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Abstract Bradyrhizobium diazoefficiens, a nitro- 
gen-fixing endosymbiont of soybeans, is a model 
strain for studying rhizobial denitrification. This 
bacterium can also use nitrate as the sole nitrogen 
(N) source during aerobic growth by inducing an 
assimilatory nitrate reductase encoded by nasC 
located within the narK-bjgb-flp-nasC operon along 
with a nitrite reductase encoded by nirA at a different 
chromosomal locus. The global nitrogen two-compo- 
nent regulatory system NtrBC has been reported to 
coordinate the expression of key enzymes in nitrogen 
metabolism in several bacteria. In this study, we 
demonstrate that disruption of ntrC caused a growth 
defect in B. diazoefficiens cells in the presence of 
nitrate or nitrite as the sole N source and a decreased 
activity of the nitrate and nitrite reductase enzymes. 
Furthermore, the expression of narK-lacZor nirA-lacZ 
transcriptional fusions was significantly reduced in the 
ntrC mutant after incubation under nitrate assimilation
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conditions. AB. diazoefficiens rpoN¡/? mutant, lacking 
both copies of the gene encoding the alternative sigma 
factor a54, was also defective in aerobic growth with 
nitrate as the N source as well as in nitrate and nitrite 
reductase expression. These results demonstrate that 
the NtrC regulator is required for expression of the 
B. diazoefficiens nasC and nirA genes and that the 
sigma factor RpoN is also involved in this regulation.
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Abbreviations
Bjgb Bradyrhizobium japonicum haemoglobin
BN3 Bergersen minimal medium-nitrate
C Carbon
CFU Colony formation units
Flp Flavoprotein
MU Miller units
MV-NiR Methyl viologen-dependent nitrite 

reductase
MV-NR Methyl viologen-dependent nitrate 

reductase
N Nitrogen
NarK Nitrate/nitrite transporter
NasC Assimilatory nitrate reductase
NirA Assimilatory nitrite reductase
NO Nitric oxide
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NtrB Two-component system kinase
NtrC Two-component system response

regulator
OD50o Optical density-500 nm
PSY Peptone-salts-yeast extract
RpoN Alternative sigma factor
WT Wild-type
YEM Yeast-extract-mannitol

Introduction

Bacteria have developed diverse mechanisms to sense, 
respond, and adapt to changes in the environmental 
availability of nutrients (reviewed by Shimizu 2016). 
Adaptive physiological responses to these changes 
usually include two-component signal (TCS) trans
duction systems that allow bacteria to respond to 
diverse environmental stimuli (Stock et al. 2000). 
Extensive studies have been done on several TCS 
systems including NtrB-NtrC. This TCS is a classical 
regulatory system involved in the regulation of 
expression of genes in response to nitrogen limitation 
(Jiang and Ninfa 1999, 2009; Pioszak et al. 2000; 
Schumacher et al. 2013). NtrBC has been well 
characterised in enteric bacteria (Merrick and 
Edwards 1995; Reitzer 2003; Li and Lu 2007; van 
Heeswijk et al. 2013). NtrB is the sensor kinase that 
responds to an internal signal and autophosphorylates 
on a conserved histidine residue. The phosphoryl 
group of this histidine is then transferred to a 
conserved aspartate residue of the response-regulator 
protein NtrC within the receiver domain. Once 
phosphorylated, NtrC binds DNA at specific promot
ers and activates transcription of target genes (Weiss 
et al. 1992; Chen and Reitzer 1995).

PII signal-transduction proteins are recognized to 
coordinate the regulation of central carbon and 
nitrogen metabolism (Leigh and Dodsworth 2007; 
Forchhammer 2008). Under nitrogen-limiting condi
tions, the ratio of ot-ketoglutarate to glutamine 
increases and stimulates the PII functions, thereby 
activating the kinase activity of NtrB which, in turn, 
leads to phosphorylation of NtrC. Recent studies have 
proposed an in vivo model in which a-ketoglutarate 
has a predominant regulatory role acting as a 
metabolic signal of nitrogen regulation (Schumacher 

et al. 2013). The phosphorylated NtrC activates the 
transcription of genes involved in nitrogen scaveng
ing, in metabolism, and in regulation (Zimmer et al. 
2000), in conjunction with a specific sigma factor 
(ct54), the product of the rpoN gene (Reitzer and 
Magasanik 1985; Ninfa et al. 1987; Kullik et al. 1991; 
Merrick 1993; North et al. 1993).

