundary conditions with atmospheric boundary layer shape for the entering wind flow.
As the integration of the model up to the ground surface is still not viable for complex terrains, a specific
law of the wall including roughness effects is implemented. The wake effects and the aerodynamic be-
havior of the wind turbines are described using the actuator disk model, upon which a volumetric force
is included in the momentum equations. The placement of the wind turbines and a mesh refinement for
the near wakes is done by means of a Chimera method. The model is implemented in Alya, a High
Performance Computing (HPC) multi physics parallel solver based on finite elements and developed at
Barcelona Supercomputing Center.
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1 INTRODUCTION

Numerical modeling of wind farms is a crucial aspect in terms of both wind farm design and
management. Modeling of wind farms must consider all aspects affecting surface layer atmo-
spheric flow such as topographic variations, heterogeneities in the roughness of the terrain, or
the downwind wake effects of wind turbines. During the last years, the growth in computational
capacity has allowed to implement modeling strategies based on Computational Fluid Dynam-
ics (CFD) involving the full resolution of the turbulent flow equations within the Atmospheric
Boundary Layer (ABL) using both Reynolds-averaged Navier-Stokes (RANS) and Large Eddy
Simulations (LES) approaches (for a recent review see e.g. Sanderse et al., 2011).
Here we present the modeling strategy under development within the research Spanish national
project "Modelo de viento basado en código abierto de CFD OpenFOAM y técnicas de su-
percomputación aplicadas" (Proyecto INNPACTO IPT-2011-1693-920000, 2011-2014) involv-
ing three partners: Iberdrola Renovables S.A., the National Center for Renovable Energies
(CENER) and the Barcelona Supercomputing Center-Centro Nacional de Supercomputación
(BSC-CNS). The main goal of the project is to port the state-of-the-art of onshore wind farm
modeling to High Performance Computing (HPC) applied to industry.
The project working plan is divided in two stages. During a first phase, already concluded, we
have constrained to high resolution wind modeling in complex terrain by solving the RANS
equations coupled with a κ-ε length-limited turbulence model. During the second stage the
effect of wind turbines is added making use of different disk actuator models. The proposed
modeling strategy, yet under development, involves: i) an automatic pre-process with mesh gen-
eration and terrain data assimilation, ii) the numerical solution of the governing equations in the
context of HPC using Alya, a BSC-CNS home-made code based on Finite Elements and, iii) the
post-process of results using Google Earth overlays and an automatic evaluation of speed-ups of
the wind turbines. This papers describes the methodology, modeling strategy and preliminary
results of this still on-going project.

2 MODELING STRATEGY

2.1 Pre-process

Mesh generation and terrain data assimilation is a necessary pre-process step in classical
numerical simulation algorithm. First of all we have written a structured mesh generator for
hexahedral elements in complex terrain that handles most industry standard formats for terrain
elevation and surface roughness and exports the resulting mesh to several standard formats. The
code (WindMesh) is used to generate a "background mesh" containing the assimilated topogra-
phy at high resolution (typical grid sizes range from few to tens of meters in the horizontal) and
has the following characteristics:

• At ground level there exist three differentiated zones named FARM, TRANSITION, and
BUFFER (Fig. 1). The external BUFFER zone is flat and made up with regular elements,
the TRANSITION zone has elements of variable size and the innermost FARM zone
contains finer regular elements. The external BUFFER zone can be rectangular or circular
and is designed to accommodate the inflow conditions. The TRANSITION and FARM
zones contain topography and roughness surfaces.

• The vertical distribution of elements can be linear or follow a geometric progression in
order to increase resolution near the ground surface (Fig. 1f). In turn, in cases with high



topographic gradients, the vertical distribution of nodes can be modified using an elliptic
smoothing in order to have ortogonality and prevent elemental distortion.

• Terrain elevation and roughness contours can be read from MAP or STL format files,
i.e. can be imported from industry standard commercial codes like WAsP (Wind Atlas
Analysis and Application Program). Both types of contours are interpolated using a De-
launey triangulation and the resulting topography and roughness surfaces can optionally
be smoothed and rotated to align with the wind attack angle.

• WindMesh outputs results in several standard formats, including a kmz file to visualize
the emplacement and mesh properties using GoogleEarth (Fig. 1a).

