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Abstract

In this paper we study the fusion frame potential that is a generalization of the Benedetto-
Fickus (vectorial) frame potential to the finite-dimensional fusion frame setting. We stydy the
structure of local and global minimizers of this potential, when restricted to suitable sets of
fusion frames. These minimizers are related to tight fusion frames as in the classical vector
frame case. Still, tight fusion frames are not as frequent as tight frames; indeed we show that
there are choices of parameters involved in fusion frames for which no tight fusion frame can
exist. We exhibit necessary and sufficient conditions for the existence of tight fusion frames
with prescribed parameters, involving the so-called Horn-Klyachko’s compatibility inequalities.
The second part of the work is devoted to the study of the minimization of the fusion frame
potential on a fixed sequence of subspaces, with a varying sequence of weights. We related this
problem to the index of the Hadamard product by positive matrices and use it to give different
characterizations of these minima.
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1 Introduction

Fusion frames were introduced under the name of “frame of subspaces” in [8]. They are a general-
ization of the usual frames of vectors for a Hilbert space H; indeed frames of vectors can be treated
as “one-dimensional fusion frames”. During the last years, the theory of fusion frames has been
a fast-growing area. Several applications of fusion frames have been studied, for example, sensor
networks [11], neurology [19], coding theory [4], [5] , [16], among others. In particular, applications
which require distributed processing can be well described and studied using fusion frames. We
refer the reader to [10] and the references therein, for a detailed treatment of the fusion frame
theory. Further developments can be found in [7], [9] and [20].

In the finite dimensional setting, a fusion frame is a sequence of subspaces of Fn (F = C or R)
together with a set of positive weights such that the weighted sum of the orthogonal projections to
these subspaces (called fusion frame operator) is a positive invertible operator (see Definition 2.1.1).
As in the case of vector frames, it is usually desired that this invertible operator be a multiple of the
identity. In this case, the frame is called a tight fusion frame (TFF). However, tight fusion frames
might not exist for a fixed choice of dimensions d = (di)i∈Im of the subspaces, for any sequence of
weights w = (wi)i∈Im (see the discussion following Proposition 3.1.1).

Inspired by the work in classical frame theory (see [2, 18]), we study a convex functional on fusion
frame operators (the FF potential or FFP), also studied in [7], which generalizes the Benedetto-
Fickus frame potential. In this paper we analyze its local and global minima. This study is
motivated by the fact that local (global) minimizers characterize unit norm tight vector frames
(see [2, 4, 5, 6, 18]). Since the FF potential can be seen as a “measure of orthogonality” of
the frame vectors, it also provides an interesting geometrical description of fusion frames. These
considerations motivate the study of this type of minimizations in the fusion frame context. It
should be pointed out that a related study can be found in [7]. The authors became aware of this
work in an advanced stage of writing this paper.

The main tool used in [18] for these problems in the case of vector frames, namely majorization
of matrices, can be replaced in the context of fusion frames by the theory developed by Horn and
Klyachko in order to have a spectral characterization of Hermitian matrices which are the sum of a
set of Hermitian matrices. For example, this approach provides necessary and sufficient conditions
for the existence of TFF’s, summarized in a family of inequalities. Although this technique seems
to be rather impractical due to the complex conditions involved, it becomes a useful tool in the
study of the spectral structure of FF potential minimizers.

We first consider the problem of existence of TFF’s. We show some dimensional restrictions
on the subspaces regarding this problem, and then give equivalent conditions for the case of fixed
dimensions and weights. We refer to [7] for further developments in this direction.

The rest of the paper deals with the minimization of the FF potential on some sets of Fusion
Bessel sequences (i.e. sets of projections and weights whose fusion frame operator is not necessary
invertible). Mainly, we work on Bessel sequences with fusion frame operator of trace one. This is a
natural restriction in order to avoid scalar multiplications, and it allows an interpretation of the FF
potential as a measure of the distance between the fusion frame operator and a suitable multiple
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of the identity corresponding to the (possibly non-existing) tight fusion frames with trace one. A
detailed discussion of this approach can be found in Subsection 2.2.

The minimization of the FFP is done in three different settings: first, by fixing the weights w
and the dimensions d of the subspaces. Then, by fixing only the dimensions d. Finally, we consider
a fixed sequence of subspaces (Wi)i∈Im , and optimize it over the set of admissible weights. In the
three cases, minimization is made under the previously mentioned “trace one” restriction.

For the first problem, a geometrical approach similar to that done in [18] allows us to obtain a
characterization of local minimizers of the FF potential: they are orthogonal sums of tight frames
on each eigenspace of the frame operator. Then, using Horn and Klyachko techniques, we prove that
all minimizers (even those which are local minimizers) have the same eigenvalues, with the same
multiplicities. Similar results are obtained for the second problem (by fixing only the dimensions
of the subspaces).

The last section of the paper is devoted to the study of the optimization of the fusion frame
potential of fusion frames obtained from a fixed sequence V of subspaces within Cn which generate
the whole space. Since every sequence of weights makes V a fusion frame, we seek the best choice of
weights, meaning those which minimize (globally) the FF potential. Then, we establish a connection
between this optimization problem and the Hadamard indexes of a kind of Gram matrix associated
to the fixed subspaces. These indexes are studied in [12], and they involve the Hadamard or
entry-wise product of matrices. Using these tools, we get a characterization of the set of optimal
weights, and a way to compute them under some reasonable assumptions on the initial sequence of
subspaces. This analysis seems to be new even for the case of vector frames.

However, as it is shown by an example, minimizers could “erase” some of the initial subspaces
(i.e. the set of optimal weights could have zeros). Moreover, it is possible to obtain a minimizer
which is a Bessel sequence of subspaces which stops being generating, a phenomenon which does
not happen in the previous settings. Motivated by this problem, we study the geometry of the set
of all weights w which minimize the FF potential, and in particular their possible supports (namely,
those sub-indexes i such that wi > 0). At the end of the section, we present some examples which
illustrate these type of anomalies.

The paper is organized as follows: Section 2 contains preliminary definitions on fusion frames
and the basic notation used throughout the paper. This section also contains a brief exposition
of Horn-Klyachko’s compatibility inequalities. Section 3 is devoted to the study of minimizers of
the FF potential, restricted to the sets of fusion frames detailed before. In Section 4 we analyze
the problem of minimizing the FF potential for a fixed sequence of subspaces, varying the weights.
The paper ends with an appendix containing definitions and several results concerning Hadamard
indexes of positive matrices, which are related to the contents of Section 4.

We wish to thank to P. Casazza and M. Fickus for letting us know about their excellent work
[7], which is closely related to the present paper.

2 Preliminaries and Notations.

In this paperMn(C) denotes the algebra of complex n×n matrices, Gl (n) the group of all invertible
elements of Mn(C), U(n) the group of unitary matrices, Mn(C)sa (resp. Mn(C)ah) denotes the
real subspace of Hermitian (resp. anti-Hermitian) matrices,Mn(C)+ the set of positive semidefinite
matrices, and Gl (n)+ =Mn(C)+ ∩Gl (n). Given T ∈Mn(C), R(T ) denotes the image of T , N(T )
the null space of T , σ(T ) the spectrum of T , trT the trace of T , and rk T the rank of T .

We write R+ = {x ∈ R : x ≥ 0} and R>0 = R+ \ {0}. On the other hand, given m ∈ N we denote
by Im = {1, . . . ,m} and by 1 = 1m ∈ Rm the vector with all its entries equal to 1. Given a vector
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v ∈ Rn, diag(v) ∈ Mn(C) is the diagonal matrix with v in its diagonal, and v↓ ∈ Rn is the vector
obtained by re-arrangement of the coordinates of v in non-increasing order. If T ∈ Mn(C)sa , we
denote by λ(T ) ∈ Rn the vector of eigenvalues of T , counted with multiplicities, in such a way that
λ(T ) = λ(T )↓.

Given a subspace W ⊆ Cn, we denote by PW ∈ Mn(C)+ the orthogonal projection onto W , i.e.
R(PW ) = W and N(PW ) = W⊥. For vectors on Cn we shall use the Euclidean norm, but for
matrices T ∈ Mn(C), we shall use both the spectral norm ‖T‖ = ‖T‖sp = max‖x‖=1 ‖Tx‖, and

the Frobenius norm ‖T‖2 = (tr T ∗T )
1
2 =

( ∑
i,j∈In

|Tij |2
) 1

2 . This norm is induced by the inner
product 〈A, B〉 = tr (B∗A) , for A,B ∈Mn(C).

2.1 Frames of subspaces, or fusion frames for Cn

We begin by defining the basic notions of fusion frame theory in the finite-dimensional context.
For an introduction to fusion frames for general Hilbert spaces, see [8], [10] or [20] . Briefly, a
fusion frame for Cn is a generating sequence of subspaces, equipped with weights assigned to each
subspace. Nevertheless, we prefer to give the “frame style” definition, which adjusts better to our
purposes.

Definition 2.1.1. Let W = {Wi}i∈Im be closed subspaces of H ∼= Cn, and w = {wi}i∈ Im ∈ Rm
>0.

The sequence Ww = (wi , Wi)i∈Im is a fusion frame (FF) for H, if there exist A,B > 0 such that

A‖f‖2 ≤
∑
i∈Im

w2
i ‖PWif‖2 ≤ B‖f‖2 for every f ∈ H . (1)

If only the right-hand side inequality in Eq. (1) holds, then we say that Ww is a Bessel sequence
of subspaces (BSS) for H. The frame operator of Ww is defined by the formula

SWw =
∑
i∈Im

w2
i PWi ∈Mn(C)+ . (2)

Observe that Ww is a FF if and only if SWw ∈ Gl (n)+ and, in this case AIn ≤ SWw ≤ B In . We
say that Ww is a tight FF (TFF) if A = B , in other words, if SWw = AIn .

Remark 2.1.2. Let Ww = (wi , Wi)i∈Im be a BSS for Cn. For each i ∈ Im , we can take an
orthonormal basis (ONB) Bi = {e(i)

j }j∈Ji of Wi . Hence, for every f ∈ H, we have that

PWif =
∑
j∈Ji

〈f, e(i)
j 〉 e

(i)
j , for i ∈ Im =⇒ SWwf =

∑
i∈Im

w2
i PWif =

∑
i∈Im

∑
j∈Ji

〈f, wi e(i)
j 〉wi e

(i)
j .