In bacteria, nitrate-assimilation begins with the 
transport of nitrate into the cell. Then, intracellular 
nitrate is further reduced to nitrite by a cytoplasmic 
molybdenum-containing nitrate reductase followed by 
a sirohaem-containing nitrite reductase that reduces 
nitrite to ammonia (Moreno-Vivian et al. 1999; 
Richardson et al. 2001; Luque-Almagro et al. 2011). 
The genetic organization of the assimilatory nitrate
reducing systems (Nas) have been well characterised 
in bacteria such as Rhodobacter capsulatus (Cabello 
et al. 2004; Pino et al. 2006), Klebsiella oxytoca (Lin 
and Stewart 1998), Azotobacter vinelandii (Gutierrez 
et al. 1995), Bacillus subtilis (Ogawa et al. 1995), and 
Paracoccus denitrificans (Gates et al. 2011; Luque- 
Almagro et al. 2013). In Gram-negative bacteria, the 
nas genes are subjected to dual control: an ammonia 
repression by the general nitrogen-regulatory NtrBC 
system and a specific nitrate or nitrite induction 
(Luque-Almagro et al. 2011).

Brady rhizobium diazoefficiens is a soil Gram
negative alphaproteobacterium able to form a symbi
otic association with soybean plants. Like other 
rhizobia species B. diazoefficiens can assimilate soil 
N sources like ammonia (i.e„ NH4+) and nitrate in free 
living conditions. In rhizobia, several studies have 
reported the role of NtrC in the regulation of genes 
involved in NH4+ metabolism (reviewed by Patriarca 
et al. 2002). In contrast, very little information is 
available on the function of NtrC in the control of 
nitrate assimilation genes expression in rhizobia 
(Szeto et al. 1987; Martin et al. 1988). Within this 
context, recent DNA microarray-based transcriptional 
profiling has revealed a NtrC-dependent regulon 
operating in response to nitrogen limitation in B. 
diazoefficiens and the role of NtrC in regulating the 
utilization of nitrite as a sole N source (Franck et al. 
2015). However, the involvement of NtrC on the 
control of assimilatory nitrate reduction to nitrite has 
not been reported so far.

In B. diazoefficiens, a recent genetic and biochem
ical analysis has given novel insights into bacterial 
nitrate assimilation (Cabrera et al. 2016). Unlike 
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related bacteria that assimilate nitrate, the genes 
encoding the assimilatory nitrate reductase (nasC) 
and nitrite reductase (nirA) are located at separate 
chromosomal loci. The nasC gene belongs to the 
narK-bjgb-flp-nasC operon, which also codes for a 
major facilitator superfamily-type nitrate and nitrite 
transporter (NarK), a bacterial hemoglobin (Bjgb) 
previously reported to be involved in NO detoxifica
tion (Cabrera et al. 2011; Sánchez et al. 2011), and a 
flavin-adenine-dinucleotide dependent NAD(P)H-ox- 
idoreductase protein (Flp). The nirA gene is in a 
cluster with loci containing a nitrate and nitrite 
responsive regulator system (NasST). In B. diazoeffi- 
ciens, the nitrate-dependent expression of the narK- 
bjgb-flp-nasC operon and the nirA gene requires the 
NasST system for transcription antitermination (Cabr
era et al. 2016).

In this paper, we demonstrate that NtrC is essential 
for the expression of the assimilatory nitrate and nitrite 
reductase activities. We also report that the transcrip
tion of the B. diazoefficiens narK-bjgb-flp-nasC 
operon and the nirA gene in response to nitrate also 
requires NtrC and that the alternative sigma factor 
RpoN is essential for the expression of the NtrC- 
dependent genes involved in nitrate and nitrite 
assimilation.

Materials and methods

Bacterial strains, plasmids and primers

Table 1 lists the bacterial strains, plasmids and 
primers used in this study.

Bacterial growth conditions

Bacteria were routinely grown at 28 °C in complete 
yeast-extract-mannitol medium (YEM) (Vincent 
1974). To test growth kinetics, a single rhizobial 
colony cultured in 10 ml Evans minimal medium 
(Evans et al. 1970) with 10 g mannitol I-1 as the 
carbon source and 20 mM (NH^SC^ as the N source 
was grown at 28 °C on a rotary shaker at 180 rpm for a 
week. The culture was then diluted 1:100 in fresh 
Evans medium and grown again for additional 3 days 
under the same conditions. Next, this starter culture 
was diluted 1:50 in Erlenmeyer flasks containing a 
volume of the medium to be assayed equal to 20% of 

the flasks’ capacity. Growth curves under different N 
sources were performed by modifying the original 
Evans formulation through the addition of 10 mM 
NaNO3 or 1 mM NaNO? as the sole N source. Growth 
was monitored by measuring the optical density of the 
cultures at 500 nm (OD50o) and the number of viable 
colony-forming units (CFU) estimated by plate counts 
in solid YEM after the appropriate serial dilutions 
every 24 h for 15 or 17 days.