• Preprocessing of tracking points representing the positions of the wind turbines. This
facilitates the subsequent post-process of wind results at the turbine locations.

WindMesh generates a background structured mesh. Wind turbines and a downstream higher-
resolution zone (to capture wake effects) are overimposed to the background mesh using a
chimera method as explained in section 2.3.

2.2 ABL wind field modeling

2.2.1 Governing equations

In this section, we briefly discuss the governing equations for turbulent flow in the Atmo-
spheric Boundary Layer (ABL). The equations of motion that need to be solved are the Averaged
Reynolds Navier-Stokes coupled with the k−ε turbulent model equations in a domain Ω ⊂ <3:
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where equations (1) and (2) are the momentum and mass conservation equations. Here u is the
mean velocity field, p is the mean pressure, f is the vector of body forces, ν is the kinematic
viscosity of the fluid, and νt is the eddy viscosity that needs to be modelled. The vector ω is the
velocity of rotation of the frame of reference (|ω| = 7.292× 10−5 Rad/s in our particular case)
and 2ω × u is the Coriolis force. The k-ε model is given by equations (3) and (4) where the
two turbulent quantities are the turbulent kinetic energy k and dissipation rate ε. Here Pk is the
production term of kinetic energy, given by expression (6), and the eddy viscosity is modeled
in terms of k and ε by expression (5). The k-ε model constants Cµ, Cε1 , Cε2, σk and σε are set
to its standard values (Launder and Sharma, 1974).
Detering and Etling (1985) concluded that the standard k-ε model when applied to the atmo-
spheric boundary layer, yields a very deep boundary layer, large mixing length (and hence
eddy-viscosity) in the upper boundary layer, and large friction velocity when compared with



observations. These deficiencies can all be traced to inability of the k − ε model in its standard
form to recognize some finite upper limit to the mixing length. There exist different mixing
length limitations that can be imposed to the standard k − ε model consisting on increasing the
production term in the ε equation (4). In this work this is done by replacing coefficient Cε1 by
C ′ε1 as proposed by Apsley and Castro (1997):

C ′ε1 = Cε1 + (Cε2 − Cε1)
lm
lmax

(7)

where lm is the mixing length, given by lm =
C

3/4
µ k3/2

ε
, and lmax is the maximum limited mixing

length, which is a model input to be given.
The boundary conditions for the Navier-Stokes problem (1) - (2) are:

u = uin on Γin (8)
n · σ = 0 on Γout (9)
u · n = 0, n · σ · g1 = t1, n · σ · g2 = t2 on Γw (10)

where σ is the Cauchy stress tensor and n is the unit exterior normal to ∂Ω. The boundary ∂Ω
is split into three sets of disjoint components Γin, Γout and Γw, being respectively the inflow
part of the boundary (where u · n ≤ 0), the outflow part of the boundary (where u · n > 0),
and the surface terrain boundary. In this latter part we prescribe mixed conditions: normal zero
velocity and the tangent stresses, where the vectors g1 and g1 span the space tangent to Γw. In
the ABL a specific law of the wall including roughness effects needs to be prescribed over Γw,
where the components of the shear stress vectors t1, t2 are expressed in terms of the velocity.
The shear stress on the boundary is given by:

t = −ρu
2
∗
|u|
u (11)

where ρ is the fluid (air) density and u∗ is the friction velocity, determined by the following wall
law for atmospheric boundary layers:

|u(z = δw)| =
u∗
κ
log

(
δw + z0
z0

)
(12)

where z0 is the terrain roughness and δw is the distance from the wall at which the velocity is
evaluated. The constant κ is the Von Karman constant, taken as κ = 0.41.