Therefore, Ww induces a vector Bessel sequence F = {wi e(i)
j : i ∈ Im , j ∈ Ji} which has a very

useful property: Its frame operator SF = SWw .

2.2 Sets of fusion frames and the FF-potential

We shall establish some notation regarding sets of BSS’s and FF’s :

Definition 2.2.1. Fix n, m ∈ N and consider a Hilbert space H ∼= Cn.

1. Let Bm,n the set of all BSS’s of the form Ww = (w,W) = (wi , Wi)i∈Im , where w ∈ Rm
+ and

W a sequence of m subspaces of H ∼= Cn.
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2. Given a sequence d ∈ Nm such that tr d =
∑
i∈Im

di ≥ n, let

Bm,n(d) =
{
Ww ∈ Bm,n : dimWi = di for every i ∈ Im

}
, (3)

3. Given d ∈ Nm and v ∈ Rm
>0 , let

Bm,n(d, v) = {Ww ∈ Bm,n : dimWi = di for every i ∈ Im and w = v} (4)

the subset of Bm,n(d) of BBS’s with a fixed sequence of weights v.

4. Finally, let

B1
m,n(d) =

{
Ww ∈ Bm,n : dimWi = di for every i ∈ Im and

∑
i∈Im

w2
i di = 1

}
, (5)

the set of those Ww ∈ Bm,n(d) such that trSWw = 1.

5. We say that a pair (d, w) ∈ Nm × Rm
>0 is normalized if tr d ≥ n and

∑
i∈Im

w2
i di = 1. Observe

that (d, w) is normalized if and only if Bm,n(d, w) ⊆ B1
m,n(d).

6. The sets of fusion frames with the same restrictions will be denoted by replacing the letter B
by S. More precisely, we consider:

(a) The set Sm,n = {Ww ∈ Bm,n : Ww is a FF }. In other words, a sequence Ww ∈ Sm,n

if w ∈ Rm
>0 and W a generating sequence of subspaces of H. In a similar fashion:

(b) For a fixed d ∈ Nm, the set Sm,n(d) = {Ww ∈ Bm,n(d) :Ww is a FF }.
(c) Given a pair (d, v) ∈ Nm × Rm

>0 , Sm,n(d, v) = {Ww ∈ Bm,n(d, v) :Ww is a FF }.
(d) If d ∈ Nm, the set S1

m,n(d) = {Ww ∈ B1
m,n(d) :Ww is a FF }.

The following definition is suggested by the classical Benedetto-Fickus potential, whose value in a
vector frame F can be calculated as FP(F) = trS 2

F .

Definition 2.2.2. GivenWw = (wi ,Wi)i∈Im ∈ Bm,n , the Benedetto-Fickus fusion frame potential
(FF-potential or FFP) of Ww is given by:

FFP (Ww) =
m∑

i,j=1

w2
iw

2
j tr(PWiPWj ) = tr S 2

Ww
. (6)

Observe that, if dimWi = 1 for every i ∈ Im , then FFP (Ww) = FP(F), for any vector Bessel
sequence F obtained from Ww as in Remark 2.1.2.

The scope of this paper is to study minimizers of the FF-potential. In order to avoid scalar
multiplications (note that FFP (Wt·w) = t4 FFP (Ww ) ) we shall restrict ourselves to minimize the
FF-potential on subsets of B1

m,n(d), for d and m fixed. In other words, we shall minimize the
FF-potential for those sequences Ww such that trSWw = 1.

This specific restriction is justified because, if there exist tight FF’s in Bm,n(d), then their FF-
potential and frame bounds are determined exactly by the trace of their frame operators. Namely,
if Ww ∈ Bm,n(d) is tight, and trSWw = a, then SWw = a

n In and FFP (Ww) = a2

n .

Even in the case that there are no TFF’s in Bm,n(d), this restriction seems to be quite natural.
Indeed, for BSS’s with fixed trace, the FF-potential can be seen as a measure of the (Frobenius)
distance of their frame operators to a fixed multiple of the identity:
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Proposition 2.2.3. Let Ww ∈ B1
m,n(d). Then∥∥ 1

n In − SWw

∥∥2

2
= trS 2

Ww
− 1

n = FFP (Ww) − 1
n .

Proof. Since trSWw = 1, a direct computation shows that∥∥ 1
n In − SWw

∥∥2

2
= tr

(
1
n2 In − 2

n SWw + S 2
Ww

)
= trS 2

Ww
− 1

n . �

The last result shows that if there exist tight FF’s in B1
m,n(d), then they are the unique global

minimizers of the FF-potential on B1
m,n(d). But in the case that there are no TFF’s in B1

m,n(d),
the minimization of the FF-potential becomes more interesting: it provides the elements of B1

m,n(d)
that can be expected to have the best properties.

In this paper we deal mostly with these type of minimizations under two different further restric-
tions: we work in the set Bm,n(d, w) ⊆ B1

m,n(d) for a fixed normalized pair (d , w), or we fix a
generating sequence W of subspaces, and minimize the FF-potential over all sequences of weights
w ∈ Rm

+ such that Ww ∈ B1
m,n(d).

2.3 Klyachko-Fulton approach

Recall that given x ∈ Rn, we denote by x↓ ∈ Rn the vector obtained by rearranging the coordinates
of x in non-increasing order. Given x, y ∈ Rn we say that x is submajorized by y, and write x ≺w y,

if
k∑
i=1

x↓i ≤
k∑
i=1

y↓i for every k ∈ In . If we further have that tr(x) =
n∑
i=1

xi =
n∑
i=1

yi then we say that

x is majorized by y, and write x ≺ y.

Example 2.3.1. As an elementary example, that we shall use in what follows, let x ∈ Rn
+ and

0 ≤ a ≤ tr(x) ≤ b. The reader can easily verify that a
n 1n ≺w x ≺w b e1 .

(Sub)majorization between vectors is extended by T. Ando in [1] to (sub)majorization between
self-adjoint matrices as follows : given A, B ∈Mn(C)sa , we say that A is submajorized by B, and
write A ≺w B, if λ(A) ≺w λ(B). If we further have that tr(A) = tr(B) then we say that A is
majorized by B and write A ≺ B.

Although simple, submajorization plays a central role in optimization problems with respect to
convex functionals and unitarily invariant norms, as the following result shows (for a detailed
account in majorization see Bhatia’s book [3]).

Theorem 2.3.2. Let A, B ∈Mn(C)sa. Then, the following statements are equivalent:

1. A ≺w B.

2. For every unitarily invariant norm ‖ · ‖ in Mn(C) we have ‖A‖ ≤ ‖B‖.

3. For every increasing convex function f : R→ R we have tr f(A) ≤ tr f(B).

Moreover, if A ≺w B and there exists an increasing strictly convex function f : R → R such that
tr f(A) = tr f(B) then there exists U ∈ U(n) such that A = U∗BU . �

In what follows we describe the basic facts about the spectral characterization of the sums of
Hermitian matrices obtained by Klyachko [15] and Fulton [14]. Let

Krn =
{

(j1, . . . , jr) ∈ Nr : 1 ≤ j1 < j2 . . . < jr ≤ n
}
.
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For J = (j1, . . . , jr) ∈ Krn , define the associated partition

λ(J) = (jr − r, . . . , j1 − 1) .

Denote by LR r
n(m) the set of (m + 1)-tuples (J0, . . . , Jm) ∈ (Krn)m+1, such that the Littlewood-

Richardson coefficient of the associated partitions λ(J0), . . . , λ(Jm) is positive, i.e. one can generate
the Young diagram of λ(J0) from those of λ(J1), . . . , λ(Jm) according to the Littlewood-Richardson
rule (see [13]). With this notation and terminology we have

Theorem 2.3.3 ([15, 14]). Let λi = λ↓i = (λ(i)
1 , . . . , λ

(i)
n ) ∈ Rn for i = 0, . . . ,m. Then, the following

statements are equivalent:

1. There exists Ai ∈Mn(C)sa with λ(Ai) = λi for 0 ≤ i ≤ m and such that

A0 = A1 + . . .+Am .

2. For each r ∈ {1, . . . , n} and (J0, . . . , Jm) ∈ LR r
n(m) we have∑

j∈J0

λ
(0)
j ≤

m∑
i=1

∑
j∈Ji

λ
(i)
j (7)

plus the condition
n∑
j=1

λ
(0)
j =

m∑
i=1

n∑
j=1

λ
(i)
j .

Moreover, if (Ai)mi=0 are as in item 1. above and (J0, . . . , Jm) ∈ LR r
n(m) satisfy equality in Eq. (7),

then there exists a subspace L ⊆ Cn with dim L = r, that simultaneously reduces Ai for 0 ≤ i ≤ m
and such that λ(PLAi) = (λ(i)

j )j∈Ji , where PL denotes the orthogonal projection of Cn onto L. �

We shall refer to the inequalities in Eq. (7) as Horn-Klyachko’s compatibility inequalities.

3 On the existence of tight fusion frames.

In this section we study the problem of the existence of TFF’s in B1
m,n(d), the set of BSS’s Ww in

Cn with fixed dimensions given by d ∈ Nm which satisfy trSWw = 1.

3.1 Dimensional restrictions

There are rather important differences between vector frames and frames of subspaces regarding
the (fusion) frame potential. For example, in [2] (see also [6] and [18]) it is shown that the local
minimizers of the frame potential on the set (m ≥ n)

F 1
m,n = {F = {fi}i∈Im : each fi ∈ Cn and tr(SF ) =

∑
i∈Im

‖fi‖2 = 1 }

are tight frames. Since the set F 1
m,n is compact and the frame potential is a continuous function,

there must be global (and hence local) minima of the frame potential. This was used to give an
indirect proof of the existence of such frames in the vectorial case.