Antibiotics were added to B. diazoefficiens cultures 
at the following concentrations (mg ml-1): chloram
phenicol 20; spectinomycin 200; kanamycin 200; and 
tetracycline 100.

Escherichia coli strains were cultured in Luria- 
Bertani medium (Miller 1972) at 37 °C. The antibi
otics used were (mg ml-1): gentamycin, 10; kanamy
cin, 25; and tetracycline, 10.

To test for enzymatic activities, B. diazoefficiens 
strains were grown at 30 °C in peptone-salt-yeast
extract (PSY) medium supplemented with 0.1% (w/v) 
L-arabinose (Regensburger and Hennecke 1983). 
Dilutions of these cultures were then transferred to 
Bergersen minimal medium (Bergersen 1977) supple
mented with 10 mM KNO3 as the sole N source (i.e„ 
BN3 medium). Since the protocols for the determina
tion of nitrate-reductase (NR) and nitrite-reductase 
(NiR) activity had been optimized in Bergersen media, 
we first confirmed that the growth phenotype of the 
LP4488 mutant (see further on) was similar when 
determined in Evans’s nitrate media (data not shown).

Construction of a B. diazoefficiens ntrC mutant

Cloning procedures — including DNA isolation, 
restriction-enzyme digestion, ligation, and transfor
mation — were performed as described previously 
(Sambrook and Russell 2001). Biparental matings 
were effected with the E. coli strain S17-1 (Simon 
et al. 1983). Electroporation was carried out with a 
Gene-Pulser system (Bio-Rad, Hercules, CA) at 
1.5 V, 25 pF, and 200 il in a 0.1 cm gap-width 
electroporation cuvette.

Genomic- and plasmid-DNA was isolated through 
the use of the Wizard Genomic DNA purification Kit 
(Promega) and Accuprep Plasmid MiniPrep DNA 
Extraction Kit (Bioneer), respectively. Custom 
oligonucleotide primers were supplied by Genbiotech 
and the polymerase-chain reaction (PCR) run with the 
Taq DNA polymerase from Embiotec or the Pfx
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Table 1 Bacterial strains, plasmids and primers used in this study

Genotype and phenotype Reference

Strains
E. coli

DH5cz swp£44 A/c/cU 169 (<|>80 lacZ AM15) hsdRll recAl endAl gyrA96 
thi-1 relAl

Bethesda Research Laboratories

S17-1 Tra+, recA pro thi hsdR <7// ::KP4-2 Simon et al. 1983
B. diazoefficiens

USDA 110 Wild-type strain,Cm1 US Department of Agriculture, Beltsville, 
MD, USA

110spc4 USDA 110 derivative, Spcr Regensburger and Hennecke, 1983
LP4488 USDA 110 AntrC, Kmr This work
N50-97 110.\/)<4 ArpoNm, Spcr Kullik et al. 1991
4009 USDA HO.'.narK-lacZ, Cmr, Tcr Cabrera et al. 2016
4018 USDA HO.'.nirA-lacZ, Cmr, Tcr Cabrera et al. 2016
LP4488-

4009
LP4488::narK-lacZ, Cmr, Tcr This work

LP4488-
4018

LP4488::nirA-lacZ, Cmr, Tcr This work

1 IO.\/)c4- 
4009

110spc4::narK-lacZ, Cmr, Tcr This work

1 IO.\/)c4-
4018

110spc4::nirA-lacZ, Cmr, Tcr This work

N50-97-
4009

N50-97..narK-lacZ, Cmr, Tcr This work

N50-97-
4018

N50-97..nirA-lacZ, Cmr, Tcr This work

Plasmids
pG18mob2 Rhizobial suicide plasmid Kirchner and Tauch 2003
pMFL4488 pG 18mob2::ntrCS::Km: :ntrC3, Kmr This work
pDB4009 pSUP3535::narK-lacZ, Tcr Cabrera et al. 2016
pDB4018 pSUP3535:: nirA-lacZ, Tc' Cabrera et al. 2016

Primers Sequence Reference

ntrC5'FW AGCCGCGCAAGACCACCTTC This work
ntrC5'RV TGCCGGTGAGCCTGACCTCA This work
ntrC3'-Sp/;I FW TAGCATGCCTCTATCCGCAGGACGTGAT This work
ntrC3'-Hinrfni RV AAAAAGCTTGCTCCGATAGACCTGGATGT This work
ntrB5'(checking) GCGCTTCCCAATCCCGTGCT This work
cheqRVntrC (checking) ATTCCGGCTTGACTGGGATG This work
Km FW (checking) TGTATGGGAAGCCCGATG Mongiardini et al. 2016
Km RV (checking) TGCCATTCTCACCGGATT Mongiardini et al. 2016

polymerase from invitrogen. DNA was digested with 
the Fast Digest (Fermentas) or Promega enzymes.

