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ABSTRACT: Breast Cancer Resistance Protein (BCRP) is an ATP-dependent efflux transporter linked to the multidrug
resistance phenomenon in many diseases such as epilepsy and cancer and a potential source of drug interactions. For these
reasons, the early identification of substrates and nonsubstrates of this transporter during the drug discovery stage is of great
interest. We have developed a computational nonlinear model ensemble based on conformational independent molecular
descriptors using a combined strategy of genetic algorithms, J48 decision tree classifiers, and data fusion. The best model
ensemble consists in averaging the ranking of the 12 decision trees that showed the best performance on the training set, which
also demonstrated a good performance for the test set. It was experimentally validated using the ex vivo everted rat intestinal sac
model. Five anticonvulsant drugs classified as nonsubstrates for BRCP by the model ensemble were experimentally evaluated, and
none of them proved to be a BCRP substrate under the experimental conditions used, thus confirming the predictive ability of
the model ensemble. The model ensemble reported here is a potentially valuable tool to be used as an in silico ADME filter in
computer-aided drug discovery campaigns intended to overcome BCRP-mediated multidrug resistance issues and to prevent

drug—drug interactions.

B INTRODUCTION

Multidrug resistance (MDR) can be defined as the ability of a
living cell to show resistance against a broad spectrum of
structurally and functionally unrelated drugs.' A specific form of
MDR is mediated by some members of the ATP-binding
cassette (ABC) efflux transporters, which are integral
membrane proteins whose main function is to actively
translocate ligands across the plasmatic membrane. In
eukaryotes, the transport always occurs in the inside-out
direction, removing the substrates from the cell or organelle
where they are expressed. These efflux transporters are
characterized by a broad substrate specificity, and they have
an important role in the traffic of a wide and structurally
heterogeneous spectrum of endobiotics (e.g., lipids and other
physiological compounds) and xenobiotics (e.g., waste
products, drugs, and toxic agents).” They contribute to protect
the body (and particularly sensitive tissues such as the brain),
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avoiding the entry of possibly toxic compounds or facilitating
their elimination in bile, urine, and other fluids.> ABC
transporters are grouped into seven families (ABCA to
ABCG).* The ABCBI protein (also known as MDR1 or P-
glycoprotein - Pgp) was the first reported and thus most
studied ABC efflux transporter so far; the ABCG2 protein (or
Breast Cancer Resistance Protein - BCRP) and various
members of the ABCC family (also known as Multidrug
Resistance-Associated Proteins - MRPs) have also been
associated with MDR in a number of pathologies.

Epilepsy is the most common chronic brain disorder affecting
more than 50 million people worldwide.”® Drug therapy is
successful in controlling seizures in about 70% of the patients.’
The remaining 30% suffer from refractory epilepsy” that may be
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defined as the failure of at least two regimens of properly
selected, well tolerated, and commonly used antiepilegtic drugs
(AEDs) to achieve sustained seizure freedom.”” Among
different hypotheses that provide possible explanations to the
phenomenon of refractoriness in epilepsy, the transporter
hypothesis holds that the pharmacoresistance is a result of the
local seizure- or drug-induced overexpression and hyperactivity
of MDR-associated ABC transporters at the blood-brain barrier
(BBB) and/or the epileptic foci.'”~"> Refractoriness has been
mainly attributed to the Pgp overexpression, since various
studies indicate that several AEDs are substrates of this
transporter.>”'® Nakanishi et al.'® demonstrated the involve-
ment of BCRP in reducing brain bioavailability of phenobarbi-
tal, clobazam, zonisamide, gabapentin, tiagabine, and levetir-
acetam in genetically modified mice that lack either Pgp or Pgp
and Berp. Later, Rémermann et al,'” using the highly sensitive
in vitro concentration equilibrium transport assay (CETA) with
murine Berpl and human BCRP transfected MDCKII cells,
found that lamotrigine is a dual Pgp/BCRP substrate.
Interestingly, a number of reports indicate that BCRP is the
most abundantly expressed ABC efflux transporter throughout
the intestine'® and the BBB'”?’ of healthy subjects; its
involvement in drug interactions explains why the Food and
Drug Administration (FDA) and the European Medicines
Agency (EMA) have recommended evaluating investigational
drugs as substrates and/or inhibitors of Pgp and BCRP.*'~**

While the search of specific inhibitors for MDR-ABC
transporters arouses much interest,”**~*’ previous clinical
studies indicate that the inhibition of these transporters may
lead to significant adverse reactions,”* > a fact that underlines
the important physiological role of the ABC transporters, which
compromises the potential of their inhibitors as add-on
treatments in a long-term therapy scenario. Accordingly, the
early recognition of BCRP substrates during the drug design
stage is a viable strategy to design novel therapeutics for the
treatment of refractory epilepsy and other diseases linked to
ABC-mediated MDR issues.