Let d ∈ Nm with tr d ≥ n and consider the set B1
m,n(d) defined in Eq. (5). Using Remark 2.1.2 it

follows that if d = 1m , we can identify B1
m,n(d) with F 1

m,n . Then the existence of TFF in B1
m,n(1)

is guaranteed, by the comments above. Hence it seems natural to ask whether there exist TFF’s
in B1

m,n(d) for arbitrary d. Observe that, in such case, the set of global minimizers of the FFP on
B1
m,n(d) would coincide with the set of TFF’s, by Proposition 2.2.3. Nevertheless, the following

results show that in general the answer to that question is no.
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Proposition 3.1.1. Let (d, w) ∈ Nm ×Rm
>0 be a normalized pair, with M = tr d ≥ n, and assume

that Ww ∈ B1
m,n(d) is a TFF, so that SWw = 1

n In . If there exists i ∈ Im such that

M − di =
∑
k 6=i

dk ≤ n− 1 =⇒ w2
i = 1

n and PWi PWj = 0 for every j ∈ Im \ {i} .

Proof. Consider the tight vector frame F = {w2
i e

(i)
j : i ∈ Im , j ∈ Idi

} associated to Ww , as
described in Remark 2.1.2. Let G ∈MM (C)+ denote the Gram matrix of the vector frame F and
let Gi = w2

i Idi
denote the Gram matrix of each subsequence {w2

i e
(i)
j : j ∈ Idi

}. Then each Gi is a
di × di principal sub-matrix of G. By Cauchy’s interlacing principle [3] we get:

λj(G) ≥ λj(Gi) ≥ λM−di+j(G) for 1 ≤ j ≤ di ,

where λ(G) = (λj(G) )j∈IM
(resp λ(Gi) ∈ Rdi) denotes the vector of eigenvalues of G (resp. Gi)

counting multiplicities and with its entries arranged in non-increasing order. By assumption,

λj(G) = 1
n for j ∈ In , λj(G) = 0 for n < j ≤M , and λj(Gi) = w2

i for j ∈ Idi
.

Thus if
∑
k 6=i

dk ≤ n−1, then M −di+ 1 ≤ n and 1
n = λM−di+1(G) ≤ λ1(Gi) = w2

i ≤ λ1(G) = 1
n . It

is known that, in this case, each of the vectors e(i)
j , 1 ≤ j ≤ di , must be orthogonal to every other

vector in the 1
n -tight vector frame F , which implies the last assertion of the theorem. �

Example 3.1.2 (About the existence of TFF’s in B1
m,n(d) ). Consider now d = (2, 2) and assume

that there exists Ww ∈ B1
2,3(d) that is a TFF. That is, we assume that there exist two subspaces

Wi ⊂ C3 with dimWi = 2, i = 1, 2 and w1 , w2 ∈ R>0 such that 1
3 I3 = w2

1 PW1 + w2
2 PW2 . Since

d1 , d2 ≤ 3− 1 we conclude from Proposition 3.1.1 that w2
1 = w2

2 = 1
3 , and PW1 PW2 = 0, which is

impossible. This argument can be extended to show that if the choices of d = (di)i∈Im are such
that each di is relatively small compared with n and

∑
k 6=i

dk then there are no TFF’s in B1
m,n(d).

For example, in B1
k, 2k−1(2 · 1k), B1

3, 7(3, 3, 3), B1
3, 9(4, 4, 4), etc., there are no TFF’s.

Remark 3.1.3. The previous results show some dimensional restrictions for the existence of TFF’s
in B1

m,n(d). In the paper [7], some sufficient conditions on n, m and d are given (particularly if
d is a multiple of 1m), which assure the existence in B1

m,n(d) of such fusion frames. For further
results in this direction, see also [16].

3.2 Characterizations for fixed weights

Recall that, if Ww = (wi ,Wi)i∈Im ∈ Bm,n , the FFP of Ww is given by

FFP (Ww) =
m∑

i,j=1

w2
iw

2
j tr(PWiPWj ) = tr S 2

Ww
.

Definition 3.2.1. Given Ww = (wi ,Wi)i∈Im ∈ Bm,n , we define also the following matrix:

Pq(Ww) =
m∑

i, j=1

w2
iw

2
j (PWiPWj )∗PWi PWj =

m∑
i, j=1

w2
iw

2
j PWj PWi PWj ∈Mn(C)+ . (8)

The matrix Pq(·) is related to the so-called q-potential [17] defined in the more general context
of reconstruction systems. Notice that the FF-potential of the sequence Ww can be computed in
terms of Pq(Ww), since FFP (Ww) = tr S 2

Ww
= tr Pq(Ww) .
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The following theorem gives us some general bounds for the matrix Pq(·) and states several condi-
tions on Ww ∈ Bm,n(d) which are equivalent to the assertion that Ww is a 1

n -TFF.

Theorem 3.2.2. Let Ww ∈ Bm,n(d) such that trSWw =
∑
i∈Im

w2
i di ≥ 1. Then

1
n2 In ≺w Pq(Ww) , (9)

for every UIN ‖ · ‖ on Mn(C) with associated symmetric gauge function ψ we have that

1
n2 ψ(1) ≤ ‖Pq(Ww)‖ , (10)

and for every increasing convex function f : R+ → R with f(0) = 0 we have

n · f
(

1
n2

)
≤ tr f(Pq(Ww) ) . (11)

On the other hand, the following conditions are equivalent:

(a) Ww is a 1
n -TFF.

(b) Pq(Ww) = 1
n2 In .

(c) Majorization holds in Eq. (9).

(d) There exists a UIN on Mn(C) such that equality holds in Eq. (10).

(e) There exists an increasing strictly convex function f : R+ → R+ with f(0) = 0 such that
equality holds in Eq. (11).

Proof. Since tr(SWw) ≥ 1, it follows from Example 2.3.1 that 1
n In ≺w SWw . By Theorem 2.3.2,

1
n = tr ( 1

n In)2 ≤ trS 2
Ww

= tr Pq(Ww) =⇒ 1
n2 In ≺w Pq(Ww ) ,

using Example 2.3.1 again. Notice that by Theorem 2.3.2, Eq. (10) and Eq. (11) are consequences
of this last fact. Assume that Ww is a 1

n -TFF. Then SWw =
∑m

j=1w
2
jPWj = 1

n In . Therefore

Pq(Ww) =
m∑

i,j=1

w2
iw

2
jPWiPWjPWi =

m∑
i=1

w2
i PWi

( m∑
j=1

w2
jPWj

)
PWi

=
m∑
i=1

w2
i PWi

(
1
n In

)
PWi = 1

n2 In .

It is clear that this equality implies conditions (c), (d) (for every UIN) and (e) (for every f).
Assume now that equality holds in Eq. (10) for some UIN. Then, using Eq. (9) we get

1
n2 ψ(1) = ‖Pq(Ww)‖ = ψ(λ(Pq(Ww) ) ≥ tr Pq(Ww)

n ψ(1) ≥ 1
n2 ψ(1) .

Hence, tr Pq(Ww) = 1
n = tr ( 1

n2 In), and majorization holds in Eq. (9). In this case, we have that

tr ( 1
n2 In ) = tr Pq(Ww) = trS2

Ww
.

Since 1
nIn ≺w SWw and the function f(x) = x2 is strictly convex, by Theorem 2.3.2 we conclude

that there exists a unitary U ∈ U(n) such that SWw = U∗( 1
n In)U = 1

n In . Finally, if there exists
f : R+ → R+ as in (e), then Theorem 2.3.2 and Eq. (9) imply that SWw = 1

n In . �

Theorem 3.2.3. Let (d, w) ∈ Nm×Rm
>0 be a normalized pair. Then, the following statements are

equivalent:
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1. There exists Ww = (wi ,Wi)i∈Im ∈ Bm,n(d , w) which is a 1
n -TFF.

2. For every 1 ≤ r ≤ n− 1 and every (J0, . . . , Jm) ∈ LR r
n(m) we have that

r
n ≤

∑
i∈ Im

w2
i · | Ji ∩ {1, . . . , di} |.

3. There exists an orthogonal projection P = (Pij)i,j∈ Im ∈ Mm(Mn(C) ) of rank n such that
1

nw2
i
Pii is an orthogonal projection of rank di in Mn(C), for every i ∈ Im .

Proof. Notice that condition 1 is equivalent to the existence of orthogonal projections {Pi}i∈Im

with rk Pi = di such that
∑
i∈Im

w2
i Pi = 1

n In . Hence, Theorem 2.3.3 assures that condition 1

implies condition 2, since these are Horn-Klyachko’s compatibility inequalities for the spectra of
{w2

i Pi}i∈Im and 1
n In . The converse of the previous implication also follows from Theorem 2.3.3

since a self adjoint operator A with λ(A) = (α, . . . , α, 0, . . . , 0) ∈ Rn is necessarily of the form
A = αP for some projection P ∈Mn(C).

Assume now condition 1 and let Ww = (wi,Wi)i∈Im ∈ B1
m,n(d) be a 1

n -TFF. Let us consider a
partial isometry Vi ∈Mn(C) such that V ∗i Vi = PWi , for every i ∈ Im . Define

V ∗ =
[
w1V

∗
1 |w2V

∗
2 | · · · |wmV ∗m

]
∈Mn ,mn(C) .

Observe that V ∗V =
∑
i∈Im

w2
i V
∗
i Vi = 1

n In . Hence V V ∗ = (wiwjViV ∗j )mi, j=1 ∈Mm(Mn(C) ) satisfies

that V V ∗ = 1
n P for an orthogonal projection P = (Pij)i,j∈ Im ∈Mm(Mn(C) ). By comparing the

diagonal blocks we get that
1
n Pii = w2

i ViV
∗
i =⇒ 1

nw2
i
Pii = ViV

∗
i , for every i ∈ Im .

