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The complexity of nitric oxide generation and function in plants
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ABSTRACT: Plants are exposed to environmental stress, in natural and agricultural conditions.Nitric oxide 
(NO), a small gaseous molecule which plays important roles in plants, has been involved in many physiological 
processes, and emerged as an important endogenous signaling molecule in the adaptation of plants to biotic and 
abiotic stress. NO is produced from a variety of enzymatic and non enzymatic sources, which are not yet fully 
understood. Also, NO and reactive nitrogen species (RNS) can produce posttranslational modifications affecting 
protein function. Nitrate reductase, a key enzyme in the nitrogen metabolism, is a proposed source of NO in 
plants which could be affected by posttranslational modifications.Thus, different pathways seem to be involved 
and can also regulate NO synthesis in the plant cell under physiological or stress conditions. However, how the 
levels of NO are reached in such time and place to fulfill its functions, are still puzzles to elucidate.
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Plants are frequently exposed to environmental stress, both 
in natural and agricultural conditions. Acclimation to envi-
ronmental stress results from an integrated series of events, 
occurring from the anatomical and morphological levels 
to the cellular, biochemical, and molecular levels (Taiz and 
Zeiger, 2010). As abiotic stress conditions can lead to growth 
restriction, acclimation responses become the plant priority. 
Stress induced-plant growth reduction may be followed by 
an alteration in the redox state, leading to oxidative and/or 
nitrosative stress, due to an increase in reactive oxygen spe-
cies (ROS), or in reactive nitrogen species (RNS) respective-
ly. Also, ROS and RNS can produce protein posttranslational 
modifications (PTM) affecting their function. Nitrated pro-
teins have been detected in plants of tobacco, soybean, and 
Arabidopsis (Morot-Gaudry-Talarmain et al., 2002; Jasid et 

al., 2009; Lozano-Juste et al., 2011). Moreover, nitration and 
S-nitrosylation have been involved in acclimation to salinity 
stress. Tanou et al. (2012) showed that ROS/RNS-mediated 
protein post-translational modifications are a key molecular 
strategy for signaling transduction and salinity acclimation.

Nitric oxide (NO) is a small gaseous molecule which 
plays important roles in plants. It has been involved in many 
physiological processes and emerged as an important endog-
enous signaling molecule in the adaptation of plants to biotic 
and abiotic stress. A role for NO, and in some cases S-nitro-
sothiols (SNOs), has been suggested in a variety of stress re-
sponses, including drought, salt, heat, cold and heavy metal 
stress (Yu et al., 2014).

Most of the published studies demonstrated accumu-
lation of NO under stress conditions (Saxena and Shekha-
wat, 2013). However, it cannot be considered a general stress 
response. During plant responses to cadmium stress, NO 
was increased or decreased, acting as inducer or inhibitor 
of stress tolerance (Arasimowicz-Jelonek et al., 2011). Also, 
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iron deficiency triggered NO signaling in Arabidopsis thali-
ana (Chen et al., 2010) but repressed basal NO synthesis in 
Zea mays (Kumar et al., 2010).

It is possible that NO may confer abiotic stress toler-
ance in part by functioning as an antioxidant, as has been 
reported by several authors (Laspina et al., 2005; Hasanuz-
zaman et al., 2011;Verma et al., 2013). The relevance of NO 
in stress-induced redox signaling was investigated by treat-
ment of plants with NO donors before or during exposure to 
abiotic stress conditions. NO treatments either reversed the 
stress-induced decline, or even further amplified up-regula-
tion of the antioxidant defense system, concomitantly with 
a reduction in H2O2 accumulation and lipid peroxidation 
(Hasanuzzaman et al., 2010).

In plants, NO is produced from a variety of enzymatic 
and non enzymatic sources, which are not yet fully under-
stood, and are still under study (Table 1). Higher plants seem 
to have lost nitric oxide synthases (NOSs) in the course of 
evolution (Fröhlich and Durner, 2011). NOSs are present in 
almost all known organisms except plants, where neither the 
gene nor any protein with high sequence similarity to known 
NOS have been found (Lamattina et al., 2003). However, a 
NOS-like activity L-Arginine (L-Arg) dependent, has been 
highly reported in plants, together with a nitrate reductase 
(NR) dependent pathway.

Rasul et al. (2012) have suggested that L-Arg and NR 
pathways are co-involved in NO production and do not work 
independently. Part of the NO produced by L-Arg depen-
dent pathway could be oxidized to nitrite, providing sub-
strate for NR-dependent NO synthesis. Soybean cotyledons, 
growing in the presence of ammonia (without nitrate), were 

able to produce similar amounts of NO showing that differ-
ent sources could operate for NO accumulation in soybean 
cotyledons (e.g. nitrite- and L-Arg-dependent sources). It is 
likely that under different physiological or stress conditions, 
one pathway could result more operative depending on the 
substrate availability to maintain or increase NO generation 
supporting the required levels (Galatro et al., 2014). Howev-
er, NO generation was reduced in ammonium-fed tobacco 
plants where nitrogen assimilation bypassed the NR step, 
and compromised immune responses (Gupta et al., 2013).