The predictive in silico models for BCRP substrates are
somewhat limited. Briefly, Hazai et al.** used support vector
machines (SVM) to build a model to predict wild-type BCRP
substrates; Zhong et al.’* employed genetic algorithm-
conjugate gradient-SVM (GA-CG-SVM) to discriminate
substrates and nonsubstrates of BCRP; Sedykh et al.*
developed a set of QSAR models using SVM, random forests
(RF), and k-nearest neighbors for identification of both
substrates and inhibitors of 11 intestinal transporters, including
BCRP; Erié et al.* reported artificial neural network- (ANN)
and SVM-based model ensembles for the prediction of
transport and inhibition of Pgp and BCRP; Garg et al.”’
reported an in silico SVM model for the classification of BCRP
substrates and nonsubstrates, which can be used in tandem with
a second one aimed to estimate the BBB permeability; Lee et
al.*® developed a linear QSAR model to establish the
relationship between specificity of BCRP substrates and their
uptake rates by BCRP polymorphs. Finally, Ose et al.*
developed an SVM-based prediction system to predict
substrates of 7 categories of drug transporters (among them,
BCRP). Noteworthy, the polyspecificity of the ABC trans-
porters makes computational recognition of their substrates
quite a challenging task; accordingly, the general trend is to
resort to flexible modeling approaches (e.g, nonlinear and
locally wei%hted techniques) to enable more accurate
predictions.””*"
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We have previously reported two linear classifier ensembles
for the early recognition of BCRP substrates using
conformation independent molecular descriptors, the first one
obtained through Stepwise Forward Linear Discriminant
Analysis*” and the second one using Enhanced Replacement
Method for variable selection.*’ Here we report the develop-
ment of an ensemble of nonlinear computational models
capable of discriminating between BCRP substrates and
nonsubstrates. The ensemble was applied to the classification
of an in-house library of drug candidates exhibiting
anticonvulsant activity. For experimental validation of the
predictions, those drugs that were classified as nonsubstrates for
BCRP were evaluated using the ex vivo everted rat intestinal sac
assay. To our knowledge, this is the first report of an in silico
predictive model of BCRP substrates with experimental
validation.

B MATERIALS AND METHODS

In Silico Modeling. Data Set. A data set of 262 human
wild-type BCRP substrates and nonsubstrates was compiled
from the literature. A compound was considered as a substrate
only if it is transported by the BCRP and as a nonsubstrate
otherwise. Given the variability of experimental conditions used
in the literature to establish if a particular compound is or is not
a substrate of the BCRP, it was impossible to establish a single
cutoff value for the efflux rate, which is why we decided to use
the criterion established by the authors in each original study
according to their particular experimental conditions. To deal
with conflicting reports or ambiguous results, we decided to
discard those compounds from the final data set to avoid
introducing noise caused by wrongly classified compounds.

The data set was partitioned into a 164-compound training
set (composed of 8S substrates and 79 nonsubstrates) and a 98-
compound test set (71 substrates and 27 nonsubstrates) by two
consecutively clustering algorithms. The Libra?r ‘MCS v0.7
(ChemAxon) hierarchical clustering approach™* was first
applied to obtain the seeds for the k-means clustering
alg01'ithm46_48 (in Statistica 10, Statsoft Inc., 2011). With the
aim to obtain a balanced and representative training set, after
the clustering procedure 50% of each cluster from the substrate
category and 75% of each cluster from the nonsubstrate
category were randomly assigned to the training set. Using a
balanced training set is essential to avoid potential bias toward
the prediction of the over-represented category of training
examples.”” The remaining elements of each cluster constitute a
representative, independent test set for validation purposes.

Molecular Descriptors Calculation. 867 0-2D Dragon 4.0
(Milano Chemometrics, 2003) molecular descriptors were
calculated, and the initial filters provided by Dragon software
were used to exclude molecular descriptors with constant or
nearly constant values within the training set (identical values
for all compounds of the training set, except one) and
descriptors with standard deviation below 0.001.

Modeling Procedure. The J48 decision tree-inducing
algorithm, the implementation of the C4.5 decision tree
algorithmso in Weka 3.6,°" was used to obtain the
corresponding nonlinear classifiers. For this purpose, the 867
molecular descriptors were randomized and partitioned into 6
sets of around 150 descriptors each. A nominal binary variable
representing the class labels (“substrate” and “nonsubstrate”)
was used as the dependent variable of the model. We applied
genetic algorithms (GA) implemented in Weka 3.6 to preselect
the descriptors of each set with best discriminating capacity.
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The GA parameters values used were the following: initial
population 100, number of generations 50, probability of
crossover 0.6, and probability of mutation 0.033. As the
response evaluation function we used the classifier subset
evaluator with J48 as the induction algorithm in order to
estimate the “merit” of the subset of descriptors, that is, to
evaluate the correspondence of a group of descriptors with the
class. At this stage (response evaluation function), only online
pruning was applied by varying systematically the M parameter
(the minimum number of instances per leaf) from 2 to 20. We
conducted consecutive runs where the result of one run was
used as the input for the next run, until convergence was
observed.

As a result, for each of the 6 sets of randomized descriptors
we obtained 19 different solutions, i.e. 114 subsets of
descriptors were selected by GA.

The final models were built by the application of the J48
algorithm on each of these 114 subsets of descriptors. The
following methodology was applied:

1) The M parameter was systematically varied from 2 to 20.
For each value of M, the C parameter (confidence factor) was
systematically varied from 0.001 to 0.5 in 0.01 steps, and for
each tree obtained the subtree raising was applied.