Conversely, assume that P = (Pij)i,j∈ Im ∈ Mm(Mn(C) ) is a projection with rk P = n as in (3).
Then there exist a matrix U = [U1| · · · |Um] ∈ Mn ,mn(C) (where each Ui ∈ Mn(C) ) such that
UU∗ = In and P = U∗U . Comparing the block diagonal entries, for every i ∈ Im we get that

1
nw2

i
Pii = 1

nw2
i
U∗i Ui and Qi = 1

nw2
i
UiU

∗
i is also an orthogonal projection of rank di . On the other

hand, we have that
1
n In = 1

n UU
∗ =

∑
i∈Im

w2
i

1
nw2

i
UiU

∗
i =

∑
i∈Im

w2
i Qi . (12)

Taking Wi = R(Ui) = R(Qi) , we get that PWi = Qi for every i ∈ Im . By this fact and Eq. (12),
we conclude that the sequence W = (wi,Wi)i∈Im ∈ B1

m,n(d) is a 1
n -TFF for Cn. �

4 Minimization for fixed weights

Recall that a pair (d, w) ∈ Nm × Rm
>0 is called normalized if tr d ≥ n and

∑
i∈Im

w2
i di = 1. In

this section we study, for such a pair (d, w), the structure of minimizers for the FFP in the set
Bm,n(d, w) of BSS’s Ww in Cn with fixed dimensions given by d and fixed weights w.

4.1 Lower bound for the potential

In this subsection we translate, using Remark 2.1.2, some well known results about vector frames
(see [6] or [20]) to the FF context. An interesting fact is that there is a notion of irregularity,
defined in terms of the parameters of a given FF, which agree with the vectorial n-irregularity of
their associated vector frames. Nevertheless, the lower bound obtained for the FF-potential is not
always attained in the set Bm,n(d, w) (see Example 4.1.3) .
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Definition 4.1.1. Given a pair d ∈ Nm and w = w↓ ∈ Rm
>0 , consider its q-irregularity defined as

J0(d, w) = max

 j ∈ Im :
(
n−

j∑
i=1

di
)
w2
j >

m∑
i=j+1

w2
i di

 ,

if this set is not empty empty. In the case where it is empty, let J0(d, w) = 0.

Proposition 4.1.2. Let (d, w) ∈ Nm × Rm
>0 be a normalized pair, where w = w↓. Recall that

M =
∑
i∈Im

di ≥ n. Let j0 = J0(d, w) and c =

m∑
i=j0+1

w2
i di

n−
j0∑

i=1
di

< w2
j0
. If Ww ∈ Bm,n(d, w) then

FFP (Ww) ≥
j0∑
i=1

diw
4
i + (n−

m∑
i=j0+1

di) c2 . (13)

Moreover, equality holds in Eq. (13) if and only if the following two conditions hold:

1. PWi PWj = 0 for 1 ≤ i 6= j ≤ j0 and

2. {wi ,Wi}mi=j0+1 is a TFF for span{Wi : 1 ≤ i ≤ j0}⊥.

Proof. 1. Let Ww ∈ Bm,n(d, w) and let F = {w2
i e

(i)
j : i ∈ Im , j ∈ Idi

} be an associated vector
frame, as described in Remark 2.1.2. Let a ∈ RM denote the vector whose coordinates are the
norms of the elements of F arranged in non-increasing order. Then,

wk = aM(k,j) , where M(k, j) =
k−1∑
i=1

di + j , for k ∈ Im and j ∈ Idk
.

We now consider the n-irregularity rn(a) of the vector a :

rn(a) = max
{
j ∈ In−1 : (n− j)aj >

M∑
i=j+1

ai

}
,

if the set on the right is non-empty, and rn(a) = 0 otherwise. It is straightforward that rn(a) =
j0∑
i=1

di

in the first case. Therefore, inequality (13) can be deduced from [6, Theorem 10] (see also [20]).
The same result of [6] shows that equality in Eq. (13) implies that S1 = {e(i)

j : 1 ≤ i ≤ j0 , j ∈ Idi
}

is an orthonormal system in Cn, and S2 = {e(i)
j : j0 + 1 ≤ i ≤ m, j ∈ Idi

} is a tight frame for S⊥,
where S = span {S1} = span {Wi : 1 ≤ i ≤ j0}. �

The following example shows that the lower bound in Eq. (13) is not sharp in general.

Example 4.1.3. If we set n = 3, d = (2, 2) and w1 = w2 = 1
2 then

∑
i∈Im

w2
i di = 1 and J0(d, w) = 0.

Therefore, by Theorem 4.1.2 the equality (13) holds only in tight fusion frames. Still, there are no
TFF’s in B2,3(d, w) ⊆ B2,3(d) since the Example 3.1.2 shows that there are no TFF’s in the (bigger
set) B2,3(d).
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4.2 Structure of local minima: The geometrical approach

In what follows we consider a perturbation result for Bessel sequences of subspaces. We begin
by considering some well known facts from differential geometry that we shall need below. In
what follows we consider the unitary group U(n) together with its natural differential geometric
(Lie) structure. It is well known that the tangent space TIn U(n) at the identity can be naturally
identified with the real vector space

Mn(C)ah = i · Mn(C)sa =
{
X ∈Mn(C) : X∗ = −X

}
,

of anti-Hermitian matrices. Given G ∈Mn(C)+ we consider the smooth map

ΨG : U(n)→ U(G) ⊆Mn(C) given by ΨG(U) = U∗GU , U ∈ U(n) , (14)

where U(G) is the unitary orbit of G. Under the previous identification, the differential of ΨG at
a the point In ∈ U(n) in the direction given by X ∈Mn(C)ah is given by

(DΨG)In(X) = XG−GX = [X,G] . (15)

It is well known that the map ΨG is a submersion of U(n) onto U(G). Therefore, the differential
(DΨG)In is an epimorphism, and hence Eq. (15) gives us a description of the tangent space of the
manifold U(G) at the point G: We have that TGU(G) =

{
[X,G] : X ∈Mn(C)ah

}
.

We now adopt the notation M1
n(C)sa = {A ∈ Mn(C)sa : trA = 1}. Observe that M1

n(C)sa is an
affine manifold contained in the real vector space Mn(C)sa , and its tangent space is the subspace
M0

n(C)sa = {A ∈ Mn(C)sa : trA = 0}. On the other hand, given X,Y ∈ Mn(C)sa , it is easy to
see that tr(XY ) ∈ R. Therefore the inner product 〈A, B〉 = tr (B∗A) of Mn(C) still works as a
real inner product on Mn(C)sa .

Given a set {Pj : j ∈ Im} ⊆ Mn(C)sa of projections, we denote by

{Pj : j ∈ Im}′ = {A ∈Mn(C) : APj = Pj A for every j ∈ Im} . (16)

Note that {Pj : j ∈ Im}′ is a closed selfadjoint subalgebra of Mn(C). Therefore, the algebra
{Pj : j ∈ Im}′ 6= C In ⇐⇒ there exists a non-trivial orthogonal projection Q ∈ {Pj : j ∈ Im}′.

Theorem 4.2.1. Let (d, w) be a normalized pair, and fix Ww = (wi , Wi)i∈Im ∈ Bm,n(d, w).
Denote Pj = PWj for every j ∈ Im . Let Ψ : U(n)m →M1

n(C)sa ⊆Mn(C)sa be the smooth function
given by

Ψ(U1, . . . , Um) =
m∑
j=1

w2
j U
∗
j Pj Uj =

m∑
j=1

w2
j ΨPj (Uj) , for (U1, . . . , Um) ∈ U(n)m .

Then the following conditions are equivalent:

1. The differential of Ψ at I = (In, . . . , In) ∈ U(n)m is surjective.

2. {Pj : j ∈ Im}′ = C In .

In this case, the image of Ψ contains an open neighborhood of Ψ(I) =
m∑
j=1

w2
j Pj in M1

n(C)sa , and

Ψ admits smooth (and hence continuous) local cross sections around Ψ(I).
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Proof. It is clear from its definition that Ψ is a smooth function. Moreover, under the previous
identification TInU(n) =Mn(C)ah , and using Eq. (15), we can see that

DΨI(X1, . . . , Xm) =
m∑
j=1

w2
j [Xj , Pj ] , for (X1, . . . , Xm) ∈Mn(C)mah . (17)

The tangent space ofM1
n(C)sa is the real vector spaceM0

n(C)sa , which has a natural inner product
given by 〈Y,Z〉 = tr(Y Z). Denote by T = DΨI and assume that T is not surjective. Then there
exists 0 6= Y ∈ M0

n(C)sa which is orthogonal to the image of T . Using Eq. (17) we deduce that,
for every (X1, . . . , Xm) ∈Mn(C)mah , it holds that

0 =
〈
T (X1, . . . , Xm), Y

〉
=

m∑
j=1

w2
j tr

(
[Xj , Pj ]Y

)
=

m∑
j=1

w2
j tr

(
Xj [Pj , Y ]

)
. (18)

Since each [Pj , Y ] ∈ Mn(C)ah , we can choose each Xj = [Pj , Y ], and so Eq. (18) implies that
[Pj , Y ] = 0 for every j ∈ Im . In other words, that Y ∈ {Pj : j ∈ Im}′. On the other hand, since
0 6= Y ∈Mn(C)sa and trY = 0, then Y /∈ C In . The converse follows from the previous argument,
by taking Y ∈ {Pj : j ∈ Im}′ such that 0 6= Y = Y ∗ and trY = 0. �

Let (d, w) ∈ Nm × Rm
>0 be a normalized pair. We shall consider on Bm,n(d, w) the distance

dP (Ww ,W ′w) = max
i∈Im

‖PWi − PW ′i ‖

(recall that the weights are fixed), called punctual, and the pseudo-distance

dS(Ww ,W ′w) = ‖SWw − SW ′w‖ ,

called operatorial. The problem of finding local minimizers for the FF-potential can be posed with
respect to either of these metrics.

Corollary 4.2.2. Let (d, w) ∈ Nm × Rm
>0 be a normalized pair. Assume that Ww ∈ Bm,n(d, w)

satisfies that {PWj : j ∈ Im}′ = C In . Then Ww is a FF and the map

S : Bm,n(d, w)→M1
n(C)sa given by S(Vw) = SVw =

∑
i∈Im

w2
i PVi ,

for Vw = (wi, Vi)i∈Im ∈ Bm,n(d, w), satisfies that:

1. The image of S contains an open neighborhood of SWw in M1
n(C)sa .

2. S has dP -continuous local cross sections around SWw .

Proof. Notice that the condition {PWj : j ∈ Im}′ = C In implies that W is a generating sequence
of subspaces. To prove the properties of the map S, compose a local cross section for the map Ψ
of Theorem 4.2.1 (which is open in I) with the map Φ : U(n)m → Bm,n(d) given by

Φ(U1 , . . . , Um) = (wi , Ui(Wi) )i∈Im = (wi , R(UiPWiU
∗
i ) )i∈Im .