To obtain the B. diazoefficiens /rirC-deletion 
mutant (ORF blr4488; http://genome.microbedb.jp/ 

rhizobase/), upstream (237-bp) and downstream (330- 
bp) DNA fragments flanking the ntrC locus were 
generated by PCR from total B. diazoefficiens DNA by 
means of the ntrC5'FW, ntrC5'RV, ntrC3'FW, and 
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ntrC3'RV primers (Table 1). These fragments were 
inserted into the rhizobial suicide plasmid pG18mob2 
(Kirchner and Tauch 2003) as a Smal and a Sphl- 
Hindlll fragment. Then, the kanamycin-resistance 
cassette from the pUC4k plasmid (Vieira and Messing 
1982) was inserted in the BamHI restriction site, 
resulting in the pMFL4488 plasmid (this work). This 
plasmid was introduced into E. coli S17-1 electro- 
competent cells that served as donor in a conjugative 
plasmid transfer to B. diazoefficiens USDA 110. The 
transconjugants obtained were screened as kanamy- 
cin-resistant, gentamycin-sensitive and the correct 
recombination at the target gene checked by both PCR 
and genetic sequencing (Macrogen Inc, Korea). The 
following experiments were accordingly carried out 
with the clone referred to as LP4488.

Determination of nitrate- and nitrite-reductase 
activities

B. diazoefficiens cells were grown under aerobic 
conditions in PSY medium, harvested by centrifuga
tion at 8000xy for 10 min at 4 °C, washed twice with 
BN3 medium, and inoculated at an OD500 of ca. 0.3 in 
the same minimal medium. After 48 h the cells were 
harvested, washed with 50 mM Tris/HCl buffer (pH 
7.5) to remove excess nitrite, and then resuspended in 
1 ml of the same buffer before the assay for enzymatic 
activity. Methyl-viologen (MV)-dependent nitrate 
reductase (MV-NR) and nitrite reductase (MV-NiR) 
activities were measured as described by Delgado and 
coworkers with dithionite-reduced MV as an artificial 
electron donor (Delgado et al. 2003). The MV-NR and 
MV-NiR activities are expressed as nanomol of nitrite 
produced (for NR) or consumed (for NiR) per mg 
protein-1 min-1. For more details see Cabrera et al. 
(2016).

P-galactosidase activity of narK-lacZ and nirA- 
lacZ fusions

The transcriptional-fusion plasmids pDB4009 and 
pDB4018 containing narK-lacZ and nirA-lacZ 
fusions, respectively (Table 1), were integrated by 
homologous recombination into the chromosomes of 
the wild-type (WT) strain I IO.v/?<-4, the ntrC mutant, 
and the rpoN,^ double mutant (strain N50-97; 
Regensburger and Hennecke 1983) to produce strains 
110spc4-4009, 1|().W4-4OI8, and LP4488-4009 plus 

LP4488-4018, N50-97-4009, and N50-97-4018, 
respectively (Table 1). The correctness of recombina
tion was checked by PCR and by sequencing analysis 
of the genomic DNA isolated from each strain.

The cells were grown aerobically in PSY medium, 
collected by centrifugation, washed twice with nitro
gen-free Bergersen medium, and finally incubated 
aerobically in the same medium with or without the 
addition of 10 mM NaNO3 as the N source. After 
cultures having an initial OD500 of about 0.3 had been 
incubated for 48 h, the B-galactosidase activity was 
assayed in triplicate on permeabilized cells from at 
least three independently grown cultures for each 
strain and condition, as previously described (Miller 
1972). The absorbance data at 420 and 500 nm were 
read for all samples and cultures with a plate reader 
(SUNRISE Absorbance Reader, TECAN, Männedorf, 
Switzerland) and recorded by means of the software 
XFluor4 (TECAN). The specific activities were finally 
calculated in Miller units (MU).

Analytical methods

The nitrite concentration was estimated after diazoti
zation by adding the sulfanilamide-naphthylethylene- 
diamine-dihydrochloride reagent (Nicholas and Nason 
1957) and the protein concentration measured by the 
Bio-Rad assay (Bio-Rad Laboratories, Richmond, 
CA) with a standard curve of varying bovine-serum- 
albumin concentrations.