2) On the other hand, on each of the 114 sets the reduced-
error pruning was applied where the N parameter (number of
partitions of the training set, where one fold is used for pruning
and the rest for growing the tree) was varied systematically
from 5 to 15.

Models Performance Evaluation. We resorted to Receiver
Operating Characteristic (ROC) curves analysis to evaluate and
compare the models’ performance.”” The area under the ROC
curve (AUC ROC) allows evaluating if the model performance
differs from a random classification and to statistically compare
the performances of different models:*> an ideal model presents
an AUC ROC of 1 (equivalent to a perfect classification), while
a random classification is represented by a line of slope 1 and
corresponds to an AUC of 0.5.

ROC curves were constructed using MedCalc (MedCalc
Software, 2011), and for statistical comparison of two AUC
ROC the nonparametric method developed by DeLong et al.>*
was used to calculate the standard error of each AUC; the Z-
statistic was computed in order to obtain the corresponding p-
value.>*

In Silico Model Validation. For the in silico validation of the
obtained models we used standard validation techniques to
evaluate their robustness and predictive ability, as described
next.

Internal Validation. Internal validation was performed
through stratified leave-group-out (LGO) cross-validation and
Y-randomization test.”> For the LGO procedure, 10 com-
pounds of the training set (S substrates and S nonsubstrates)
were randomly extracted, a process that was repeated 150 times
for each model, checking that all the compounds of the training
set were removed at least once. For the Y-randomization test,
the values of the class label were scrambled across the training
set, and 50 randomized models were constructed for each
individual model.

External Validation. External validation was performed on
the 98-compound test set specifically generated for this purpose
during the data set partitioning step.

The experiments conducted by Truchon and Bayly*® suggest
that when enrichment metrics (like AUC ROC) are used to
evaluate the models on a small set of compounds, the calculated
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values have a significant error, which decreases and converges
to a constant value for larger databases. Another problem that
occurs when working with a high proportion of positive
instances is the “saturation effect”: once the hit compounds
saturate the early part of the ranking the enrichment metric
cannot get any higher. This effect is attenuated when the
positive/negative instances ratio of the data set is much less
than 1. Considering that our in silico model will be applied to
analyze large chemical libraries, the original 98-compound test
set is then not sufficient to assess the actual behavior of the
models on a virtual screening application. Therefore, we
constructed two large chemical libraries, in which the
nonsubstrates/substrates ratio is lower than 0.0S.

First we built a pilot library where the original test set was
dispersed among 479 putative BCRP substrates, i.e. substrates
of nonhuman BCRP homologues or highly similar compounds
to known human BCRP substrates which were retrieved from
ZINC®>” and PubChem’® databases through molecular
similarity searches (similarity score >0.75 when compared to
known substrates). The pilot library obtained in this way (that
we will call “simulated library”) contains 27 known non-
substrates among 550 known or putative substrates, leading to a
positive/negative instances ratio smaller than 0.0S.

Second, as a final challenge for our models, a larger and
structurally diverse library was constructed, using the DUD-E
(Enhanced Directory of Useful Decoys’”®’) resource. This
second library, which will be called “DUD-E library” from now
on, contains 1346 compounds (1248 decoys plus the original
test set) where each decoy is physicochemically similar but
topologically dissimilar from the corresponding nonsubstrate.
To this end we used the automatic decoys generation tool
publicly available online (http://dude.docking.org/generate).
Briefly, the decoys are properly matched to the nonsubstrates
using molecular weight, a theoretic log transformation of the
octanol—water partition coefficient (miLogP), the number of
rotatable bonds, hydrogen bond acceptors count, hydrogen
bond donors count, and net molecular charge. About 50 decoys
were generated for each nonsubstrate by selecting decoys from
the ZINC database using in the first place a dynamic protocol
that adapts to the local chemical space by narrowing or
widening windows around the 6 matching properties; in a
second stage, molecular similarity based on ECFP4 fingerprints
is calculated. Finally, the decoys are sorted according to the
maximum Tanimoto coefficient for each nonsubstrate, and the
25% decoys which are the most topologically dissimilar from
the known nonsubstrates were retained.

Data Fusion. Given the broad substrate specificity of the
BCRP, which probably arouses from the existence of multiple
binding sites,’ ~°® we resorted to data fusion to achieve, by
consensus, more robust predictions.”” Behind the use of data
fusion underlies a statistical assumption according to which, the
more times a molecule is recovered by independent methods or
models, the greater the probability that it meets the
characteristics of interest. Selective combination (which
means the combination of a few but well-performing models)
can provide better accuracy and generalization.”’ ~* Here we
used five data fusion schemes applied on the 12 individual
models that presented the best performance on the training set
and that also demonstrated a good performance for the test set:
the maximum value (MAX operator), the minimum value
(MIN operator), the average score, the average ranking, and the
average voting between the scores of the models constituting
the ensemble. The average ranking consists in generating a
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Figure 1. Flowchart of the methodology that has been applied to obtain the model ensemble.

ranking of the compounds based on each model score and then
averaging it. The average voting is obtained by the calculation
of the vote, which for the j-th compound in the i-th model is
equal to max (0, int(11-rank;/0.02NDB)), where rank; is the
ranking of the j-th compound according to the i-th model, and
NDB is the number of compounds in the entire tested
database. The algorithm gives 10 votes in favor of the first 2%
of the ranked compounds, 9 votes for the next 2%, and so on.
For compounds ranked between 18 and 20% range, 1 vote is
given. Compounds in the final 80% of the ranking list receive
no votes.”” The five combination schemes were analyzed and
compared through ROC curves.