Observe that S ◦ Φ = Ψ, so that S is open in Φ(I) =Ww . �
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Remark 4.2.3. Here is an alternative statement of Corollary 4.2.2: Under the same assumptions
on Ww , it holds that SWw ∈ Gl (n)+ and, for every sequence (Sk)k∈N in M1

n(C)sa such that
Sk −−−→

k→∞
SWw , there exists a sequence (Vk)k≥k0 in Sm,n(d , w) such that

dP (Vk , Ww ) −−−→
k→∞

0 and SVk
= Sk for every k0 ≤ k ∈ N .

This formulation of Corollary 4.2.2 generalizes [18, Thm 5.3] to the context of fusion frames with
fixed weights.

It is not clear that a dP -local minimizer for the FF-potential on Bm,n(d, w) must be a fusion frame,
i.e. that its frame operator is an invertible operator. The following lemma shows that this is true.

Lemma 4.2.4. Let (d, w) ∈ Nm × Rm
>0 be a normalized pair. Let Ww be a dP -local minimizer for

the FF-potential in Bm,n(d, w). Then SWw is invertible (equivalently, Ww ∈ Sm,n(d, w) ).

Proof. Suppose that SWw has nontrivial nullspace N(SWw ). If x ∈ N(SWw )

0 = 〈SWw x , x〉 =
∑
j∈Im

〈
w2
jPWj x , x

〉
=

∑
j∈Im

w2
j ‖PWj x‖2 . (19)

In other words, Wi ⊆ R(SWw ) for every i ∈ Im . Since tr(d) ≥ n > dimR(SWw ), we deduce that
there exists i 6= j in Im such that PWj PWi 6= 0. Fix that pair i, j. Fix also f ∈ Wi \W⊥j and
g ∈ N(SWw ) two unit vectors. For every t ∈ [0, π/2], take the unit vector g(t) = cos t · f + sin t · g.

Let Vi = Wi 	 span {f}, Wi(t) = Vi ⊕ span {g(t)} and let Ww (t) ∈ Bm,n(d, w) be the sequence
obtained by replacing Wi by Wi(t) in Ww . As g ∈W⊥k for every k ∈ Im , for every t ∈ (0, π/2],

1
2

(
FFP (Ww )− FFP (Ww (t))

)
=

m∑
k=1

w2
iw

2
k

(
tr(PWi PWk

)− tr(PWi(t)PWk
)
)

=
m∑
k=1

w2
iw

2
k

(
tr(PWi PWk

)− tr
(
g(t)g(t)∗ PWk

)
− tr(PViPWk

)
)

=
m∑
k=1

w2
iw

2
k

(
tr(PWi PWk

)− cos2 t tr
(
ff∗ PWk

)
− tr(PViPWk

)
)

>
m∑
k=1

w2
iw

2
k

(
tr(PWi PWk

)− tr
(
ff∗ PWk

)
− tr(PViPWk

)
)

= 0 ,

because tr
(
ff∗ PWj

)
= ‖PWj f‖2 6= 0. Hence FFP (Vw(t) ) < FFP (Ww ) for every t ∈ (0, π/2].

Taking t→ 0, we have that Ww (t) dP→Ww , and this contradicts the minimality of Ww . �

Given S ∈ Mn(C)sa with σ(S) = {µ1 , . . . , µr}, we denote by Pµk
(S) = PN(S−µk In) ∈ Mn(C)+,

the spectral projection of S relative to µk , for k ∈ Ir . These projections satisfy that

1. Pµk
(S)Pµj (S) = 0 if k 6= j, and

p∑
k=1

Pµk
(S) = In (i.e., they are a system of projectors).

2. For every k ∈ Ir , it holds that S Pµk
(S) = µk Pµk

(S), so that S =
p∑

k=1

µk Pµk
(S).

The following theorem generalizes a similar result given in [7, Theorem 4], for the case w = 1m .
Nevertheless, our approach is based on completely different techniques.
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Theorem 4.2.5. Let (d, w) ∈ Nm × Rm
>0 be a normalized pair. Let Ww ∈ Bm,n(d, w) be a local

minimizer of the FF-potential with respect to the distance dP . If σ(SWw ) = {µ1 , . . . , µr}, then

Pµk
(SWw ) ∈ CWw = {PWj : j ∈ Im}′ for every k ∈ Ir . (20)

The same property holds whenever Ww is a dP -local minimizer in B1
m,n(d).

Proof. Recall from Lemma 4.2.4 thatWw ∈ Sm,n(d, w), in other words that 0 /∈ σ(SWw ). Consider
the set Q of finite systems of projectors {Qk}k∈Ip such that each Qk ∈ CWw . Observe that Q is
not empty because {In} ∈ Q. Then Q has a maximal element {Qk}k∈Ip with respect to the order
induced by refinement. Fix k ∈ Ip . For each i ∈ Im putMi = Wi∩R(Qk) and Ni = Wi∩R(Qk)⊥.
Using that Qk ∈ CWw , we get that each Wi =Mi ⊕Ni . Set ri = dimMi and r = (r1 , . . . , rm).
Then, the sequence Wk,w = (wi ,Mi)i∈Im is a FF for R(Qk). We claim that Wk,w is a local
minimizer of the FF-potential in

B(Qk, r, w) =
{
Vw = (wi , Vi)i∈Im ∈ Bm,n(r, w) : Vi ⊆ R(Qk) for every i ∈ Im

}
.

Indeed, given Vw ∈ B(Qk, r, w), put Ṽw = (wi , Vi ⊕ Ni)i∈Im ∈ Bm,n(d, w). Observe that the map
Vw 7→ Ṽw preserves the distance dP . Moreover, since Qk ∈ CWw , then each PNi = (In −Qk)PWi

so that, by Eq. (6), FFP (Ṽw) = FFP (Vw) + FFP
(

(wi ,Ni)i∈Im

)
, and the second summand does

not depend on Vw . Then, the claim follows from the fact that W̃k,w =Ww .

Observe that SWw commutes with Qk . We now show that SWw Qk = αkQk for some αk ∈ σ(SWw ) .
Indeed, by the maximality of {Qi}pi=1 in Q, it follows that there is no non-trivial sub-projection
Q′ of Qk such that Q′ ∈ {PMj : j ∈ Im}′. Then we can apply Corollary 4.2.2 (taking H = R(Qk)
and renormalizing the traces) to show that every positive operator (with the correct trace) near
SWw Qk has the form SVw for some Vw ∈ B(Qk, r, w) close to Wk . But if SWw Qk is not a scalar
multiple of Qk , then we can choose SVw in such a way that

FFP (Vw) = trS 2
Vw

< tr
(
S 2
Ww

Qk
)

= FFP (Wk) .

This contradicts the fact that Wk is a local minimizer of the FF-potential in B(Qk, r, w). Hence,

SWw Qk = αkQk and Qk ≤ Pαk
(SWw ) . Using that

p∑
k=1

Qk = In , it is easy to see that each

Pµi(SWw ) =
∑
k∈ Ji

Qk ∈ CWw , where Ji = { k ∈ Ip : αk = µi }. �

Remark 4.2.6. Next we give two reinterpretations of Theorem 4.2.5. Under the assumptions of
the theorem, the following properties hold:

1. For each i ∈ Im , there exists an ONB Bi = {e(i)
j : j ∈ Idi

} of Wi , consisting of eigenvectors of
SWw . Indeed, observe that each PWi =

∑
k∈ Ir

PWiPµk
(SWw ) and the fact that, for a fixed

i ∈ Im , the projections PWi Pµk
(SWw ) are pairwise orthogonal.

2. For each µk ∈ σ(SWw ), denote by Mk , i = N(SWw − µk In) ∩Wi . Then, it follows that the
sequence Wk = (wi ,Mk , i)i∈Im is a tight FF for N(SWw − µk In). This follows because its
frame operator SWk

= Pµk
(SWw )SWw = µk Pµk

(SWw ).
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4.3 The eigenvalues of all dS-minimizers coincide

Recall that, given S ∈ Mn(C)sa , we denote by λ(S) ∈ Rn the vector of the n eigenvalues of S,
counted with multiplicities, in such a way that λ(S) = λ(S)↓.

Lemma 4.3.1. Let (d, w) ∈ Nm × Rm
>0 be a normalized pair. Then

1. Bm,n(d, w) is dP -compact.

2. The set Λm,n(d, w) = {λ(SWw) : Ww ∈ Bm,n(d, w)} is a convex and compact subset of Rn.

3. The set {SWw : Ww ∈ Bm,n(d, w)} is compact and closed under unitary conjugation.

Proof. Let Ww, W ′w ∈ Bm,n(d, w). For t ∈ [0, 1] consider λ = t λ(SWw) + (1− t)λ(SW ′w) and notice
that λ = λ↓. Therefore, for every admissible (m+ 1)-tuple (J0, . . . , Jm) ∈ LR r

n(m), 1 ≤ r ≤ n− 1
we have ∑

j∈J0

λj =
m∑
i=1

∑
j∈Ji

t λj(SWw) + (1− t)λj(SW ′w) ≤
m∑
i=1

∑
j∈Ji

w2
j |{1, . . . , dj} ∩ Ji| ,

since both λ(SWw) and λ(SW ′w) satisfy Horn-Klyachko’s inequalities. Hence, by Theorem 2.3.3,
there exists Vw = (wi, Vi)i∈Im ∈ Bm,n(d, w) such that λ(SVw) = λ. This shows that λ ∈ Λm,n(d, w),
so that Λm,n(d, w) is convex. The fact that the set {SW : Ww ∈ Bm,n(d, w)} is closed under unitary
conjugation is apparent. Finally Bm,n(d, w) is dP -compact because each Grassmann manifold

Pdi
(n) = {P = P ∗P ∈Mn(C)+ : trP = di} = {UPiU∗ : U ∈ U(n)} = U(Pi) ,

for every fixed Pi ∈ Pdi
(n) , is compact. This follows because U(n) is compact. By continuity, the

other sets involved are also compact. �

Theorem 4.3.2. Let (d, w) ∈ Nm × Rm
>0 be a normalized pair. Then,

1. The spectra (with multiplicities) of all the frame operators of global minimizers of the FF-
potential in Bm,n(d, w) coincide.