Proper boundary conditions have to be added also to the k − ε system of equations (3) - (4).
For the case in which the velocity is prescribed (i.e. on Γin), k and ε are also prescribed as the
solution of an idealized horizontally-homogeneous one-dimensional problem over a flat plane,
wherein the mean velocity uin = (u, v, 0) is function of the vertical coordinate z alone. In
this one-dimensional problem the same Coriolis force, fluid properties, and maximum mixing
length of the 3D problem are considered. On the outflow boundary (i.e. on Γout), where zero
traction is imposed, the boundary conditions for k − ε are:

∂k

∂n
= 0,

∂ε

∂n
= 0, (13)

where ∂/∂n is the normal derivative on the boundary of Ω. Finally, on the terrain boundary (i.e.
on Γw) boundary conditions for k and ε including roughness effects are imposed at a distance



δw from the wall as:

k(z = δw) =
u∗√
Cµ

(14)

ε(z = δw) =
u3∗
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(15)

When a wall law is prescribed for the velocity, u∗ is determined from (12). However, when the
non slip condition u = 0 is imposed on Γw the wall distance is taken as δw = 0 in Eq. (15) and
u∗ is determined from

u∗ =

√
| ν ∂u
∂n
| (16)

2.2.2 Numerical algorithm

The equations described previously are discretized in space using the finite element method.
It is well-known that Galerkin formulations can lack stability for the Navier-Stokes equations
for three main reasons. The first reason is related to the compatibility of the finite element
spaces for velocity and pressure, which have to satisfy the so-called LBB condition. The second
reason is attributed to the relative importance of the viscous and convective effects. Finally, the
third one appears when the Coriolis force becomes important with respect to viscous effects.
We circumvent these instabilities using a stabilized finite element formulation based on the
variational multiscale method (VMM) (Hughes, 1995), using the same interpolation for pressure
and velocity spaces. The Navier Stokes equations are discretized using the algebraical subgrid
scale model (ASGS), as described in Codina (2001).

Though mathematical results exist ensuring the well-posedness of the k-ε equations, the
strong nonlinearities may interact with discretization errors in such a way as to instabilize com-
putations. A typical behavior of unstable computations involves the loss of positivity of k or
ε. This changes the sign of several terms in the equations, with disastrous effects. To avoid
such loss of positivity we use a linearization scheme that preserves positivity in the numerical
schemme, described in Codina and Soto (1999). The k-ε equations are discretized using finite
element methods, with stabilization based on the VMM, and adding shock capturing terms for
crosswind dissipation.

2.3 The effects of wind turbines

2.3.1 The actuator disk concept

The effects of the rotor are modeled using the actuator disk concept (Sanderse et al., 2011).
In this approximation, the momentum needed to put in motion the wind turbine is extracted
from the Navier-Stokes equations. The real rotor is approximated by a permeable thin cylinder
of equivalent areaA inside which the total linear momentum sink is distributed uniformly within
a volume V . The rotor model used in this work is based on the 1-dimensional axial momentum
theory for a uniformly loaded rotor and non-rotating flow in which the change of momentum is
only due to pressure differences across the actuator disc. The expression for the module of the
force sink is:

F =
1

2
ρACtU

2
∞ [N ]. (17)

where the force F is expressed in terms of the upstream velocity module U∞[m/s] and the rotor
thrust coefficient Ct. This coefficient is rotor dependent and determined experimentally. In



order to take into account the actuator disc, the momentum equation (1) is modified as:

∂u

∂t
+ u · ∇u−∇ · ((ν + νt)∇su) +∇p+ 2ω × u = f + δV F/(ρV )n, (18)

where δV is the delta Dirac function with support in the cylinder V and n is the cylinder unit
normal pointing towards the incoming flow.
When implementing the actuator disk in a finite element code one faces two difficulties. The first
one is the geometrical representation of the rotor inside the mesh. The second one concerns the
accuracy of the solution in the wakes of the rotor. Regarding this last point, accurate calculations
in the neighboring of the rotor are essential for a proper estimation of the wind farm power.
This requires mesh refinement in the wake, which is computationally tricky when treating with
structured or Cartesian meshes. As far as the geometrical representation of the cylinder is
concerned, we have several options. On the one hand, the mesh can be locally adapted to
represent the disk in which the momentum is extracted. This technique requires to adapt the
mesh for each configuration and is quite difficult to implement for structured and Cartesian
meshes. In fact, one direction should necessarily be aligned with the cylinder. On the other
hand, Chimera or overset techniques offer a nice alternative to face the two aforementioned
difficulties.