Figure 1 shows a schematic representation of the modeling
procedure followed in the present work.

Experimental Validation. Selection of the Compounds.
The best ensemble obtained was applied on a small library of
21 compounds (Figure 2) synthesized or acquired by our group
(LIDeB - UNLP), with the followin$ characteristics:

1) Proven anticonvulsant activity7 -0

2) Adequate UV absorptivity for subsequent analytical
determination by HPLC-DAD.

We selected 5 compounds among those classified as
nonsubstrates by our model ensemble; these S compounds
fell within the applicability domain of the models that
constitute the combination. While the model ensemble may
provide some independence from the determination of the
applicability domain of each individual model,”" we have
adopted a conservative approach calculating the applicability
domain estimated through the leverage approach.*” It consists
in computing the leverage h; = x} (X"X) ™', for each compound
of the database, where x; is the descriptor vector of the
considered compound i, and X is the model matrix derived
from the training set descriptor values. The threshold value is
defined as 3k/n, with k being the number of model parameters
and n being the number of training set compounds.

Animals. Male Wistar rats (280—320 g body weight) were
maintained under a 12:12-h light:dark cycle, at controlled room
temperature with food and water ad libitum. Experiments were
conducted in accordance to the Guide for the Care and Use of
Laboratory Animals of the National Research Council (USA,
1996) and also in accordance with the guidelines of the 6344/
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96 regulation of the Argentinean National Drug, Food and
Medical Technology Administration (ANMAT).
Experimental Model. The ex vivo everted rat intestinal sac
model was used for studying BCRP mediated transport for each
of the S5 compounds previously selected as BCRP non-
substrates.””** The main advantage of this technique with
respect to in vitro assays is that the results obtained using ex vivo
techniques often match those obtained from in wvivo
studies.”” ™ The BCRP is expressed in all segments of the
rat small intestine from the duodenum and proximal jejunum to
the distal jejunum and the ileocecal valve, including the ileum.
The highest levels of BCRP expression are observed in the
segment including the distal jejunum and ileum, and therefore
this portion of the intestine was used to study the possible
interaction of anticonvulsant drugs with the BCRP.**”°
Evaluation of Drug Transport Across the Everted Rat
Intestinal Sacs. Briefly, in each trial the rats were anesthetized
with urethane (1.2 g/kg, ip. injection), the abdomen was
opened, and the distal extreme of the small intestine was
removed and placed in a chamber with Krebs buffer (in mM:
NaCl 118; KCl 4.7; MgCl, 1.2; NaH,PO, 1.0; CaCl, 2.6;
NaHCO; 25.0; glucose 11.1; sodium ethylenediamine tetra-
acetic acid (Na, EDTA) 0.004; final pH 7.4), under bubbling
with 95% O,/5% CO,. The intestine was gently everted on a
glass rod, and six sacs (5—7 cm) were prepared. To generate
the sacs, one end of each segment of intestine was firmly ligated
with thread, while the other end was also tightly tied with
thread to a short cannula where the drug solutions were
administered. A thin wire steel inserted into the cannula cap
acts as a hook that allows hanging the intestinal sac in the
container where the test was conducted. The six sacs were
randomly immersed into the containers with S mL of Krebs
buffer prewarmed at 37 °C under bubbling with 95% O,/5%
CO,. After 15 min stabilization, the trial was initiated by
introducing the 0.7 mL of drug solution within each sac with a
syringe. This time point was considered time 0. To evaluate
transporter inhibition, the inhibitor was added to the medium
containing the corresponding sac 30 min before the addition of
the drug solution. The transport of drugs across the intestine
from the serosal to mucosal surface was evaluated by sampling
the medium (150 yL with replacement) every S min during 30
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Figure 2. Chemical structures of the 21-compound library on which we applied the best model ensemble.

min. We also performed a control at 4 °C in order to evaluate a
possible BCRP-independent transport of the drugs across the
rat intestine. Figure 3 shows a diagram of the procedure carried
out during the everted rat intestinal sac experiment, while
Figure 4 shows the location of the BCRP in the intestine before
and after the eversion.

To check the active transport across the rat intestine
mediated by BCRP, we used the couple substrate-inhibitor of
BCRP nitrofurantoin (NF)”'-K0143.”” Three concentrations of
NF (1, 10, and 100 M) were evaluated to establish the optimal
working concentration at which active transport is analytically
observed to be used as positive control. Once established the
optimal NF concentration, two inhibitor concentrations (10
and SO uM) were evaluated in order to establish the optimal

inhibitor concentration at which the transport inhibition is
observed.