Results

Involvement of NtrC and RpoN in nitrate- 
and nitrite-dependent growth

The B. diazoefficiens USDA 110-NtrBC two-compo- 
nent system is encoded by the blr4487 and blr4488 
genes belonging to the nifR3-ntrB-ntrC-gene cluster, 
respectively. The targets of the NtrC protein are 
usually cr-dependent, and involved in the transcrip
tion of genes related to nitrogen metabolism. B. 
diazoefficiens has two functional, highly conserved 
rpoN genes (rpoN\ and rpoN?) encoding for the ct54- 
RNA-polymerase alternative factor RpoN (Kullik 
et al. 1991). In this work, we have constructed a B. 
diazoefficiens mutant strain (i.e., LP4488) where the 
ntrC gene (i.e., blr4488) has been deleted. To 
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investigate the role of NtrC and RpoN in nitrate 
assimilation, the B. diazoefficiens mutant ntrC and the 
double mutant rpoN1/2 were incubated aerobically in 
Evans minimal medium with 10 mM NaNCE as the 
sole N source. Growth was determined by monitoring 
the OD50o (Fig. 1. Panel a) or the number of CFU 
(Fig. 1, Panel b). In contrast to the B. diazoefficiens 
USDA 110 parental strain, the ntrC mutant exhibited a 
severe defect in growth, reaching an OD500 of only 
0.097 compared to 3.8 determined in the WT cells 
after 15 days of incubation (Fig. 1, Panel a). As 
observed for ntrC mutant, growth rates of the rpoN1/2 
mutant were very low compared to those observed in 
the B. diazoefficiens 11 Qspc4 WT strain (Fig. 1, Panel 
a). The maximal CFU reached by the parental strains 
was around 7.2 x 1010 CFU ml 1 after 15 days incu
bation, whereas ntrC and rpoN1/2 mutants reached 
values only around 6.5 x 108 CFU ml-1 (Fig. 1, 
Panel b). In addition, we confirmed that the growth 
phenotype of the mutants in Bergersen medium was 
the same as that observed in Evans medium (data not 
shown), which observation was useful for the follow
ing studies.

To test the capacity of the ntrC mutant to use NH4+ 
as an N source, cells were grown to early stationary 
phase with nitrate (to a final OD50o value of 0.17). 

Then, 20 mM NH4C1 was added to the USDA 110 
(WT) and the ntrC mutant cultures. A significant 
increase in growth of the ntrC mutant cells was 
observed that attained a OD500 similar to that reached 
by the WT cells after 10 days of incubation in the 
presence of NH4+ (Fig. 2). These observations con
firm that NtrC has a key role in nitrate, but not NH4+, 
assimilation. In order to further confirm that possibil
ity, we also tested the capacity of the NtrC-deficient 
LP4488 strain to grow in mineral-salts minimum 
medium with 20 mM NH4C1 (a high-nitrogen condi
tion) or 0.1 pM NH4C1 (a nitrogen-limiting condition) 
as the sole N source. In concordance with previous 
reports, ntrC mutant displayed similar growth kinetics 
to those of the WT strain in the presence of either 
concentration of NH4C1 as the sole N source (data not 
shown; Martin et al. 1988).

In order to study the involvement of NtrC and RpoN 
in nitrite assimilation, cells from the wild-type strains 
USDA 110 and 110spc4 along with the ntrC and 
rpoNI/2 mutants were incubated in Evans minimal 
medium with 1 mM NaNOj as the sole N source. 
Figure 3, Panel a indicates that a significantly delay in 
growth measured as OD500 was observed in the ntrC- 
or the rpoA;/2-mutant cells compared to that recorded 
with the WT strains. In a similar manner, the kinetics

Time (days)

Fig- 1 Nitrate-dependent aerobic growth of wild-type B. 
diazoefficiens USDA 110 (black circles) and I I(h/>c4 (white 
upright triangles) strains and the ntrC (white squares), and 
rpoN1/2 (black inverted triangles) mutants in Evans minimal 
medium with 10 mM nitrate as N source. (Panel a) optical 
density at 500 nm of cell cultures. In the figure, the optical 
density of the cultures at 500 nm is plotted on the ordinate as a 
function of the time in days on the abscissa. (Panel b) viable cell

counts as colony-forming units (CFU) per ml of culture. In the 
figure, the colony-forming units per ml of the cultures is plotted 
on the ordinate as a function of the time in days on the abscissa. 
The results presented are the means with the error bars 
representing the standard deviation from two biologic replicates 
assayed in triplicate. The absence of error bars indicates the 
error to be smaller than the symbol
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Time (days)

Fig. 2 Ammonium effect on the nitrate-dependent aerobic 
growth of the wild-type B. diazoefficiens USDA 110 (black 
circles') and the ntrC mutant (black and white squares) in Evans 
minimal medium with 10 mM sodium nitrate as the sole 
N source. The optical density at 500 nm is plotted on the ordinate 
as a function of time in days on the abscissa to illustrate bacterial 
growth. As indicated in the figure. 20 mM ammonium chloride 
was added to two of the four ///rC-mutant cultures 5 days after 
inoculation (white squares'). The results presented are the means 
with the error bars representing the standard deviation from two 
biologic replicates assayed in triplicate. The absence of error bars 
indicates the error to be smaller than the symbol

of colony-formation counts by ntrC or rpoN1/2 mutants 
exhibited a delay with respect to the corresponding 
time observed in WT cells (Fig. 3. Panel b). Moreover, 
mutants strains OD500 and CFU ml-1 started increas
ing between days 7 and 8 while their parental strains 
growth rose significatively at day 3 (ANOVA data 
analysis, p < 0.05; Tukey test). Nevertheless, after 
10 days incubation the growth rates and extent of 
colony formation of both ntrC or rpoN1/2 mutants were 
very similar to those obtained by both the USDA 110 
and the 1 lOs/x-4 wild-type strains, with no statistically 
significant differences between the four strains by the 
end of the culture period tested (Fig. 3, Panels a, b).

