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Article

Effect of particle shape and fragmentation
on the response of particle dampers

Martı́n Sánchez1, C Manuel Carlevaro2,3 and Luis A Pugnaloni1

Abstract

A particle damper (PD) is a device that can attenuate mechanical vibrations thanks to the dissipative collisions between

grains contained in a cavity attached to the vibrating structure. It has been recently suggested that, under working

conditions in which the damping is optimal, the PD has a universal response in the sense that the specific dissipative

properties of the grains cease to be important for the design of the device. We present evidence from simulations of PDs

containing grains of different sizes, shapes and restitution coefficients, that the universal response is also valid when

fragmentation of the grains occurs (generally due to intensive operation of the PD). In contrast, the welding of grains

(caused by operation under high temperatures) can take the PD out of the universal response and deteriorate the

attenuation. Interestingly, we observed that even at working conditions off the optimal damping, the shape of the grains

remains unimportant for the response of the PD.

Keywords

Vibration attenuation, particle dampers, passive damping, granular damping, inelastic collapse

1. Introduction

A particle damper (PD) consists of a cavity partially
filled with grains. This device can attenuate mechanical
vibrations through friction and inelastic collisions of
the grains when it is attached to a vibrating structure.
In recent years, PDs have been widely studied due to
the good performance they have as passive vibration
control systems in harsh environments.

Different industries have applied this technology to
control undesirable vibrations and noises. While the
aerospace industry has been the pioneer in the area
(Panossian, 2002; Ehrgott et al., 2009), a number of
studies have been recently published with applications
in the automotive (Xia et al., 2011), energy
(Velichkovich and Velichkovich, 2001) and medical
(Heckel et al., 2012) industries.

PDs are efficient in a wide range of frequencies
(Panossian, 1992), but due to their highly nonlinear
behavior (Sánchez and Carlevaro, 2012), their analysis
and design present complications. PDs are the succes-
sors of impact dampers (see e.g. Grubin, 1956; Masri,
1970; Duncan et al., 2005), where the single body inside
the cavity of these is simply replaced with a sample of
granular material (Araki et al., 1985). Many studies
have focused on the prediction of the main character-
istics of PDs through simplified models of a single

particle (Friend and Kinra, 2000; Duncan et al., 2005;
Ramachandran and Lesieutre, 2008). However, the
complex cooperative dynamics of the grains is ignored
in these works.

The performance of a PD depends on many factors,
such as the shape and size of the cavity, number of
particles, coefficients of friction and restitution, type
of excitation, and operation frequencies, among many
others (Marhadi and Kinra, 2005). Depending on some
of these factors, one of the mechanisms of dissipation
(friction or inelastic normal collision) will dominate
(Chen et al., 2001; Bai et al., 2009).

Several works have shown that, under harmonic
excitation, a prismatic PD has the best performance
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of damping for a given value of the enclosure height
(Lz) (Papalou and Masri, 1998; Saeki, 2002). This opti-
mal damping occurs when, near resonance, the grains
impact the floor and ceiling of the cavity in anti-phase,
where the relative velocity between the granular bed
and the enclosure is maximized at the time of collision
(Lu et al., 2010; Sánchez and Pugnaloni, 2011). For an
optimal PD, it has been shown that the natural fre-
quency of the system equals the natural frequency of
the undamped system (Sánchez and Pugnaloni, 2011).

Previous investigations have considered the rele-
vance of the material of the grains (dissipative mechan-
isms) in PDs (Chen et al., 2001; Marhadi and Kinra,
2005; Bai et al., 2009). Recently, it has been shown that
the performance of a PD is independent of the material
properties of the grains if the optimal Lz is used
(Sánchez et al., 2012). This universal behavior can be
explained through the effective inelastic collapse of
dense granular materials (Sánchez et al., 2012).