The evaluation of the selected anticonvulsant drugs was
performed through two protocols:

Protocol 1: Evaluation of the potential effects of the drugs
on the transporter by measuring the transport of NF in the
presence of each drug. Each drug was added to the buffer 30
min before starting the test. The sampling of the medium was
performed every 5 min during 30 min. The already established
optimal NF concentration was used, and two concentrations of
each drug were evaluated corresponding to the optimal
concentration of the inhibitor and NF, respectively.

Protocol 2: Transport assessment of the drugs in the
presence and absence of the specific BCRP inhibitor Ko143. It
was only possible to evaluate in this second protocol those
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Figure 3. Schematic representation of the steps followed during the
everted rat intestinal sacs experiment. Step 1: After anesthetizing the
rat, the abdomen is opened, and the distal end of the small intestine is
removed. Step 2: The intestine is gently everted onto a glass rod. Steps
3 and 4: The intestine is divided into segments of 5—7 cm each. Step
S: To produce the sacs, one end of each segment of intestine is firmly
tied with string, while the other end is tied with thread to a short
cannula where the drugs solutions are administered. Steps 6 and 7: A
thin wire steel inserted into the cannula cap acts as a hook to hang the
everted intestinal sac in the container where the trial is performed.

lumen
BCRP BCRP
4 ¥
mucosa N mucosa

Figure 4. BCRP is localized in the intestinal lumen. In the everted
intestinal sac assay the mucosa is exposed to the outside, and for this
reason it is expected that the BCRP substrates introduced inside the
sacs (serosa) are transported to the outside, i.e. from the serosa to the
mucosa.

drugs that were within the detection limit of the analytical
quantification method (HPLC-DAD). Each drug was individ-
ually evaluated following the protocol established for NF; that

is, the drug solution was injected into the sac, and the same
sampling scheme was followed. The assayed concentration for
each drug and for the inhibitor corresponded to the optimum
concentration established for NF and the inhibitor, respectively.

Drugs. NF was cordially donated by Laboratorios Bago S.A.,
2-(2-ox0-2H-chromen-3-yl)benzoic acid (Compound 1, Figure
2) was purchased from InterBioScreen Ltd., 1-methyl-1,2,3’,4'-
tetrahydro-1'H-spiro[indole-3,2'-quinazoline]-2,4’-dione
(Compound 16, Figure 2) was purchased from Princeton
Biomolecular Research, N-(3,3-dimethylbutan-2-yl)-2-methyl-
furan-3-carboxamide (Compound 17, Figure 2) was acquired
from UkrOrgSyntez (UORSY) Ltd., N,N’-dibenzylsulfamide
(Compound 13, Figure 2) was synthesized in our laboratory,™
and methylparaben (Compound 12, Figure 2) and Ko143 were
purchased from Sigma-Aldrich Argentina.

Quantitative Analysis by HPLC. An analytical HPLC-DAD
method was developed and validated for the quantitation of the
evaluated drugs in the matrices from the ex vivo studies. Protein
precipitation was performed by adding one volume of
acetonitrile on each sample followed by centrifugation. An
appropriate internal standard was used in each case. All samples
were quantified using an UHPLC Dionex Ultimate 3000
(Thermo Scientific, Dionex, Sunnyvale, California, USA)
equipped with a diode array detector. The stationary phase
was a Luna RPI8 column (5 um, 150 X 4.6 mm)
(Phenomenex, Torrance, CA, USA), operated at room
temperature. In all cases the mobile phase was composed of a
mixture of 20 mM KH,PO, buffer (adjusted to pH 2.5 with
H;PO,) and methanol in different proportions as required.

For quantification, the linearity, specificity, precision, and
accuracy in the working range concentrations of each drug were
demonstrated.

Statistical Analysis of Experimental Results. We verified the
assumptions required to perform parametric tests: the random-
ness of residuals, the normality of the data, and the
homogeneity of variance. The logarithmic transformation of
the data was applied in those cases where it was necessary.
Finally, we applied the Student’s t test or the factorial analysis
of variance (one-way ANOVA).

Table 1. Overall Accuracy, Sensitivity (Se), and Specificity (Sp) for the Training and the Test Sets and the Results of the

Internal Validation for the 12 Best Models Obtained”

model overall accuracy training set  Se training set Sp training set overall accuracy test set Se test set Sp test set

1 73.78 65.82 81.18
2 95.73 98.73 92.94
3 93.29 91.14 95.29
4 95.12 96.20 94.12
S 96.95 97.47 96.47
6 96.34 97.47 95.29
7 92.07 92.40 91.77
8 83.54 72.15 94.12
9 78.05 72.15 83.53
10 91.46 89.87 92.94
11 82.32 68.35 95.29
12 91.46 91.14 91.77