Nitrate- and nitrite-reductase activities are 
controlled by NtrC and RpoN

In this work, we also investigated whether the inability 
of the ntrC and rpoNy2 mutants to grow with nitrate or 
nitrite as the sole N source resulted from an alteration 
in the activity of the assimilatory nitrate and nitrite 
reductases, respectively. Here. MV-NR and MV-NiR 

activities were measured in whole cells following 
aerobic incubation with nitrate as the sole N source. 
Accordingly, and as expected, the respective NR rates 
observed in the ntrC and rpoNI/2 mutants were about 
18- and 23-fold lower than those recorded in the WT 
cells (ANOVA data analysis, p < 0.01) (Table 2). 
These results strongly support the inability of those 
mutants to grow in the presence of nitrate as the only N 
source (Fig. 1). The NR activity that is lost in the ntrC 
and rpoNy2 mutants corresponds to that of NasC since 
a similar phenotype had been previously observed in a 
B. diazoefficiens nasC mutant incubated under the 
same conditions (Cabrera et al. 2016).

NiR activity was decreased by about 5-fold in the 
ntrC and rpoN1/2 mutants with respect to the WT 
strains (ANOVA data analysis, p < 0.01). As shown 
in Table 2, about 20% of the WT NiR activity, was 
retained in the ntrC and rpoN1/2 mutants. This residual 
activity could explain the observed capacity of ntrC 
and rpoNI/2 mutants to grow (Fig. 3, Panel a, b) after 
10 days of incubation in a medium containing nitrite 
as the only N source.

These results clearly suggest that the expression of 
the B. diazoefficiens assimilatory nitrate reductase and 
nitrite reductase encoded by nasC and nirA respec
tively are controlled by NtrC and RpoN.

Role of NtrC and RpoN on the transcription 
of nasC and nirA

In order to evaluate the involvement of NtrC and 
RpoN in the expression of the nasC and nirA genes 
involved in the synthesis of the assimilatory NR and 
NiR, we used the narK-lacZ and nirA-lacZ transcrip
tional fusions previously constructed by Cabrera et al. 
(2016). The narK-lacZ fusion, which contains the 
promoter region of narK, the first gene of the narK- 
bjgb-flp-nasC operon containing nasC. Both the narK- 
lacZ and the nirA-lacZ transcriptional fusions were 
transferred to the WT strains (USDA 110 and 
110spc4) and to the ntrC and rpoN!/2 mutants. B- 
galactosidase activity was monitored in the resulting 
strains incubated in the absence or presence of nitrate 
as the sole N source (Fig. 4). As previously reported 
(Cabrera et al. 2016), low levels of B-galactosidase 
activity were observed in the narK-lacZ and nirA-lacZ 
fusions in USDA 110 incubated without nitrate, 
whereas the presence of this molecule induced the 
expression of the two fusions by approximately 4.4-
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Fig- 3 Nitrite-dependent aerobic growth of the wild-type 
strains B. diazoefficiens USDA 110 (black circles) and 
110.vpc4 (white upright triangles) and the mutant strains ntrC 
(white squares) and rpoNy? (black inverted triangles) in 
minimal medium with 1 mM sodium nitrite as the sole 
N source. (Panel a) optical density at 500 nm of cell cultures 
is plotted on the ordinate as a function of time in days on the

Time (days)

abscissa. (Panel b) viable cell counts as colony forming units 
(CFUs) per ml of culture is plotted on the ordinate as a function 
of time in days on the abscissa. The results presented are the 
means with the error bars representing the standard deviation 
from two biologic replicates assayed in triplicate. The absence 
of error bars indicates the error to be smaller than the symbol

Table 2 Methyl-viologen-dependent nitrate-reductase (MV- 
NR) and nitrite-reductase (MV-NiR) activities of Bradyrhizo- 
bium diazoefficiens USDA 110 and I I(h/>c4 wild-type strains 
and ntrC and rpoNi/? mutant strains incubated aerobically for 
48 h in Bergersen minimum medium with 10 mM nitrate as the 
nitrogen source