In this work, we show that this universality of the
response of a PD remains valid even if grains of differ-
ent shapes are considered. We have carried out simula-
tions with triangular, square and hexagonal grains and
with different dissipative properties. Furthermore, we
show that the fragmentation of particles, which is
likely when operating in harsh environments, does not
lead to changes in the response of the system. This phe-
nomenon explains the low maintenance requirements of
these devices, since a degradation of the granular
material does not lead to any significant change in
PD performance. We also consider the possibility of
welding of the grains (due to operation under high tem-
peratures). In this case, the vibration attenuation is
observed to decrease. Interestingly, our results show
that even for nonoptimal PDs, the shape of the grains
is a factor that does not influence the response.

2. Simulation

We carry out molecular dynamic type simulations, also
known as the discrete element method (DEM), by sol-
ving the Newton–Euler equations of motion for rigid
bodies confined in a rectangular box. All simulations
were done in two dimensions. Figure 1 shows a sche-
matic representation of the system. The primary system
consists of a mass M ¼ 2:37 kg, a linear spring with
spring constant K ¼ 21; 500Nm�1 and a viscous
damper, which accounts for any structural damping,
with damping constant C ¼ 7:6Nsm�1. Under these
conditions the undamped natural frequency is
f0 ¼ 15:16Hz.

The cavity of the PD has been modeled as a rect-
angular box of sides Lx ¼ 0:036m and 0.040m
5Lz 5 0:372m. The walls were modeled with coeffi-
cient of friction � ¼ 0:50 and coefficient of restitution

e ¼ 0:50. The bodies (particles) are placed in the rect-
angular box embedded in the primary system. The par-
ticles may have different shapes: triangles, squares and
hexagons. The total mass of the particles is
mp ¼ 0:227 kg. In all cases, the mass ratio
mp=M � 10% is kept constant. The restitution coeffi-
cient (e) and the friction coefficient (�) are both set to
0.50 in most simulations, but different values have been
tested in some cases.

The system is excited by a harmonic displacement
(uðtÞ ¼ U cosðwtÞ with U ¼ 0:0045m) of the base to
which the spring and viscous damper are attached
(see Figure 1). The excitation frequency is ! ¼ 2� f
with f between 5.0Hz and 20.0Hz.

We have considered the gravitational field
g ¼ 9:8ms�2 in the negative vertical direction.
Although the primary system can only move in the
z direction, the grains can move freely inside the rect-
angular box. Particles, initially placed at random with-
out overlaps in the box, are allowed to settle until they
come to rest in order to prepare the initial packing.
Then, the same protocol is applied to each sample for
every frequency. For all analyses, we used only the last
10% of the simulation time in order to ensure a sta-
tionary regime. The total simulation time corresponds
to 200 s.

The simulations were implemented by means of the
Box2D library (Catto, 2012). Box2D is an open-source
code written in Cþþ that uses a constraint solver to
handle hard bodies. The equations of motion are inte-
grated by Box2D through a symplectic Euler algorithm.
At each time-step of the simulation, a series of iter-
ations (typically 20) are used to resolve penetrations
between bodies (grains) through a Lagrange multiplier
scheme (Catto, 2005). The contact of each polygonal

Figure 1. Schematic representation of the single-degree-of-

freedom system with a particle damper. M: mass of the primary

system; K: spring constant; C: structural damping; mp: total mass

of the grains; Lz: height of the cavity; u(t): displacement imposed

to the base; z(t): displacement of the primary system.
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particle is defined by a manifold. After resolving pene-
trations, the friction (through the Coulomb criterion)
and the inelastic collision at each contact is solved and
new linear and angular velocities are assigned to each
particle. The time-step used to integrate the equations
of motion is 0.005 s. Box2D has been previously used
for simulations of granular materials subjected to
mechanical vibrations and results showed remarkable
agreement with experiments and other simulation
approaches (Carlevaro and Pugnaloni, 2011).