LGO" Y-randomization®

73.47 62.96 77.46 63.93 (13.08) 58.98 (2.33)
73.47 77.78 71.83 68.55 (16.13) 56.75 (5.73)
74.49 81.48 71.83 62.81 (14.56) 56.16 (4.81)
69.39 70.37 69.01 68.37 (14.34) 57.16 (4.51)
68.37 70.37 67.61 69.95 (13.95) 58.16 (4.66)
67.34 70.37 66.20 70.60 (14.14) 58.53 (5.06)
76.53 74.07 77.46 68.22 (12.33) 57.69 (5.76)
78.57 62.96 84.51 68.57 (12.31) 57.38 (5.67)
75.51 85.19 71.83 65.93 (12.97) 54.12 (4.61)
75.51 74.07 76.06 64.19 (13.98) 54.44 (4.59)
77.55 59.26 84.51 66.57 (13.87) 56.64 (4.96)
75.51 74.07 76.06 67.92 (14.28) 56.71 (4.90)

“A score cutoff value of 0.5 was considered here to differentiate substrates and nonsubstrates. “The results are presented as the average result of 150
replications and the standard deviation between parentheses. “The results are presented as the average performance of the 50 randomized models

and the standard deviation between parentheses.
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Table 2. AUC ROC Values Accompanied by Their 95% Confidence Interval between Parentheses for the Training and Test
Sets, the Simulated Library, and the DUD-E Library for the 12 Best Models Obtained

model AUC ROC training set AUC ROC test set
1 0.785 (0.714—0.845) 0.737 (0.638—0.821)
2 0.992 (0.963—0.999) 0.791 (0.697—0.866)
3 0.968 (0.928—0.989) 0.829 (0.740—0.898)
4 0.993 (0.964—1.000) 0.788 (0.694—0.864)
S 0.996 (0.971—1.000) 0.785 (0.691—0.862)
6 0.995 (0.968—1.000) 0.788 (0.694—0.864)
7 0.969 (0.930—0.990) 0.856 (0.771-0.919)
8 0.867 (0.806—0.915) 0.744 (0.646—0.827)
9 0.815 (0.747—0.871) 0.880 (0.799—0.937)
10 0.965 (0.924—0.987) 0.850 (0.764—0.914)
11 0.843 (0.778—0.895) 0.728 (0.628—0.813)
12 0.962 (0.921—-0.986) 0.839 (0.751—0.905)

AUC ROC simulated library

0.696 (0.657—0.734)
0.735 (0.697—0.771)
0.734 (0.696—0.770)
0.718 (0.679—0.754)
0.716 (0.678—0.753)
0.718 (0.680—0.755)
0.780 (0.744—0.813)
0.725 (0.686—0.761)
0.820 (0.786—0.851)
0.758 (0.721-0.792)
0.707 (0.668—0.744)
0.795 (0.760—0.827)

AUC ROC DUD-E library

0.615 (0.588—0.641)
0.675 (0.649—0.700)
0.701 (0.676—0.726)
0.598 (0.571-0.625)
0.590 (0.563—0.617)
0.598 (0.571-0.624)
0.809 (0.787—0.830)
0.742 (0.718—0.766)
0.651 (0.625—0.677)
0.757 (0.733—0.779)
0.681 (0.655—0.705)
0.756 (0.732—0.779)

B RESULTS AND DISCUSSION

In Silico Modeling. From a comprehensive analysis through
the variation of the J48 algorithm run parameters (as detailed in
the previous section) for the 114 subsets of molecular
descriptors preselected by GA, we chose the 12 models
which showed the best performance on the training set
considering the overall accuracy, the sensitivity (true positive
rate, Se), the specificity (true negative rate, Sp), the AUC ROC,
and the internal validation (LGO and Y-randomization) results.
We also verified that these 12 models demonstrate a good
performance on the test set. The diagrams of the 12 decision
trees are presented in the Supporting Information. The reader
can also observe the descriptors of each model and the cutoff
values of each node, together with the RF variable importance
measures (mean decrease in accuracy and mean decrease in
node impurity) for each descriptor of the model ensemble.
Table 1 shows the overall accuracy, the Se and Sp for the
training and the test sets, and the results of the internal
validation; whereas Table 2 shows the results of the AUC ROC
for the training and the test sets, the simulated library, and the
DUD-E library for the 12 selected models.

Table 1 shows that the overall accuracy is lower for the test
set than for the training set, and the same behavior can be
observed for the AUC ROC in Table 2, suggesting some degree
of overfitting which is frequently observed in decision trees and,
in general, in flexible methods. According to Table 2, there is a
general trend to loss predictivity when we move from the test
set to the DUD-E library. While all the models displayed
acceptable results in the internal cross-validation, it can be
observed that when the number of descriptors incorporated
into the model increases, the difference between the percentage
of overall good classifications for the training set and for the
instances removed during the LGO validation process also
increases following a linear trend (see Table 3 and Figure S).
The J48 algorithm has a strong tendency to overfitting which is
accentuated with the number of independent variables in the
model (which is a general problem of highly flexible
methods”>”*); due to this behavior we put great emphasis on
the pruning tools available to control this trend.