2. The local minimizers of the FF-potential in Bm,n(d, w) with respect to the pseudo-distance dS
lie in Sm,n(d, w) and are also global minimizers.

Proof. Let Ww ∈ Bm,n(d, w) and notice that FFP (Ww) = ‖λ(SWw)‖2. Since Λm,n(d, w) is a
compact convex set, then there exists a unique λ0 ∈ Λm,n(d, w) which minimizes the Euclidean
norm on Λm,n(d, w). Hence, if Ww is a global minimizer of the FF-potential in Bm,n(d, w), we can
conclude that ‖λ(SWw)‖2 ≤ ‖λ0‖2, which implies that λ(SWw) = λ0 .

Observe that the map σ : Bm,n(d, w) → Λm,n(d, w) given by σ(Ww ) = λ(SWw) is continuous
with respect to the pseudo-distance dS of Bm,n(d, w). Moreover, σ is an open map. Indeed,
fix Ww ∈ Bm,n(d, w), λ = λ(SWw) ∈ Λm,n(d, w) and take µ ∈ Λm,n(d, w) close to λ . Take
U ∈ U(n) such that SWw = Udiag (λ )U∗. By Lemma 4.3.1, there exists Vw ∈ Bm,n(d, w) such
that SVw = Udiag (µ )U∗. Now observe that dS(Ww ,Vw) = ‖SWw − SVw‖ = ‖λ− µ‖∞ .

Therefore, if Ww is a dS-local minimizer of the FF-potential in Bm,n(d, w), then λ(SWw) is a local
minimum for the Euclidean norm in the set Λm,n(d, w) ⊆ Rn. By a standard computation, the
convexity of Λm,n(d, w) implies that λ(SWw) must be the global minimizer λ0 , and therefore Ww

is a global minimizer in Bm,n(d, w). �
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Conjecture 4.3.3. Local minimizers of the frame potential in Bm,n(d, w) (resp. S1
m,n(d) ) with

respect to punctual distance dP are also global minimizers.

In some particular cases (i.e. for particular choices of the parameters n, m, d and w), there is an
affirmative answer for this conjecture (see [7, Theorem 5]).

Remark 4.3.4. All the previous results remain true if one replaces Bm,n(d, w) by B1
m,n(d) , the

set of those Ww ∈ Bm,n such that trSWw = 1. In other words, minimizing the FFP without fixing
the sequence of weights. We present some of the new statements without proofs, since they are
based on techniques that are similar to those already developed.

1. As in the proof Lemma 4.3.1, Horn-Klyachko’s compatibility inequalities (7) show that

Λ1
m,n(d) = {λ(SWw) : Ww ∈ B1

m,n(d)} is compact and convex.

2. This fact implies that the (ordered) spectra of the frame operators of global minimizers of
the FF-potential in B1

m,n(d) coincide.

3. Finally, the argument of the proof of Theorem 4.3.2 can be adapted to yield that local
minimizers of the FF-potential in B1

m,n(d), with respect to the operator distance dS , are also
global.

As in the case of fixed weights (Lemma 4.2.4), the global minimizers for the FF-potential in B1
m,n(d)

are fusion frames.

Proposition 4.3.5. Let Ww be a dS-local (and hence global) minimizer for the FF-potential in
B1
m,n(d). Then its frame operator SWw ∈ Gl (n)+. In other words, Ww ∈ S1

m,n(d).

Proof. Let J = {i ∈ Im : wi 6= 0}, and k =
∑
i∈J

di . Note that, if k ≥ n, we can apply Lemma 4.2.4

(fixing the weight wJ) and we are done.

We assume that k < n, and will obtain a contradiction. Without loss of generality, we can suppose
that J = Ir . It follows immediately that Wi ⊥ Wj for 1 ≤ i 6= j ≤ r and w2

i = 1
k for every

1 ≤ i ≤ r. Thus, FFP (Ww ) = 1
k . Moreover, if d = dr+1 , then k + d > n. Otherwise, if we take a

subspace Wr+1 ⊆
( ⋃
i∈Ir

Wi

)⊥ with dimWr+1 = d and we set w2
i = 1

k+d , for i ∈ Ir+1 , then we get

a BSS in B1
m,n(d) with FF-potential 1

k+d < 1
k .

Therefore, we can construct Vv = (vj , Vj)j∈Ir+1 ∈ B1
m,n(d) in the following way:

v 2
j =

{
a if 1 ≤ j ≤ r
b if j = r + 1

and Vj =

 Wj if 1 ≤ j ≤ r[ r⊕
i=1

Wi

]⊥ ⊕ T if j = r + 1 ,

where T ⊆
⊕r

i=1Wi is a subspace with dimT = d+ k−n (so that dimVr+1 = d), and ka+ db = 1.
It is easy to see, by taking an orthonormal basis of each subspace Vi , that

f(a) = FFP (Vv) = ka2 + db2 + 2(d+ k − n)ab with ka+ db = 1 , a ∈
[

0 , 1
k

]
. (21)

Easy computations show that f ′( 1
k ) = 2(n−k)

d > 0. Since f( 1
k ) = 1

k , there exist pairs (a, b) such
that the FF-potential is lower that 1

k , which contradicts the minimality of Ww . �

Next, we summarize the facts described in Remark 4.3.4 and Proposition 4.3.5.

Theorem 4.3.6. Let d ∈ Nm. Then, local minimizers of the frame potential in B1
m,n(d) with

respect to the pseudo-distance dS lie in S1
m,n(d) and are also global minimizers. Moreover, the

spectra of the frame operators of these local minimizers coincide. �
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5 Minimization for fixed subspaces

In this section we shall characterize the sequences of weights which minimize the potential of a fixed
sequence of subspaces. The main tools are some results about Hadamard indexes of [12], which
we shall state in some detail in the appendix. Recall that, for A,B ∈ Mn(C), their Hadamard
product is the matrix A ◦B = (Aij Bij)i , j∈In ∈Mn(C).

5.1 Minimal weights

In this section we fix m ∈ N, a Hilbert space H with dimH = n, and d ∈ Nm with M = tr d ≥ n.
We also fix a sequence W = {Wi}i∈Im of subspaces which spans H, such that dimWi = di for all
i ∈ Im . Our aim is to minimize the FFP over all sequences w ∈ Rm

+ such that Ww ∈ B1
m,n(d).

Recall that the Benedetto-Fickus FF-potential of Ww is given by:

FFP (Ww) =
m∑

i,j=1

w2
iw

2
j tr(PWiPWj ) = trS 2

Ww
. (22)

Definition 5.1.1. Given Ww = (wi , Wi)i∈Im ∈ B1
m,n(d), let B = BWw ∈Mm(R) be defined by

Bij = w2
iw

2
j tr(PWiPWj ) , for every i , j ∈ Im .

Lemma 5.1.2. Let Ww = (wi , Wi)i∈Im ∈ B1
m,n(d). Then, BWw ∈Mm(R)+.

Proof. Indeed, BWw ∈Mm(R)+ because it is the Gram matrix for the vectors {w2
i PWi}i∈Im in the

Euclidean space Mn(C) with the inner product defined as 〈X , Y 〉 = tr (Y ∗X). �

5.1.3. We shall fix some notations and assumptions:

1. We begin with a fixed normalized sequence of weights, in the sense that

w = (wi)i∈Im is given by wi = d
− 1

2
i for every i ∈ Im .

Observe that the condition wi = d
− 1

2
i means that each “vector” wi PWi of Ww has size

‖wi PWi‖2 = wi trPWi = 1. This justifies the word “normalized” for Ww .

2. Given a sequence of weights a = (ai)i∈Im ∈ Rm
+ , we denote by a · Ww the Bessel sequence of

subspaces a · Ww = (aiwiWi)i∈Im .

3. If a ∈ Rm
+ , then tr(Sa·Ww ) =

∑
i∈Im

a2
iw

2
i di . Therefore, as we start with normalized weights,

a · Ww ∈ B1
m,n(d) ⇐⇒

∑
i∈Im

a2
iw

2
i di =

∑
i∈Im

a2
i = 1 ⇐⇒ ‖a‖ = 1 . (23)

4. Let A = AWw ∈ Mm(R) be the matrix given by Aij = (BWw )
1
2
ij = wiwj tr(PWiPWj )

1
2 , for

i, j ∈ Im . Observe that A is selfadjoint, but possibly A /∈Mm(R)+. On the other hand,

FFP (Ww ) =
m∑

i,j=1
w2
i w

2
j tr(PWiPWj ) = ‖AWw ‖22 ,

FFP (a · Ww ) =
m∑

i,j=1
a2
i a

2
j w

2
i w

2
j tr(PWiPWj ) = ‖aa∗ ◦AWw ‖22 .

(24)
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5. Using the previous identities, we can now define the main notion of this section:

I(Ww ) := min
‖a‖=1

FFP (a · Ww ) = min
‖a‖=1

‖aa∗ ◦AWw ‖22 .

In order to compute I(Ww ) as well as to describe the set of weights a ∈ Rm
+ , with ‖a‖ = 1 for

which I(Ww ) = FFP (a · Ww ), the main tools are some results about Hadamard indexes of [12],
which we shall state in some detail in the appendix. Here we just give the basic definitions.

Definition 5.1.4. Let B ∈Mm(C)+. The minimal-Hadamard index of G is

I(B) = max { λ ≥ 0 : B ◦ C ≥ λC for every C ∈Mm(C)+} .

For A ∈Mm(C)sa , we define the spectral and the ‖ · ‖2 Hadamard indexes:

Isp(A) = min
‖x‖=1

‖A ◦ xx∗‖sp and I2(A) = min
‖x‖=1

‖A ◦ xx∗‖2 .