In practice, Box2D attains combined features of
traditional DEMs and event-driven simulations of
hard particles. As it is done in event-driven simulations,
the impulses calculated on oblique impacts of given res-
titution coefficient and friction are used to update pos-
itions (orientations) and velocities (angular velocities).
This effectively models hard bodies; however, instead of
calculating only simple two-body collisions, the algo-
rithm is able to calculate the effect of all neighbors on a
given body simultaneously. This scheme allows for flex-
ible and faster modeling of nonspherical objects.
However, as in event-driven simulations, the force law
between contacts is not defined and we lack the flexi-
bility of using sophisticated interaction models such as
the Hertz–Kuwabara–Kono model. Only the effective
friction and restitution of a material can be set.

3. Results

Figure 2 shows the frequency response function (FRF)
for the primary system with a PD containing N ¼ 180
hexagonal particles (with circumscribed radius
r ¼ 0:0015m, � ¼ 0:50 and e ¼ 0:50) for three different
heights Lz ¼ 0:040 m, 0.1225m and 0.372m of the
cavity. In this case, the height of the granular bed at
rest is approximately L0 ¼ 0:039 m. As we can see, the
results of these two-dimensional (2D) simulations using
hexagonal grains are consistent with previous three-
dimensional (3D) simulations (Saeki, 2002; Fang and
Tang, 2006) and experiments (Saeki, 2002; Liu et al.,
2005). We can observe a shift in the natural frequency
of the system compatible with an effective mass varying
from Meff ¼M (when Lz is large) to Meff ¼Mþmp

(when Lz is small enough to prevent the motion of
the particles inside the cavity). Notice however that a
detailed study has shown that this frequency shift does
not occur in a monotonous way: the effective mass pre-
sent overshoots and undershoots beyond the two limit
cases (M and Mþmp) (Sánchez and Pugnaloni, 2011).

Previous works (Papalou and Masri, 1998; Saeki,
2002; Sánchez and Pugnaloni, 2010) have shown the
existence of an optimum height for the cavity of the
PDs for which the best damping performance is
obtained. This is also observed in our 2D simulations.
From Figure 2, it is clear that between the two limit

cases (Lz small and very large) there is a height
(Lz ¼ 0:1225m) that yields the best attenuation of the
response.

Even though our simulations are 2D, the results
obtained are consistent with the phenomenology
observed in realistic particle dampers. In the next sec-
tions we will also show that 2D setups have the same
response functions as realistic PDs under some working
conditions.

3.1. Effect of particle fragmentation

During the operation of a PD, grains inside the cavity
are prone to fragmentation and wear. This may, in
principle, compromise the damping performance.
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Figure 2. Frequency response function for a system with

N ¼ 180 hexagonal particles (circumscribed radius r ¼ 0:0015 m,

� ¼ 0:50 and e ¼ 0:50) and three different heights of the

enclosure Lz ¼ 0:040 m (green triangles), 0.1225 m (red squares)

and 0.372 m (blue circles). The solid black line corresponds to

the response of the system without the particle damper. The

amplitude zmax of the oscillation of the primary mass is plotted

against the excitation frequency f.

Table 1. Material properties of the particles for the simulations

of fragmentation.

Hexagons

Circumscribed radius r 0.0015 m

Density (2D) � 215.77 kgm�2

Coefficient of restitution e 0.50

Coefficient of friction � 0.50

Triangles

Circumscribed radius r 0.00086 m

Density (2D) � 215.77 kgm�2

Coefficient of restitution e 0.50

Coefficient of friction � 0.50

Sánchez et al. 3
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To evaluate the effect of fragmentation, we carried out
simulations in which hexagonal particles are progres-
sively replaced by triangles, mimicking the fragmenta-
tion of the hexagons. A regular hexagon can be built
out of six equilateral triangles. Thus, the fragmentation
of a hexagon is simulated via substitution by six iden-
tical particles which occupy the same space and have
the same total mass as the original hexagon.