In addition, the J48 algorithm has some degree of instability,
which means that a small variation in the training set may lead,
in certain cases, to a very different decision tree.”””” This
emerges directly from the divisive hierarchical process by which
the decision tree is constructed. At this point, it is important to
note the great structural variability of the compounds of the
database which in part emerges from the known broad
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Table 3. Difference between the Percentages (%) of Overall
Good Classifications for the Training Set and the Removed
Instances on the LGO Internal Validation Depending on the
Number of Descriptors Incorporated into the Model

no. of instances difference between % overall

no. of training set/no. of  good classifications for training
model descriptors  model descriptors set and LGO validation
1 S 32.8 9.85
9 6 27.33 12.12
11 6 27.33 15.74
7 23.42 14.96
9 18.22 23.85
10 9 18.22 27.27
12 9 18.22 23.54
4 10 16.40 26.75
6 10 16.40 25.73
S 11 1491 26.99
2 12 13.66 27.18
3 13 12.61 30.48
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Figure S. Apparent linear evolution of the difference between the
percentages of overall good classifications for the training set and the
instances removed during LGO validation (y axis) vs the number of
descriptors incorporated into the model (x axis). A clear trend to
overfitting is observed with the increasing the number of descriptors

added to the model.

substrate specificity of BCRP. Data fusion techniques appear
as a possible solution to the instability and the tendency to
overfitting of the J48 algorithm.”*”> Accordingly, we generated
the combinations of the 12 best models (selective ensemble)
using the five data fusion schemes described in the Materials
and Methods section. The results are shown in Table 4.
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Table 4. AUC ROC Values Accompanied by Their 95% Confidence Interval between Parentheses for the Training Set, the Test
Set, the Simulated Library, and the DUD-E Library for the Five Data Fusion Schemes Applied to the 12 Best Models Obtained

ensemble AUC ROC training set

0.978 (0.942—0.994)
0.986 (0.954—0.998)
0.994 (0.967—1.000)
0.997 (0.973—1.000)
0.952 (0.907—0.979)

MAX operator
MIN operator
average score
average ranking

average voting

AUC ROC test set

0.845 (0.757—0.910)
0.825 (0.735—0.894)
0.890 (0.811—0.944)
0.945 (0.880—0.981)
0.956 (0.894—0.987)

AUC ROC simulated library

0.741 (0.704—0.777)
0.797 (0.762—0.829)
0.826 (0.792—0.856)
0.840 (0.808—0.869)
0.834 (0.801—0.864)

AUC ROC DUD:-E library

0.668 (0.642—0.693)
0.786 (0.763—0.808)
0.779 (0.756—0.801)
0.801 (0.779—0.822)
0.818 (0.796—0.838)
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Figure 6. ROC curves for the training set, the test set, the simulated library, and the DUD-E library for both the average ranking (black) and the
average voting (gray) of the 12 best nonlinear models obtained. The similar performance of both data fusion schemes is evident. The average ranking
was chosen for experimental validation because it presented a better performance for the training set and it is a much simpler data fusion scheme.

According to Table 4, the DUD-E library is the more
challenging external validation step and presents the worst
performance among all the sets of compounds used for that
purpose. Nonetheless, a good performance for all data fusion
schemes along all libraries used in the external validation is
observed (with the exception of the MAX operator, which leads
to an AUC ROC below 0.7 for the DUD-E library). Regarding
the training set, the average ranking presents the greater AUC
ROC outperforming the average voting (p = 0.0055), while
there are no statistically significant differences between the
average ranking and the remaining data fusion schemes. For the
test set, the average ranking and the average voting have the
higher AUC ROC with no statistically significant differences
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between them (p > 0.05), while both are slightly different from
the remaining three schemes (p < 0.03). The maximum AUC
ROC for the simulated library corresponds to the average
ranking, showing no differences with the remaining combina-
tions (p > 0.05). For the DUD-E library, the highest AUC ROC
value corresponds to the average voting, displaying no
significant differences with the other combinations except the
MAX operator (p < 0.0001).

The average ranking and the average voting consistently
show the best performances across all libraries examined during
the external validation, and there is no statistically significant
difference between them with the exception of the training set,
where the average ranking was higher. According to this, we

DOI: 10.1021/acs.jcim.7b00016
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decided to use the average ranking to move to the experimental
validation stage also considering that is a simpler data fusion
scheme.

Figure 6 shows the ROC curves for the training set, the test
set, the simulated library, and the DUD-E library for both the
average ranking and the average voting, evidencing a very
similar performance.

Experimental Validation. Drugs Selected for Evaluation.
The $S anticonvulsant compounds classified as nonsubstrates by
our model ensemble and selected for experimental evaluation
were methylparaben (Compound 12, Figure 2),”* 2-(2-oxo-2H-
chromen-3-yl)benzoic acid (Compound 1, Figure 2), 1-methyl-
1,2,3',4'-tetrahydro-1'H-spiro[indole-3,2'-quinazoline]-2,4’-
dione (Compound 16, Figure 2), N-(3,3-dimethylbutan-2-yl)-
2-methylfuran-3-carboxamide (Compound 17, Figure 2),”""*
and N,N'-dibenzylsulfamide (Compound 13, Figure 2).*’

Experimental Model Validation. We verified the active
transport of NF through the tissue and its inhibition in the
presence of Kol43. The results are shown in Figure 7. Across

A

-~ NF100 uM
& NF100 pM + Ko143 10 uM

Concentration (ug/ml)

35

Figure 7. Results obtained for NF 100 M evaluated at 37 °C with and
without Ko143 10 uM (n = 9). A. Concentration versus time curves.
B. Area under the concentration versus time curves (AUC). Vertical
segments indicate standard error of the mean (SEM).

all the concentrations evaluated, 100 M for NF and 10 uM for
Ko143 were the optimal concentrations at which both, active
transport and inhibition were best observed analytically. We
found statistically significant differences (p 0.000343)
between the area under the concentration versus time curve
(AUC) of NF at 100 uM with and without Ko143 10 uM.
Inhibition of the transport by Kol43 confirms that BCRP is
involved in the active transport of NF in our experimental
conditions.