NO is a free radical which diffuses readily through bi-
ological membranes and has a biological half-life ranging 
from 5 to 15 s (Gupta et al., 2011). This short half-life re-
flects the highly reactive nature of the molecule: it reacts with 
metal complexes and other radicals, and with biomolecules 
such as nucleic acids, proteins and lipids (Gupta et al., 2011). 
Prolonged exposure to stress may result in enhanced produc-
tion of NO and its derivatives, resulting in nitrosative stress. 
The nitrosylation of lipids, proteins and nucleic acids leads 
to severe metabolic impairment and degradation of cellular 
metabolites leading to programmed cell death (Krasylenko et 
al., 2010; Misra et al., 2011). S-nitrosylation of proteins, also 
known as S-nitrosation, constitutes the most studied and 
described NO-dependent posttranslational modification in 
plants. It refers to the reversible covalent binding of an NO 
moiety to the thiol group of a cysteinyl residue (Cys) of a tar-
get protein, to produce an S-nitrosothiol (SNO) (Astier et al., 
2012). S-nitrosylation may be integral to NO function during 
a variety of cellular processes (Simontacchi et al., 2013). De-
pending on the target protein concerned, this PTM will lead to 
a modification of its enzymatic activity or its protein function. 

TABLE 1

Proposed sources of NO generation in plants

Oxidative pathways Reductive pathways
(Nitrite dependent)

• L-Arg-dependent (Jasid et al., 2006; Galatro 
et al., 2004; Corpas et al., 2006) 

• PAs-mediated (Tun et al., 2006; Yamasaki 
and Cohen, 2006)

• Hydroxylamine-mediated (Rümer et al., 
2009)

• Nitrate reductase (Yamasaki and Sakihama, 
2000; Rockel et al., 2002)

• Root-specific, membrane-bound NiNOR 
(Stöhr et al., 2001)

• Thylakoids supplemented with nitrite (Jasid 
et al., 2006)

• Mitochondrial electron transfer chain (Gupta 
et al., 2011)1

• Peroxisomal enzyme XOR (Godber et al., 
2000; Whang et al., 2010)

• Non-enzymatic reduction of nitrite (Bethke 
et al., 2004)2

PAs, Polyamines; NiNOR, nitrite NO reductase; XOR, xanthine oxidoreductase
1 Under low oxygen concentration. 
2 In the apoplast.
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NR, a key enzyme in the nitrogen metabolism and, as 
mentioned before, a source of NO in plants, may be affect-
ed by posttranslational nitrosative modifications that could 
modify its functionality. In wheat leaf segments exposed 
to sodium nitroprusside (SNP) or S-nitrosoglutathione 
(GSNO), NR activity was significantly reduced to different 
degrees between 3 and 21 h of treatment, whereas its activity 
was partially recovered in the presence of the NO scavenger 
cPTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazo-
line-1-oxyl-3-oxide) (Rosales et al., 2011). Neither NR pro-
tein expression nor Tyr nitration, were affected by SNP in 
wheat segments (Rosales et al., 2011). In this sense, it will 
be interesting to study how NO could regulate its NR-de-
pendent formation by S-nitrosative PTM. Frungillo et al. 
(2014) demonstrated that NO and SNO modulate nitrogen 
assimilation by differentially inhibiting nitrate uptake and 
reduction. Also, NO regulates GSNO reductase (GSNOR1) 
through post-translational modification (S-nitrosylation). 
GSNOR catalyses the reduction of GSNO to oxidized gluta-
thione and ammonium. These results suggest a novel mech-
anism by which NO controls its own bioavailability (Frun-
gillo et al., 2014).

Polyamines (PAs), nitrogenous aliphatic compounds, 
also appear to be involved in the regulation of NR activity. 
PAs form H2O2 during their catabolism, and are also NO 
producers by still unknown mechanisms (Yamasaki and 
Cohen, 2006). NO mediates spermine-induced reduction in 
root elongation in wheat plants (Groppa et al., 2008). The 
PAs putrescine, spermidine and spermine induced a bipha-
sic response in NR activity, inhibiting the enzyme activity 
at short incubation times (3h) and stimulating it at longer 
exposition times (21h) (Rosales et al., 2012). NO is involved 
in this response, which could be reverted employing the NO 
scavenger cPTIO.

In addition to the multiple metabolic pathways that lead 
to NO formation, they can occur in different cell compart-
ments (Table 1). Chloroplasts are proposed sites of NO gen-
eration under physiological and stress conditions (Foissner 
et al. 2000; Arnaud et al., 2006; Jasid et al., 2006; Galatro et 
al., 2013;Tewari et al., 2013). Gas et al. (2009) proposed that 
chloroplasts are key players for the control of NO levels in 
the plant cell. It was shown that chloroplast function posi-
tively affects NO levels not only in this organelle, but also in 
the whole tissue (Galatro et al., 2013). NO detection go along 
with maximum chlorophyll content, and quantum yield of 
photosystem II (ΦPSII) in soybean cotyledons highlighting 
a role for chloroplast functionality in NO generation as it was 
previously proposed (Galatro et al., 2013).

Thus, different pathways are involved, work together, 
and also modulate NO production in the plant cell under 
physiological or stress conditions. However, how the levels 

of NO are reached in such time and place to fulfill their func-
tions, and how NO can regulate its own synthesis, are still 
puzzles to elucidate.

NO metabolism in plants is still a challenge. It is needful 
to identify the ways and sources of NO formation as well as 
the entry points of NO at the signaling metabolic network 
during normal or stress physiology. Other intriguing point is 
how PAs contribute to NO generation, and the physiological 
significance of other proposed sources (as hydroxilamine or 
non-enzimatic NO generation).

The elucidation of NO multiple pathways in plants will 
help to understand plant strategies to withstand stress and, in 
this way, to contribute to develop plants species with higher 
tolerance to stress. 
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