Strain Relevant genotype Activities

MV-NRa MV-NiRb

USDA 110 Wild-type 8.77 ± 1.42 2.49 ± 0.40
LP4488 ntrC 0.49 ± 0.07 0.45 ± 0.25
110spc4 Wild-type 7.83 ± 0.80 2.20 ± 0.22
N50-97 rpoNir_ 0.34 ± 0.07 0.42 ± 0.18

The data are expressed as the means ± the standard deviation 
from at least two different cultures assayed in triplicate 
a MV-NR and bMV-NiR activities are expressed as nmol 
Nek produced or consumed mg protein 1 min 1

and 2.4-fold, respectively. Similarly, nitrate induced 
the expression of B-galactosidase in the narK-lacZ and 
nirA-lacZ fusions in the wild-type strain I IOs/?c4 by 
about 4.2- and 1.6-fold, respectively (Fig. 4). That the 
B-galactosidase activities from the narK-lacZ fusions 
were almost undetectable in the ntrC and rpoN1/2 
mutants incubated in the presence of nitrate was 

notable, with those activities representing less than 1 % 
of the WT levels (ANOVA data analysis, p < 0.01) 
(Fig. 4). This very low transcription of the narK-bjgb- 
flp-nasC operon observed in the ntrC and rpoNI/2 
mutants is consistent with the low levels of NasC 
activity observed in both mutants and strongly 
demonstrates the regulatory role of NtrC and RpoN 
in the transcription of the nasC gene. These results are 
in agreement with previous reports in other bacteria, 
where the regulation of nasC transcription by NtrC has 
already been demonstrated (Ishida et al. 2002; Ohashi 
et al. 2011; Romeo et al. 2012; Wang et al. 2012).

Similarly, as observed for the narK-lacZ fusion, a 
significant decrease in nirA-lacZ expression of about 
15- and 11-fold was observed in the ntrC and tpoN1/2 
mutants, respectively, compared to the WT levels 
(ANOVA data analysis, p < 0.01) (Fig. 4). Neverthe
less, about 7 and 9% of the WT B-galactosidase 
activity from the nirA-lacZ fusion was still retained in 
those two mutants, respectively. These basal levels of 
nirA-lacZ expression in both mutants might explain 
the residual NiR activity observed in the ntrC and 
rpoNi/2 mutants as well as the growth capacity 
recovery of those mutants after 10 days of incubation 
in a medium containing nitrite as the only N source.
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Fig. 4 13-galactosidase 
activity derived from the 
narK-lacZ and nirA-lacZ 
fusions present in the WT 
strains B. diazoefficiens 
USDA 110 or 110spc4 and 
the ntrC or rpoNI/2 mutants. 
Cells were cultured 
aerobically for 48 h in 
minimal medium with 
(white bars) or without 
(black bars') 10 mM nitrate 
as the sole N source. In the 
figure, the 13-galactosidase 
activity in Miller units (MU) 
is plotted on the ordinate for 
each of the strains indicated 
on the abscissa. Data are the 
means ± the standard error 
from at least three 
independent cultures, 
assayed in triplicate

i________________________________________________! I________________________________________________ !

narK-lacZ nirA-lacZ

Discussion

In K. oxytoca (Wu et al. 1999), A. vinelandii (Wang 
et al. 2012) and Pseudomonas aeruginosa (Li and Lu 
2007; Romeo et al. 2012), NtrBC plays a role in the 
transcription of genes related to nitrate assimilation, 
but in rhizobia the main function of NtrC reported thus 
far implicates the transcriptional regulation of genes 
involved in NH4+ assimilation (Patriarca et al. 2002). 
It has been previously demonstrated the involvement 
of NtrC on nirA expression as well as the inability of a 
B. diazoefficiens ntrC mutant to grow on nitrite as sole 
N source (Franck et al. 2015). Our biochemical results 
confirm the NtrC control over nirA and demonstrate 
for the first time the involvement of NtrC as a 
transcriptional regulator of the nasC gene encoding 
the assimilatory nitrate reductase as well as in the 
ability of B. diazoefficiens to grow with nitrate as the 
sole nitrogen source. Indeed, we showed that NtrC is 
essential for the expression of the assimilatory nitrate 
and nitrite reductase activities.

The results obtained for the growth kinetics of a B. 
diazoefficiens ntrC mutant have demonstrated the 
previously reported role of NtrC in the nitrate-dependent 
growth of this bacterium (Martin et al. 1988). Consistent 
with these observations, the inability of another ntrC 
mutant of Sinorhizobium meliloti to grow on nitrate as 
the sole N source has also been reported (Szeto et al. 

1987). A Bradyrhizobium japonicum rpoN1/2 mutant 
was also found to be unable to use nitrate, suggesting a 
role of the sigma factor ct54 on the NtrC-dependent 
expression of nitrate assimilation. These results confirm 
previous findings where the requirement of at least one 
functional rpoN gene in nitrate assimilation by B. 
japonicum was reported (Kullik et al. 1991).