As shown in Figure 7, the greater data dispersion was
observed in the curve corresponding to NF 100 M, while the
dispersion was much lower in the presence of the inhibitor.
This may be due to intraindividual (different portion of
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intestine) as well as interindividual variability in the BCRP
expression levels observed in vivo, affecting the active transport
of NF, which is abolished in the presence of the specific
inhibitor.

Evaluation of the Selected Drugs According to Protocol 1.
Active transport of NF was evaluated in the presence of the 5
drugs predicted as nonsubstrates by the model ensemble, which
were dissolved in the external media at 10 and 100 uM. Such
concentrations were established according to the optimal
concentrations found during the model validation for the
inhibitor (10 #M) and NF (100 uM). The results obtained are
shown in Figure 8. No statistically significant differences were
found between the AUC of NF in the presence and absence of
the S drugs at both 10 and 100 M (p > 0.0S in all cases). The
results indicate that none of the evaluated drugs significantly
interfere, at the concentrations tested, with the rat BCRP-
mediated transport of NF. This finding adds evidence to the
hypothesis that none of the 5 drugs is a substrate of BCRP, at
least not for the same binding site or with similar affinity for
BRCP than NF. For confirmation, we tested 3 of the 5 drugs
(Compounds 1, 12, and 16) following protocol 2.

Evaluation of the Selected Drugs According to Protocol 2.
The transport across the intestine for Compounds 1, 12, and
16 was evaluated at 100 uM (same concentration than the
optimal concentration found for NF) at 37 and 4 °C in order to
check a possible active transport through the tissue and at 37
°C in the presence and absence of Ko143 10 uM to assess the
possible transport of the drugs mediated by the BCRP. The
results are shown in Figure 9. No statistically significant
differences between the AUC for the 3 tested drugs were found
in any case (p > 0.05 in all cases).

We can conclude that none of the 3 drugs is actively
transported across the rat intestine in the assayed conditions;
furthermore, no evidence of BCRP mediated transport was
observed.

The evidence of both protocols agrees with the prediction
made by the average ranking of the 12 best decision trees,
according to which none of the S drugs would be a
transportable BCRP-substrate.

B CONCLUSIONS

We have developed a computational nonlinear model ensemble
based on conformational independent molecular descriptors for
the early identification of substrates and nonsubstrates of BCRP
efflux transporter, a protein linked to MDR-phenomena in
diseases such as epilepsy and cancer. The model ensemble is
easy and quick to use because no previous conformational
analysis of the chemical structures to be evaluated is required,
which is particularly suitable for virtual screening campaigns on
large chemical libraries. All generated models were derived
from a relatively large and highly structurally diverse data set,
which was divided into representative training and test sets
through a rational clustering procedure leading to an adequate
balance between the number of substrates and nonsubstrates
on the training set. According to the results obtained during the
in silico modeling step, the importance of using pilot libraries of
greater size and structural diversity to assess model behavior
can be highlighted. The broad substrate specificity of BCRP
increases the difficulty of finding a single model capable of
achieving good prediction rates for both, substrates and
nonsubstrates, a fact that justified the application of more
complex strategies such as nonlinear modeling, data fusion, and,
particularly, selective ensemble.
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Figure 8. AUC for NF 100 uM evaluated at 37 °C in the absence and presence of the S tested drugs at 10 and 100 uM concentrations (n = 6).

Vertical segments indicate SEM.

c})

Figure 9. AUC for Compounds 1, 12, and 16 100 uM evaluated at 4 °C and at 37 °C with and without Ko143 10 uM (n = 9). Vertical segments

indicate SEM.

The experimental validation of the ensemble predictions was
performed using the ex vivo everted rat intestinal sac model.
The evidence of the first protocol for the S drugs evaluated
(Compounds 1, 12, 13, 16, and 17) together with the evidence
of the second protocol for Compounds 1, 12, and 16 seems to
support the predictions made by the average ranking of the 12
best decision trees, according to which none of the S assayed
drugs would be a transportable substrate of BCRP. These
results demonstrate the predictive ability of the computational
model ensemble reported, suggesting that it is a potentially
valuable tool to be used as an in silico ADME filter in computer-
aided drug discovery oriented to overcome BCRP-mediated
MDR problems, e.g. for the treatment of refractory epilepsy. As
an additional advantage, the model ensemble allows the
prediction of potential drug—drug interactions associated with
simultaneous administration of two or more drugs that are
BCRP substrates, inhibitors, or inducers.
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