We have simulated various combinations of hexa-
gons and triangles representing different degrees of
fragmentation. The material properties of the grains
are shown in Table 1. The optimum height of the
enclosure is chosen to yield the best damping perform-
ance for the reference system consisting only of hex-
agonal grains (this corresponds to Lz ¼ 0:1225m).
Despite the simulated fragmentation, the height of the

0% fragmented 25% fragmented 50% fragmented

75% fragmented 100% fragmented

(d) (e)

(c)(b)(a)

Figure 3. Snapshots of granular samples at rest: (a) 180 hexagons (0% fragmentation); (b) 135 hexagons and 270 triangles

(25% fragmentation); (c) 90 hexagons and 540 triangles (50% fragmentation); (d) 45 hexagons and 810 triangles (75% fragmentation);

(e) 1080 triangles (100% fragmentation).

4 Journal of Vibration and Control 0(0)
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granular bed at rest remains fairly constant
(L0� 0.039). Figure 3 shows snapshots of the system
at rest for different degrees of fragmentation.

In Figure 4, we show the FRFs for the five systems
shown in Figure 3. The FRF of the system is unaffected
by the fragmentation of particles in the enclosure. This
has important practical implications since fragmenta-
tion during the operation of a PD would not comprom-
ise the damping performance of the device, reducing the
need for maintenance. This ‘universal’ FRF observed in
Figure 4 is consistent with previous suggestions based
on studies using different numbers of spherical grains
(Sánchez et al., 2012). However, notice that the present
work is taking due care of the shape that fragments
have (they are different to the original particle) and
still a universal FRF is found for the optimum Lz.

The universal response can be explained in terms of
the effective ‘inelastic collapse’ of the granular bed
(McNamara and Young, 1992; Luding and
McNamara, 1998). This phenomenon occurs when a
granular sample that is being excited has a high density.
Under such conditions, the granular pack achieves the
dissipation of all the kinetic energy of the grains in a
short time, even if the collisions between grains have a
very high coefficient of restitution. In dense granular
systems, the number of collisions per unit of time
grows quickly with the number of grains involved.
Even a minute dissipation in each collision is enough

to make the system, as a whole, fully dissipative. Since
this condition of having a dense granular pack is always
present for the motion of the granular bed at and
around the resonant frequency for the optimum Lz,
the response of the primary system is similar in all
cases regardless of the material properties, the shape
of the grains and the number of particles. This response
is comparable to the response that the system would
have if the entire set of grains were replaced by a
single body with zero coefficient of restitution
(Sánchez et al., 2012).

To further emphasize the universal character of the
FRF, we include in Figure 4 the results from a simula-
tion of a 3D PD with N ¼ 250 steel spheres (Sánchez
et al., 2012). For these simulations, we have imple-
mented a DEM (Cundall and Strack, 1979) in C. This
code uses the model of Hertz–Kuwabara–Kono for the
normal interactions of the grains and the frictional
model of Coulomb for the tangential interactions
(Brilliantov et al., 1996; Schäfer et al., 1996; Pöschel
and Schwager, 2004). The material properties that we
have used for the spheres are presented in Table 2.
As we can see, the curves from 2D and 3D simulations
are similar to each other. This confirms that the univer-
sal FRF is still valid if dimensionality is changed.

3.2. Effect of particle fusion

PDs have become important as passive vibration con-
trol systems in harsh environments. In particular, they
are used in environments with extreme temperatures
(high and low) or with elevated pressures. Although
the optimal PD has a universal response (independent
of the material used for the grains and independent of
the fragmentation of the particles), at high tempera-
tures a wrong choice of materials may cause the weld-
ing of particles, which would reduce the effective
number of grains in the cavity. This is known to
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Triangles (270); Hexagons (135)
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Figure 4. Frequency response function for the system with the

various distributions of particle size and shape shown in Figure 3.

The total mass of the grains mp ¼ 0:227 kg remains constant.

Each curve corresponds to a different level of fragmentation of

the hexagons (see legend). Blue triangles correspond to the FRF

from 3D discrete element method (DEM) simulations of the

same primary system with an optimal particle damper (PD) with

N ¼ 250 spherical particles and the same total mass but different

interaction forces between the grains (Sánchez et al., 2012).

The black line corresponds to the response of the system

without the PD.