2.3.2 Chimera method

The Chimera Method was originally developed in Steger et al. (1983); Benek et al. (1985);
Steger and Benek (1987) to simplify the construction of computational meshes about complex
geometries. This is achieved by breaking the geometries into components and generating inde-
pendent meshes for each subdomain, which gives a great flexibility on the choice of the type of
element, their orientation and local mesh refinement. The components are further coupled by
imposing transmission conditions (typically done using domain decomposition methods, DDM)
from one mesh to the other to obtain a global solution. The idea of the Chimera method in the
present context is to create a structured background mesh of the order of kilometers including
the terrain, and place inside it mesh patches containing the rotors as illustrated in Figure 2.
The Chimera Method can be seen as a preprocess technique, named hole cutting, plus a domain

decomposition method to couple overlapping and non-conforming meshes. The hole cutting
consists in removing the elements of the background mesh located inside the patch mesh. It
is essentially a pre-process step. Once the hole is created, we are left with two unconnected
slightly overlapping meshes, or subdomains, with apparent interfaces. The coupling between
the subdomains is usually achieved via transmission conditions to impose both the continu-
ities of the unknown and it flux across the subdomain interfaces. There are many possibilities
to achieve these continuities using DDM. An extensive bibliography of DDM can be found in
Quarteroni and Valli (1999). Traditionally, the coupling has been mainly achieved in an iterative
way, leading to a family of DDM referred to as iteration-by-subdomain methods. To circumvent
the inherent non-linearity of iteration-by-subdomain methods, we have developed an alternative
coupling strategy. It consists in connecting the two independent meshes by creating some new
elements, called extension elements. These extension elements connect the nodes of one sub-
domain with the nodes of the adjacent subdomain. In Figure 3, we illustrate the process of
constructing the extension elements from the patch to the background. Extension elements are
also necessary in the other way, that is to connect the background interface to the patch. The
creation of extension elements consists in the following process:



• Identify the interface nodes.

• For each interface node, identify the surrounding nodes in the adjacent subdomain.

• From the interface node and using the surrounding nodes, create the best elements (using
some quality criterion).

The extension elements are created to connect the interface nodes to the nodes of the adjacent
subdomain by forming a global shape function with compact support for the interface nodes. In
the element loop, only the equation for the corresponding interface nodes should be assembled
when dealing with the extension elements of these nodes. In 3-dimensional cases, the process
is not straighforward mainly due to the restriction for closing the extension. Figure 3 shows an
example of extension elements where two subdomains are coupled: the patch mesh containing
the rotor, composed of non-strucutured tetrahedra; the background mesh containing the terrain.
In this case, the extension elements for the patch interface are tetrahedra and for the background
interface they are pyramids.

2.4 Alya parallel solver

The equations have been implemented in the Alya parallel solver, a HPC code developed
at Barcelona Supercomputing Center that is able to run with thousands of processors with an
optimal scalability. The parallelization in Alya is based on a sub-structuring technique, using
a Master-Slave strategy. A first step is carried out to partition the original mesh and distribute
the corresponding geometrical and simulation data to the slaves. From the Master’s and Slaves’
point of view, it consists of:

• Master: reads the mesh, creates the mesh partition, sends each sub-mesh and simulation
data to the corresponding slaves.

• Slaves: receive their sub-mesh. The partition has been carried out element-wise so the
slaves only share interface nodes.

One important point of these preprocess steps is the scheduling of the communication strategy.
All along the simulation, neighboring slaves will have to exchange data on their interfaces. The
order of the communications is of real significance to obtain a good scalability. At this point,
the Master does no longer have any mesh dependent variable, as they are distributed among the
slaves. As a second step, the simulation can continue as follows:

• Master: is in charge only of output tasks like convergence, time steps, etc.

• Slaves:

– Assembly: they assemble their local matrices via an element loop.

– Algebraic solvers: the slaves perform their local matrix-vector products and dot
products (basic operations of iterative solvers). The matrix-vector product is assem-
bled on the interfaces between subdomains using the MPI function MPI_SendRecv.
The dot products are assembled using the MPI function MPI_AllReduce.

Figure 4 illustrates in a simplified way the flowchart of the parallel execution of Alya. The
communications are drawn with dotted lines to outline the two main kinds of communication
present in the solver. For further information on the parallelization of Alya, see Houzeaux et al.
(2009).