For a matrix G ∈ Mn(C), we write 06
ij
G if all entries Gi,j ≥ 0. Given J ⊆ Im with |J | = k we

denote by GJ ∈ Mk(C) the submatrix of G given by GJ =
(
Gij

)
i,j∈J . Similarly, if x ∈ Cn, we

write x> 0 if x ∈ Rm
+ and xJ = (xj)j∈J ∈ Ck.

From the previous definitions and Eq. (24), we get the fundamental equality: I(Ww ) = I2(AWw).
Now it is clear why the results of the appendix can be useful for computing I(Ww).

Remark 5.1.5. Let a ∈ Rm. Then

FFP (a · Ww ) =
m∑

i,j=1

a2
i a

2
j w

2
iw

2
j tr(PWiPWj ) =

〈
(B ◦ a a∗) a,a

〉
=

〈
B(a ◦ a∗), (a ◦ a∗)

〉
(25)

where, as before, B = BWw ∈Mm(R)+. Moreover, by Eq. (31) in Proposition A.1.2,

I(Ww ) = min
‖a‖=1

‖AWw ◦ a a∗‖2
2

= min
‖a‖=1

‖B ◦ a a∗‖ = Isp(B) . (26)

This identity is useful because 06
ij
B ∈Mm(R)+ and its spectral index is easier to compute. Indeed,

observe that tr(PWi PWj ) ≥ 0 for every i, j ∈ Im , since each PWi ∈Mn(C)+.

5.2 Critical Points and local minimizers.

In what follows, we shall use all the assumptions and notations of the previous subsection, but we
need the following extra notations:

1. Given a ∈ Rm, we write z = a ◦ a = (a2
1 , . . . , a

2
m) and J = supp{a} = {j ∈ In : aj 6= 0}.

2. Let L : Rm → R+ be given by L(a) = FFP (a · Ww ) = ‖AWw ◦ aa∗‖22 = 〈BWw z , z〉.

3. We consider the affine manifold ∆0 = {x ∈ Rm : trx = 0} and the compact convex simplex
∆ = {x ∈ ∆0 : x> 0}.

4. Sm−1 = {x ∈ Rm : ‖x‖ = 1} is the unit sphere of Rm.

Lemma 5.2.1. Let 06a ∈ Sm−1. Denote B = BWw . The following conditions are equivalent:
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1. a is a critical point for the map L restricted to the sphere Sm−1.

2. BJzJ = I(BJ)1J , where J = supp{a} .

Proof. Observe that L(a) = 〈Bz, z〉 =
m∑

i,j=1
bij a

2
i a

2
j . Since B = B∗ = BT , we have that

0 = ∇L(a) = 4
(
a1

m∑
j=1

b1j a
2
j , . . . , am

m∑
j=1

bmj a
2
j

)
= 4 Bz ◦ a .

The tangent space of Sm−1 at a is {a}⊥. Hence, a is a critical point for Sm−1 if and only if

0 = 〈∇L(a), y〉 = 4 〈Bz ◦ a, y〉 for every y ∈ {a}⊥ ⇐⇒ Bz ◦ a ∈ span {a} .

This is clearly equivalent to the equation BJzJ = λ1J , for some λ ∈ R. In this case, since 06
ij
B

with 0 < Bii for every i ∈ In and 06 z, we can conclude that λ > 0. By Proposition A.1.2 applied
to the matrix BJ , we have that BJ zJ = λ1J . Hence,

BJ
zJ
λ = 1J =⇒ I(BJ)−1 = tr zJ

λ = 〈1J , zJ
λ 〉 = λ−1 〈1 , z〉 = λ−1 .

Therefore λ = I(BJ) and BJzJ = I(BJ)1J . �

Theorem 5.2.2. Let 06a ∈ Sm−1 such that BJzJ = I(BJ)1J , i.e., the vector a is a critical point
of L restricted to Sm−1. Then, the following conditions are equivalent:

1. I(BJ) = Isp(B) = I(Ww ).

2. a is a global minimum of L restricted to Sm−1.

3. a is a local minimum of L restricted to Sm−1.

4. Bz > I(BJ)1. In other words, that (Bz)j ≥ I(BJ) for every j /∈ J .

Proof. Denote A = AWw . Recall that I2(A)2 = Isp(B), by Eq. (26). By Lemma 5.2.1,

‖A ◦ aa∗‖2
2

= 〈Bz , z〉 = I(BJ) 〈1 , z〉 = I(BJ) .

This gives the equivalence 1↔ 2. Observe that, if b ∈ Sm−1, then w = b◦b ∈ ∆. For each w ∈ ∆,
consider the line γw : [0, 1] → ∆ joining z and w, given by the formula γw(t) = (1 − t)z + tw, for
every t ∈ [0, 1]. Consider the map ρw : [0, 1]→ R+ given by

ρw(t) = 〈Bγw(t) , γw(t)〉 = (1− t)2 〈Bz , z〉+ t2 〈Bw , w〉+ 2t(1− t) 〈Bz , w〉 (27)

for every t ∈ [0, 1]. Since 〈Bz , z〉 = I(BJ), the derivative of ρw evaluated at zero is

ρ̇w(0) = −2 〈Bz , z〉+ 2 〈Bz , w〉 = 2
(
〈Bz , w〉 − I(BJ)

)
.

On the other hand, for every t ∈ R,

ρ̈w(t) = 2 〈Bz , z〉+ 2 〈Bw , w〉 − 4 〈Bz , w〉 = 2 〈B(z − w) , z − w〉 ≥ 0 . (28)

Since ρw is a second degree polynomial, its leading coefficient is 1
2 ρ̈w(t) ≥ 0. Suppose now that

Bz > I(BJ)1. Using that w ∈ ∆, we get that

〈Bz , w〉 ≥ I(BJ) 〈1 , w〉 = I(BJ) =⇒ ρ̇w(0) ≥ 0 =⇒ ρ̇w(t) ≥ 0 for every t ≥ 0 .
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Therefore ρw(1) ≥ ρw(0). In other words, we have proved that 〈Bw , w〉 ≥ 〈Bz , z〉 for every w ∈ ∆.
This implies that a is a global minimum of L restricted to Sm−1.

Suppose now that a ∈ Sm−1, z = a ◦ a, and that there exists k ∈ Im such that (Bz)k < I(BJ).
Observe that a 6= ek , because (Bek)k = bkk = I(B{k}).

Let w = ek ∈ ∆, and consider the curves γw and ρw defined before. By the previous computations,
we have that ρ̇w(0) = 2( (Bz)k − I(BJ) ) < 0. Therefore, for every t > 0 small enough, we have
that γw(t) ∈ ∆ and 〈Bγw(t) , γw(t)〉 < 〈Bz , z〉. Taking the vectors a(t) = sgn(a) γw(t)

1
2 ∈ Sm−1,

we conclude that a fails to be a local minimum. �

Remark 5.2.3. Given a ∈ Sm−1, then z = a ◦ a ∈ ∆ and L(a) = 〈Bz, z〉. Therefore

I(Ww ) = I2(A) = min
a∈Sm−1

‖A ◦ aa∗‖22 = min
0 6a∈Sm−1

‖A ◦ aa∗‖22 = min
z∈∆
〈Bz, z〉 ,

since every z ∈ ∆ produces a unit vector 06a = z
1
2 ∈ Sm−1. Then in order to get the unit vectors

a which attain this minimum, it suffices to characterize the sets S(Ww ) = arg minz∈∆{〈Bz , z〉}
and

J(Ww ) =
{
J ⊆ Im : J = supp{z} for some z ∈ S(Ww )

}
.

If Im /∈ J(Ww ), it is possible to obtain minimizers a · Ww which are not fusion frames, because
Sa·Ww /∈ Gl (n)+ (see Example 5.2.7). Still, if I(Ww ) <

√
1+n
n then Sa·Ww ∈ Gl (n)+ for any

minimizer a, since in such case Proposition 2.2.3 implies that ‖I − nSa·Ww ‖ < 1. Otherwise, the
characterization of the set J(Ww ) is useful in order to discern if there are optimal sequences of
weights a such that a ·Ww remains being a FF. Item 4 of Theorem 5.2.2 gives a description of the
elements of S(Ww ). But its proof gives more information:

Corollary 5.2.4. Consider Ww ∈ Sm,n(d), A = AWw and B = BWw as before. Then:

1. The set S(Ww ) = arg min
z∈∆

{〈Bz , z〉} is convex. Moreover,

S(Ww ) =
(
z0 +N(B)

)
∩∆ for any point z0 ∈ S(Ww ).

2. J(Ww ) is closed under taking unions, so that JWw =
⋃
J(Ww ) =

⋃
z∈S(Ww )

supp{z} is an

element of J(Ww ), and there exists z1 ∈ S(Ww ) with maximal support.

Proof. 1. Let z, w ∈ ∆, and consider the function, defined in Eq. (27):

ρz, w(t) =
〈
B( (1− t)z + tw) , (1− t)z + tw

〉
, t ∈ R .

Suppose now that w, z ∈ S(Ww ) and w 6= z. Using that ρz, w is of second degree, the equality
ρ̈z, w(t) = 2 〈B(z − w) , z − w〉 ≥ 0 given by Eq. (28), and the fact ρz, w(t) ≥ 0 for every
t ∈ R, we can conclude that

ρz, w is constant ⇐⇒ ρ̈z, w(t) = 0 ⇐⇒ z − w ∈ N(B) .

On the other hand, we have that ρz, w(1) = ρz, w(0) = min
t∈[0,1]

ρz, w(t). This implies that the

map ρz, w is constant, so that γ(t) ∈ S(Ww ) for every t ∈ [0, 1], and z − w ∈ N(B). The
proof of the fact that (z0 +N(B)

)
∩∆ ⊆ S(Ww ) for every z0 ∈ S(Ww ) is similar.
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2. Let z and w in S(Ww ), with supports J1 and J2 respectively. Then, since the entire line
tz+ (1− t)w ∈ S(Ww ) (t ∈ [0, 1]), if we take u = tz+ (1− t)w for any t ∈ (0, 1), it is easy to
see that u ∈ S(Ww ) and supp{u} = J1 ∪ J2 . Since J(Ww ) is finite, then the set

JWw =
⋃

z∈S(Ww )

supp{z} ∈ J(Ww ) .

