INTERCAMBIO DE CARGA ENTRE IONES MULTICARGADOS Y HELIO NEUTRO

L. OPRADOLCE

Instituto de Astronomía y Física del Espacio

RESUMEN:

En numerosos plasmas astrofísicos y de laboratorio -notablemente el medio interestelar, las nebulosas planetarias, las galaxias de Seyfert, los plasmas Tokamak, etc. - la abundancia de los iones multicargados está en gran parte controlada por las reacciones de intercambio de carga que estos efectúan con el gas neutro (McCarroll y Valiron 1978, Péquignot y colaboradores 1978, Péquignot 1980, Miller y colaboradores 1974).

En casos favorables su tasa de reacción excede en varios órdenes de magnitud a la recombinación radiativa según lo muestran los cálculos teóricos de McCarroll y Valiron (1976, 1979) sobre las reacciones $\rm Si^{+2}+H$ y $\rm N^{+3}+H$ en el medio interestelar.

En el dominio de bajas energías (inferiores a algunos eV) no existen medidas de laboratorio de secciones eficaces de intercambio de carga y las estimaciones se realizan a partir de modelos teóricos. De gran interés es entonces estimar la validez de estos cálculos teóricos.

El sistema Ar⁺⁶ -He ha sido estudiado experimentalmente entre 1 y 100 KeV por Muller y Salzborn (1976), Afrosimov y otros (1977) y Panov (1980). Fueron medidas las secciones eficaces totales de captura electrónica para el simple y doble intercambio y también para los diferentes estados del Ar⁺⁵ en que queda el electrón capturado. Estos experimentos muestran que el simple intercambio de carga es tres veces más probable que el doble y que la reacción conduce a poblar selectivamente los niveles excitados 3d, 4s y 4p del ion Ar⁺⁵.

Puesto que en la gama de energías experimentales la velocidad re lativa de los iones es más pequeña que la velocidad "orbital" de los electrones, el modelo molecular utilizado a bajas energías para tratar la colisión es aún válido.

Dentro de este modelo presentamos los resultados de secciones eficaces totales de intercambio de carga entre 1 y 100 KeV para dicho sistema:

^{1 1}eV = 11606°K

$$Ar^{+6}(^{1}S) + He(^{1}S) \rightarrow Ar^{+5}(1s^{2},2s^{2},2p^{6},3s^{2},3d)^{2}D + He^{+}(1s)+39.6eV$$

$$Ar^{+5}(1s^{2},2s^{2},2p^{6},3s^{2},4s)^{2}S + He^{+}(1s)+24.3eV$$

$$Ar^{+5}(1s^{2},2s^{2},2p^{6},3s^{2},4p)^{2}P + He^{+}(1s)+18.6eV$$

Primeramente utilizando el método del potencial modelo desarro-llado por Valiron (1976) se calcularon las curvas de energía potencial del ion molecular (ArHe) $^{+6}$. La existencia de tres pseudocruces entre estados Σ a distancias internucleares intermedias confirma que el intercambio de carga se produzca en los niveles excitados $1s^22s^22p^63s^2$ $n\ell$ ($n\ell$: 3d,4s,4p) del Ar $^{+5}$.

los elementos de matríz del operador de acoplamiento radial haciendo intervenir el canal de entrada $\left\{Ar^{+6}+He\right\}$ y los tres canales más probables de salida $\left\{Ar^{+5}+He^{+}\right\}$ se obtuvieron por derivación numérica de la función de onda molecular. Como era de esperar resultaron sólo apreciables en las inmediaciones de los pseudocruces. Se despreció el acoplamiento rotacional entre estados \P y Σ .

Las amplitudes de transición necesarias al cálculo de las secciones eficaces se obtuvieron por integración numérica de las ecuaciones acopladas semiclásicas y también por la fórmula de Landau-Zener.

En su conjunto los resultados están en buen acuerdo con las experiencias y puede concluírse que los modelos utilizados a bajas energías son justificados.

REFERENCIAS:

- Afrosimov V.V.; Basalaev A.A.; Panov M.N. y Leiko G.A.: 1977, JEPT Lett. 26, 537.
- McCarroll R. y Valiron P.: 1976, Astron. Astrophys. 53,83.
- " 1976, Journal de Physique 39, C1-52. " 1979, Astron. Astrophys. 78, 177.
- Miller B.; Gould R.W.; Frieman E.A. y Trivelpiece A.W.: 1974, Review Research, ERDA-39, 145.
- Muller A. y Salzborn E.: 1976, Physics Letters 59A, 19.
- Panov M.N.: 1980, "Electronic and Atomic Collisions" XI ICPEAC, Invited Papers and Progress Reports, 437.
- Péquignot D.; Stasinska G. y Aldrovandi S.M.V.: 1978, Journal de Physique 39, C1-164.
- Péquignot D.; Aldrovandi S.M.V. y Stasinska G.: 1978, Astron.Astrophys. 63, 313.
- Péquignot D.: 1980, Astron. Astrophys. 83, 52.
- Valiron, P.: 1976, Thése de 3e cycle, Université de Bordeaux I, N° 1279.