3 PRELIMINARY RESULTS

Here we show some preliminary results of the project (first year), in particular of wind mod-
eling in complex terrain. As explained, the effect of wind turbines is still under implementation
in the Alya code.

3.1 Leipzig wind profile

The implementation of the boundary conditions for wind model for the ABL has been
tested using the problem considered in Apsley and Castro (1997). In this problem an ideal-
ized horizontally-homogeneous, atmospheric boundary layer over a flat plane is considered,
wherein the mean velocity U = (u, v, 0) is function of the vertical coordinate z alone. The aim
of the present example is to show the difference of the obtained results when using the standard
k-ε model and when adding the limited mixing length correction (7). Comparisons between the
obtained results and experimental values is done.
The problem is defined by a computational height of z ∈ [0, 3000] (in m), a wind velocity at
the top prescribed to u = 17.5 m/s and aligned with the geostrophic wind (α = 0o), and a
constant roughness length of z0 = 0.3 m. The Coriolis force corresponds to that of a latitude 45
degrees N, and the maximum mixing length in the correction model is taken as lmax = 36 m.
Figures (5) and (6) compare the obtained velocities, eddy viscosity, angle of turning of the wind
and mixing length profiles, using the standard k− ε model and the modifications introduced by
Apsley and Castro (1997). The ABL model that better adjusts to experimental measurements
is the limited length scale model. The standard k − ε model predicts too large mixing length
and therefore kinematic viscosity. The results obtained using the mixing length correction are
clearly observed to be much more accurate than if no using any correction.

3.2 Wind in complex terrain

We have modeled wind field in several wind farms considering 16 characteristic inflow wind
directions. Figure 7 shows results for a domain of 20 × 20km in the horizontal and 8km in
the vertical meshed with 3M hexahedra. Element resolutions range from 20m in the inner farm
zone to 300m in the buffer zone. In the vertical start from 0.5m in the first layer and follow a
geometrical distribution.
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Figure 1: Example of WindMesh output. (a) and (b) show the buffer (red), transition (blue), and farm (green)
zones as seen in GoogleEarth. (c) y (d) surface mesh at the different zones. Topography has been smoothed. (e)
roughness contours interpolated from a map file. (f) detail of the 3D mesh.



Figure 2: Example to illustrate the Chimera concept in wind farm modeling. A patch mesh contains the actuator
disc, represented by a body-fitted mesh, and eventually local refinement dowstream. Note that the interior of the
disk is also solved so that the mesh covers both the exterior and interior parts of the rotor.

Figure 3: Example of the extension elements used to connect patch and background meshes. A brick patch meshed
with tetrahedral (pyramids) elements contains the actuator disk (shown in blue) and interfaces with a background
structured mesh of hexahedral elements. For clarity, the inset shows a simpler 2D example of extension elements.



Figure 4: Flowchart of Alya parallel execution using n+ 1 processes (n subdomains).

Figure 5: Vertical profiles of wind velocity components (left) and eddy viscosity (right) using the standard k-ε
model (ı.e. lmax → ∞) and the ABL k-ε model modified by limiting the mixing length as explained in section
2.2.1 ( lmax = 36m in this case). Note how the second option improves substantially the fits to the experimental
Leipzig profile data, indicated by crosses.



Figure 6: Vertical profiles of wind turning angle (α = 0o at z = 3000m) and mixing length profiles using the
standard k-ε model (ı.e. lmax →∞) and the ABL k-ε model modified by limiting the mixing length as explained
in section 2.2.1 ( lmax = 36m in this case). Experimental measurements showed a surface wind turned by 26.1o

from the geostrophic and a friction velocity of u∗ = 0.65 m/s. The standard k−ε predicts too large friction velocity
u∗ = 0.81 m/s whereas the limited length model predicts u∗ = 0.676 m/s. The surface wind is turned only 15o

when using the standard k-ε model and 27o when using the mixing length correction, in excellent agreement with
measurements.

Figure 7: Results for ABL simulations of a wind farm in Spain. (a) wind speed at surface. (b) Wind velocity in a
vertical cut along the inflow wind direction. (c) pressure at surface. (d) turbulent kinetic energy at surface.
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