Interestingly, in this work it has also been con
firmed that under nitrogen-limiting conditions (i.e., 
0.1 liM NH4CI), the growth of the ntrC mutant was 
similar to the WT strain (data not shown). This finding 
suggests that NtrBC does not play a main role in NH4+ 
assimilation, perhaps because of a possible cross talk 
with another two-component regulatory system. In 
fact, downstream from the ntrBC genes, B. diazoeffi
ciens contains the ntrYX loci that code for an 
additional two-component regulatory system, NtrYX. 
In support of this hypothesis, in Azospirillum brasi- 
lense and Azorhizobium caulinodans such a possible 
mutual interaction between the NtrYX and NtrBC has 
also been suggested (Pawlowski et al. 1991; Ishida 
et al. 2002). Furthermore, the possibility that the NtrB 
and NtrY in R. capsulatus can substitute for each other 
as phosphodonors for NtrC has also been proposed 
(Drepper et al. 2006).

With respect to nitrite-dependent growth, the ntrC 
and rpoN¡/s mutants exhibited a strong delay in growth 
kinetics, but were nevertheless able to reach WT 
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growth rates after 10 days of incubation. This pattern 
is in contrast to recent studies where a B. diazoefficiens 
ntrC mutant was unable to grow with nitrite as the only 
N source (Franck et al. 2015). This apparent discrep
ancy could be explained by the different growth 
conditions used by Frank and colleagues from those 
used in this work. Whereas they used MMB minimal 
medium containing 2 mM nitrite as N source and 4 ml 
glycerol I-1 as the carbon source, in these experiments 
we used Evans minimal medium containing 1 mM 
nitrite and 10 g mannitol I-1 as those respective 
sources. The difference in the C/N ratio present in 
the two growth formulations might possibly have 
altered the effect of NtrC on nirA expression and 
consequently on the ability of the mutants to grow on 
nitrite as the sole N source.

The growth defect of ntrC and rpoN l/2 mutants with 
nitrate as the N source could be explained by the 
significant inhibition of NR expression in those 
mutants. In fact, NR activity analyses showed that 
only 5% of WT NR activity was retained in either of 
the two mutants. Similarly, narK-lacZ expression in 
those mutants was nearly undetectable. With respect to 
NiR activity and B-galactosidase activity from a nirA- 
lacZ fusion, a significant decrease in both activities 
was also observed in the ntrC and rpoNI/2 mutants. 
However, a residual NiR activity (20% of WT 
activity) as well some basal levels of nirA-lacZ 
expression were still present in both mutants. These 
basal levels of nirA expression and NiR activity could 
explain how both ntrC and rpoN 1/2 mutants were able 
to grow on nitrite after 10 days of incubation, albeit 
after a significant delay.

The stronger effect of NtrC and RpoN on the NR 
and B-galactosidase activity from a narK-lacZ fusion 
than on the NiR and B-galactosidase activity from a 
nirA-lacZ fusion might explain the different growth 
responses of the ntrC and rpoN1/2 mutants in media 
containing nitrate and nitrite as the respective sole N 
sources. As stated above, in contrast to the majority of 
bacteria where the genes encoding an assimilatory 
nitrate reductase or nitrite reductase are arranged in 
the same operon (for a review see Luque-Almagro 
et al. 2011), in B. diazoefficiens the nasC and nirA are 
located at separate chromosomal loci. This genetic 
organization may explain the slight differences 
observed between the expression of those genes with 
respect to their dependence on NtrC and RpoN. 
Moreover, in A. vinelandii and P. denitrificans it has 

been demonstrated that in addition to NtrBC, the 
NasST two-component system also controls nitrate 
assimilation, with NasT an RNA-binding protein with 
a positive effect over transcription and the sensor NasS 
a negative regulator (Wang et al. 2012; Luque- 
Almagro et al. 2013). In B. diazoefficiens, the genes 
coding for the NasST system are clustered with nirA, 
in contrast to other bacteria, and it was reported that 
this two-component system also controls nitrate 
assimilation in this rhizobium (Cabrera et al. 2016). 
Thus, it could be possible that NasST contributes to 
nirA expression, allowing a partial remaining NiR 
activity and the recovery of ntrC mutant growth in 
nitrite. Nevertheless, further studies must be carried 
out in order to elucidate how NtrBC and NasST 
control the expression of nitrate and nitrite reductases 
in B. diazoefficiens.

Taken together, the results reported here clearly 
demonstrate the fundamental role of NtrC and RpoN 
in the transcriptional control of the B. diazoefficiens 
nasC and nirA genes, those being involved in nitrate 
assimilation.
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