Table 2. Material properties of the spheres for the 3D DEM

simulations. For a description of the normal and shear damping

coefficients involved in the particle–particle interaction force see

Sánchez et al. (2012).

Property Value

Young’s modulus E 2:03� 1011 Nm�2

Density 8030 kgm�3

Poisson’s ratio u 0.28

Friction �d 0.3

Normal damping �n 3:660� 103 kgs�1 m�1/2

Shear damping �s 1:098� 104 kgs�1 m�1/2

Particle radius 0.003 m

Sánchez et al. 5
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reduce the number of collisions per unit time and pre-
vent inelastic collapse.

In order to study the possible effect of the fusion of
particles within the cavity, we have carried out simula-
tions with square particles that are progressively
replaced by bigger grains. In our simulations, we
replace four square grains by a larger square with
area and mass equivalent to the total area and mass
of the four grains removed. In this way, the total
mass in the enclosure remains constant, but the

number and size distribution of the particles change.
We have used the optimal Lz for the original system
that consists of N ¼ 128 squares of radius 0.0021m
with � ¼ 0:50 and e ¼ 0:50. Figure 5 shows snapshots
of the different systems simulated with varying degrees
of particle fusion.

In Figure 6, we plot the FRFs for the different
degrees of fusion shown in Figure 5. The figure shows
that for a large number of small square particles (see
Figure 5(a)) the response is optimal. This response

(a) (b) (c)

(d) (e)

Figure 5. Snapshots of granular samples at rest: (a) 128 squares (circumscribed radius r ¼ 0:0021 m); (b) 32 squares resulting from

welding sets of four squares from panel (a); (c) six squares (from welding sets of 16 squares from (a)) mixed with eight squares (from

welding sets of four squares from (a)); (d) one square (welding 64 squares from (a)) mixed with four particles (welding sets of 16

square from (a)); (e) two particles made out of 64 squares from (a) each.

6 Journal of Vibration and Control 0(0)
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coincides with the universal FRF also observed for
hexagons in the previous section.

As the fusion of the grains progresses, the attenu-
ation of the vibration degrades. In particular, a reson-
ance peak starts to develop for frequencies below the
natural frequency of the primary system (compare with
the FRF of the system with an empty enclosure in
Figure 6). It is clear that the reduction of the total
number of particles in the cavity compromises the abil-
ity of the PD to dissipate the kinetic energy. Therefore,
appropriate maintenance tasks should be scheduled if
working under conditions that may favor particle
welding.

It is worth mentioning here that our observations
indicate that whenever the granular layer in the PD
exceeds four or five layers of grains, effective inelastic
collapse is achieved. This is consistent with previous

studies on the vibration of granular material (Chung
et al., 2011) and PDs (Marhadi and Kinra, 2005;
Sánchez et al., 2012). Therefore, the deterioration of
the attenuation due to fusion only occurs when the
number of granular layers decays below this threshold.

3.3. Effect of material properties and shape
for nonoptimal PDs

From Section 3.1, we conclude that the shape of the
particles in the enclosure of a PD is not significant for
the response of the system if the optimum Lz is chosen.
In this section, we consider different grain shapes and
coefficients of restitution to evaluate to what extent the
shape of the particles and material properties can influ-
ence the behavior of the PD if inelastic collapse is not
achieved. In order to show the difference in behavior
when inelastic collapse happens and when it does not,
the number N of particles was changed. The material
density of the particles was adjusted when N was chan-
ged so as to keep the total mass of the particles con-
stant. Properties of the grains for these simulations are
shown in Table 3.

Figure 7(a) shows the FRF for PDs with only two
particles (where inelastic collapse is not likely) when
different grain shapes and restitution coefficients are
used. These results show, again, that the response of
the PD is no longer universal if few particles are used.
The FRF depends on the restitution coefficient, with a
clear improvement in damping for smaller restitutions,
as should be expected. However, the different shapes of
the grains in the cavity has very little impact on the
FRF. Triangles, squares and hexagons yield similar
results. The subtle differences between FRFs for differ-
ent particle shapes can be attributed to the small differ-
ences in the height of the granular bed at rest due to the
different arrangements each grain shape can take.