Hence JWw is the support of some z1 ∈ S(Ww ). �

Corollary 5.2.5. Let B = BWw and A = AWw as before. Assume that there exists v ∈ Rm such

that v> 0 and B v = 1. Denote a = (tr v)−
1
2 (v

1
2

1 , . . . , v
1
2

m
). Then

‖a‖ = 1 and (tr v)−1 = FFP (a · Ww ) = I2(A)2 = I(Ww ) . (29)

Proof. The fact that v> 0 and B v = 1 implies, by Propositions A.1.2 and A.1.3, that

I2(A)2 = Isp(B) = I(B) = I(BJ) = (tr v)−1 ,

where J = supp{v} = supp{a}. Since z = v
tr v ∈ ∆, then a = z

1
2 ∈ Sm−1 and Bz = I(BJ)1.

Hence, by Theorem 5.2.2, we have that z ∈ S(Ww ) and a ∈ Sm−1 satisfies Eq. (29). �

Remark 5.2.6. The results of this section seems to be unknown still for the case of vector frames.
In this case our restrictions translate to the following: Let F = (fi)i∈Im be a frame for H such

that each ‖fi‖ = 1 (i.e., di = 1 =⇒ wi = d
− 1

2
i = 1). For a ∈ Rm, we consider the sequence

a · F = (ai fi)i∈Im , and we define I(F) = min
‖a‖=1

FP (a · F). Then, all the results of the section

remain true if one consider the matrices

AF =
(
|〈fj , fi〉|

)
i,j∈Im

∈Mm(C)sa and BF =
(
|〈fj , fi〉|2

)
i,j∈Im

∈Mm(C)+ .

Some proofs are slightly easier in this case, because I(F) = I2(AF ) = I2(GF ), where GF is the
Gram matrix of F : GF =

(
〈fj , fi〉

)
i,j∈Im

∈ Mm(C)+. Observe that the diagonal entries of the
three matrices involved are equal to 1.

Example 5.2.7. Let B = 1
4

 4 1 3
1 4 2
3 2 4

. Since A = (B
1
2
ij )ij∈I3 ∈ Gl (3)+, we deduce that A is

the Gram matrix of a Riesz basis F of C3. Let v = ( 4
5 ,

4
5 , 0)> 0. Observe that by Corollary 5.2.5,

Bv = 13 =⇒ z = (tr v)−1 v =
(

1
2 ,

1
2 , 0

)
∈ S(F) .

Since N(B) = {0}, Corollary 5.2.4 assures that S(F) = {z}, and J0 = {1, 2} is the maximal
support for S(F). Taking a = z

1
2 , we have that a · F is the unique scaled sequence of F with

minimal frame potential, but it fails to be a frame for C3, because it has just two nonzero elements.

Example 5.2.8. It can be proved that every G ∈ M3(C)+ such that rk G = 2 and Gii = 1 for
every i ∈ I3 (considered as the Gram matrix of a frame F for C2 with three unitary elements),
satisfies that the minimizers a · F of the BF-potential are frames for C2. Indeed, given z ∈ S(F),
it is easy to see that J = supp{z} has more than one element (otherwise z = ei for some i ∈ I3 ).
If J = I3 there is nothing to prove. Assume that supp{z} = J with |J | = 2. If rk GJ < 2 we must

have BJ =
(

1 1
1 1

)
. In this case, I(BJ) = Isp(B) = 1. But the unique matrix B ∈ M3(C)+
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which satisfies that 06
ij
B, Isp(B) = 1 and Bii = 1 for every i ∈ I3 is B = 1 · 1∗. Indeed, if some

Bij < 1, then Isp(B) ≤ Isp

(
1 Bij
Bij 1

)
= 1+Bij

2 < 1. Finally, since 1 = rk 1 · 1∗ = rk B = rk

G ◦G ≥ rk G = 2, we have a contradiction.

Remark 5.2.9. Let W = {Wi}i∈Im be a generating set of subspaces. Given a partition {Jk}k∈Ip

of the set Im , we say that the sequence {Wk}k∈Ip of W given by Wk = (Wi)i∈Jk
is a partition in

orthogonal components (POC) of W if Wi ⊥Wj for every pair i ∈ Jk , j ∈ Im \ Jk .

Note that by definition the trivial partition given by J1 = Im produces a POC of W. If {Wk}k∈Ip

is a POC of W, we say that it is maximal if the only POC of each Wk is the trivial one. It is clear
that there always exits such a maximal POC for W.

Let {Wk}k∈Ip be a maximal POC of W with |Jk| = mk for 1 ≤ k ≤ p. Let ak ∈ Rmk be such that
‖ak‖ = 1 and I(Wk) = FFP (ak · Wk) for each 1 ≤ k ≤ p. Then, there exists γ = (γk)k∈Ip ∈ Rp

>0

with ‖γ‖ = 1 and such that

I(W) =
p∑

k=1

FFP (γk ak · Wk) .

Conversely, if a = (a1, . . . ,ap) with 06ak ∈ Rmk and ‖a‖ = 1 is such that I(W) = FFP (a · W)
then ak 6= 0 and I(Wk) = FFP (‖ak‖−1 ak ·Wk), for 1 ≤ k ≤ p. Hence, we can restrict our study of
the optimal weight of sequence of subspaces to each of the components of the maximal partition.
This in turn implies that we can reduce the problem of describing the optimal weights to the case
where the matrix B (which has non-negative entries and is positive semi-definite) is irreducible i.e.,
none of its symmetric permutations can be written as the direct sum of two matrices. This last
property is relevant in the theory of matrices with non-negative entries.

A Hadamard products and indexes.

In this section we recall some definitions and results from [12] which are closely related with the
problems of Section 4. The exposition is done with some detail for several reasons: a) Most results
we state are explicitly used in the previous section. b) The formulation of these results given in
[12] is quite technical and intricate, so we intend here to give a clarified version. c) Although
some results in the appendix are not directly applied, they are included since they give effective
criteria for computing the indexes and the vectors that realize them. This is relevant since we have
identified these objects as the optimal weights and the minimal potential for fusion frames.

A.1 Basic definitions and properties

We begin with an extended version of Definition 5.1.4

Definition A.1.1. Let G ∈Mm(C)+.

1. The minimal-Hadamard index of G is the number

I(G) = max{λ ≥ 0 : G ◦B ≥ λB for every B ∈Mm(C)+} .

2. Given an u.i.n N in Mm(C), the N -Hadamard index of G is

IN (G) = max
{
λ ≥ 0 : N(G ◦B) ≥ λN(B) for every B ∈Mm(C)+

}
= min

{
N(G ◦B) : B ∈Mm(C)+ and N(B) = 1

}
.
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The index of G associated with the spectral norm ‖ · ‖ = ‖ · ‖sp is denoted by Isp(G), and the one
associated with the Frobenius norm ‖ · ‖2 is denoted by I2(G).

Proposition A.1.2. Let G ∈Mm(C)+, 1 = (1, 1, . . . , 1) ∈ Cm and E = 1 · 1T .

1. I(G) 6= 0 if and only if 1 ∈ R(G). If there exists y ∈ Cn such that Gy = 1, then

I(G)−1 =
∑
i∈Im

yi = 〈y,1〉 = ρ(G†E) = min { 〈Gz, z〉 :
∑
i∈Im

zi = 1 } . (30)

If G > 0, then also I(G) =
( n∑
i,j=1

(G−1)ij
)−1

= detG
det(G+E)−detG .

2. I(G) ≤ IN (G) for every UIN N .

3. If J ⊆ Im , then I(GJ) ≥ I(G) and IN (GJ) ≥ IN (G).

4. If D = diag (d) ∈Mm(C)+ is diagonal, then IN (D) = N ′(d−1)−1. In particular,

I(D) = Isp(D) =
( ∑
i∈Im

d−1
i

)−1
and I2(D) =

( ∑
i∈Im

d−2
i

)− 1
2
.

5. Both indexes I2 e Isp are attained by matrices B ∈Mm(C)+ of rank one. This means that

I2(G) = min
‖x‖=1

‖G ◦ xx∗‖2 and Isp(G) = min
‖y‖=1

‖G ◦ yy∗‖ .

Moreover, the minima are also attained at vectors x> 0 (or y> 0).

6. Let B = G ◦G ∈Mm(R)+. Then I2 (G) = Isp (B)
1
2 = Isp (G ◦G)

1
2 .

7. Moreover, if 06
ij
B ∈ Mm(R)+ and A ∈ Mn(R)sa is given by Aij = B

1/2
ij for 1 ≤ i, j ≤ m

then, even if A /∈Mm(R)+, the index I2(A) of Definition 5.1.4 still satisfies

I2(A) = min
‖x‖=1

‖A ◦ xx∗‖2 = min
‖x‖=1

‖B ◦ xx∗‖
1
2 . (31)

8. It holds that Isp(G) = inf { Isp(D) : G ≤ D and D is diagonal } . Therefore

I2(G) = inf {
( n∑

1
d−2
ii

)− 1
2 : 0 < D is diagonal and G ◦G ≤ D2 } . �

Proposition A.1.3. Let G ∈ Mm(R)+ such that 06
ij
G. Then Isp(G) = I(G) 6= 0 ⇐⇒ there

exists u> 0 such that Gu = 1. �

Proposition A.1.4. Let G ∈Mm(C)+. Denote by P = G ◦G. If x ∈ Rm
∗ , then

‖G ◦ xx∗‖2
2

=
∑
i,j

|Gij |2|xi|2|xj |2 = 〈P (x ◦ x), x ◦ x〉 = 〈(P ◦ xx∗)x, x〉 ≤ ‖P ◦ xx∗‖ .

Take x> 0 such that ‖x‖ = 1 and ‖G ◦ xx∗‖2 = I2(G). Then

(G ◦G ◦ xx∗)x = I(PJ)x , where J = {i ∈ Im : xi 6= 0} .

In this case, they hold that

1. The vector u = I(PJ)−1(xJ ◦ xJ) ∈ CJ has strict positive entries and PJu = 1J .

2. Isp(P ) = Isp(PJ) = I(PJ).

3. Isp(P ) = ‖P ◦ xx∗‖. �
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