When the number of layers of grains in the PD is
somewhat larger, N¼ 64, the response of the PD
becomes independent of the coefficient of restitution

Table 3. Material properties of the particles for the simulations in Section 3.3.

Big squares N¼ 2 Small squares N¼ 64

Circumscribed radius r 0.017 m Circumscribed radius r 0.0029 m

Density (2D) � 197.08 kgm�2 Density (2D) � 201.10 kgm�2

Big triangles N¼ 2 Small triangles N¼ 64

Circumscribed radius r 0.019 m Circumscribed radius r 0.0034 m

Density (2D) � 240.74 kgm�2 Density (2D) � 227.57 kgm�2

Big hexagons N¼ 2 Small hexagons N¼ 64

Circumscribed radius r 0.012 m Circumscribed radius r 0.0024 m

Density (2D) � 303.43 kgm�2 Density (2D) � 237.05 kgm�2

6 8 10 12 14 16 18 20

f [Hz]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

z m
ax

 [m
]

Primary system
N = 2
N = 5
N = 14
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N = 128

Figure 6. Frequency response function for the system with the

various distributions of sizes of square particles shown in

Figure 5. The total mass of the grains mp ¼ 0:227 kg remains

constant. Each curve corresponds to a different level of fusion

(see legend). The full black line corresponds to the response of

the system without the particle damper.
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(see Figure 7(b)). This is in agreement with previous
studies using spherical particles (Sánchez et al., 2012).
The emergence of inelastic collapse makes the system
follow the universal FRF.

In Figure 8, we show in more detail the maximum
amplitude of vibration of the primary system at the
resonance frequency (f ¼ 14:5Hz) as a function of the
coefficient of restitution for grains of different shapes.
Once again, the response is independent of particle
shape (whether an inelastic collapse exists or not). If a
large number of particles is used, the inelastic collapse
also leads to a constant response as a function of resti-
tution. However, if only a few particles are inserted in
the enclosure, the attenuation is more effective as resti-
tution is decreased.

4. Conclusions

We have considered the effect of fragmentation and
fusion of particles in a PD on the vibration attenuation.
The results of our simulations indicate that, if a suffi-
ciently large number of particles is used (typically over
six layers of grains), fragmentation of particles is
unable to alter the response of the PD. In contrast,
fusion will reduce the effective number of grains, pre-
venting inelastic collapse, which may eventually deteri-
orate the damping ability of the PD. From a practical
perspective, this implies that working under conditions
where fragmentation is likely does not require mainten-
ance of the PD (such as replacement of particles).
However, if fusion is possible, regular maintenance
inspections should be carried out. Notice however
that fragmentation may eventually convert the granular
sample into a fine powder. In such extreme cases a more
careful study is necessary since the aerodynamic inter-
action of the powder particles with the air in the cavity
may significantly affect the response of the PD.

The results we have presented for PDs containing
grains of different shapes indicate that the geometry
of the particles has no impact on damping perform-
ance. Even if few particles are used (so inelastic collapse
is not at play and the FRF deviates from the universal
response) a change in the particle shape does not sig-
nificantly affect the response of the PD.

In summary, the use of a large number of particles in
a PD ensures that a universal FRF will be obtained if
the optimal enclosure height is used. This universality
not only implies that the material properties of the
grains are irrelevant (Sánchez et al., 2012), but also
the shape of the grains, and in particular their fragmen-
tation, is unimportant. However, if few particles are
inserted in the PD, the response will be sensitive to
the material properties, but will remain insensitive to
the particle shape.
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Figure 7. Frequency response function for different particle

shapes and restitution coefficients e: (a) results for two-particle

systems containing triangles, squares or hexagons at two values

of e; (b) same as (a) for 64-particle systems.

Figure 8. Amplitude of vibration zmax at f ¼ 14:5 Hz as a

function of restitution coefficients for different numbers of par-

ticles and particle shapes (see legend).
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