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Abstract. In this paper an alternative approach is proposed to improve the 

convergence of Particle Swarm Optimization (PSO) algorithm by adapting the 

inertial weight parameter with a fuzzy logic system to solve large-scale 

optimization problems. The PSO algorithm is a population-based metaheuristic 

inspired by the social behavior of birds, and it has been applied to numerous 

optimization problems successfully. However, one of its main disadvantages is 

the decaying performance when applied to complex and large-scale problems. 

The proposed algorithm uses the fuzzy system to dynamically calculate a value 

of the Inertia Weight parameter during the search process to find better 

solutions. After carrying out experiments on a well-known benchmark for 

large-scale optimization, the proposed approach provides a competitive 

performance.  

Keywords: Fuzzy logic, Particle Swarm Optimization, convergence control, 

adaptive inertia weight. 

1 Introduction 

Particle Swarm Optimization (PSO) is an algorithm based on Swarm Intelligence 

theory, and inspired by the social behavior of certain animals when they interact with 

another of their same species to achieve a common goal. It was proposed by Kennedy 

and Eberhart in 1995 and was developed to emulate the cooperative work in bird 

flocks [1] [2]. Since its original version, PSO has attracted the researchers interest 

mainly due to its competitive performance in complex search spaces and also its 

simplicity to code it. However, as other swarm intelligence algorithms, PSO may 

suffer from premature convergence, especially in complex or large-scale problems 

[20] [15]. One of the main reasons for this undesired behavior is due to the rapid

movement of particles when exchanging information, leading to a low diversity of the

swarm in those initial iterations. In recent years, several techniques have been

proposed to avoid PSO’s premature convergence [3]. In the literature, fuzzy logic has

been successfully used to improve the performance of swarm intelligence algorithms.

Some published works that were of interest for this work are the following: Olivas et

al. [7] [8] [14] implemented PSO and ant colony optimizer (ACO), Pérez et al. [6] the

Bat algorithm, Sombra et al. [9] the gravitational search algorithm, Valdez et al. [10]

and [11] a set of algorithms such as PSO, genetic algorithm (GA), and ant colony

optimization (ACO), Norouzzadeh et al. [12] used PSO, Ochoa et al. [13] adopted

differential evolution (DE) and Kumar et al. [16] PSO and other meta-heuristics.

However, most of the before mentioned references solved small-scale problems (less

than 500 dimensions). On the other hand, large-scale global optimization (LSGO)

problems are challenging because the search space grows exponentially as the number

of dimensions increases.

Motivated by the above mentioned, in this paper we propose two variants of the PSO

algorithm using a fuzzy logic system to solve LSGO problems seeking high-quality

solutions with a low computational cost. A set of popular benchmark problems widely

used in the literature is solved in this work as they represent different characteristics

of real-world instances [17] [20]. Another contribution of the proposal is that two
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blurred systems are designed to control the inertia weight with a different approach. 

The iteration number and the swarm diversity are defined as input variables, while the 

inertia weight and a variable for resetting a part of the swarm are the output variables. 

Both, input and output variables are combined into two fuzzy systems designed 

exclusively to handle LSGO. A comparative study between the systems is then carried 

out to analyze the quality of the results.  

This work is organized as follows: Section 2 presents the Inertia weight PSO 

algorithm and the Constriction Factor approach. In Section 3, the fuzzy system and its 

fundamental elements are defined. Section 4 details the parameter control based on 

fuzzy logic for the PSO. In Section 5 the experiments are conducted. Finally, Section 

6 presents the conclusions obtained. 

2   Particle Swarm Optimization 

The PSO algorithm is initialized with a set of randomly generated candidate solutions, 

called particles, within a D-dimensional search space. Each particle 𝑥𝑖(𝑡) represents a

position within the search space, and has its assigned velocity vector 𝑣𝑖(𝑡) and its best

position 𝑝𝑏𝑒𝑠𝑡𝑖
(𝑡) found so far. The best particle of the whole swarm, based on the

fitness function value, is called (𝑔𝑏𝑒𝑠𝑡(𝑡)). A particle flies to a new position by using

Equation (1), called velocity update, and Equation (2), known as flight operator: 

𝑣𝑖(𝑡 + 1) = 𝑤 ∗ 𝑣𝑖(𝑡) + 𝑐1 ∗ 𝑟1 ∗ (𝑝𝑏𝑒𝑠𝑡𝑖
(𝑡) − 𝑥𝑖(𝑡)) + 𝑐2 ∗ 𝑟2

∗ (𝑔𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡))

(1) 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (2); 

where 𝑣𝑖 is the velocity of particle 𝑖, 𝑥𝑖 is the current position of particle 𝑖;  𝑟1 and 𝑟2

are random numbers with uniform distribution between [0,1]; 𝑝𝑏𝑒𝑠𝑡𝑖
 is the best

position found by particle 𝑖; and 𝑔𝑏𝑒𝑠𝑡𝑖
 is the best particle of the swarm. The

cognitive and social learning coefficients are represented by 𝑐1 and 𝑐2, respectively.

These values are generally constant, but can also be dynamic. 𝑤 is a static or dynamic 

inertia weight [1] [2] [15]. The incorporation of 𝑤 in the original PSO algorithm 

allows a better control of the current particle velocities. With this inertia weight, the 

exploration and exploitation capabilities can be influenced. A higher inertia weight 

facilitates exploration, while a lower inertia weight favors exploitation. An 

appropriate 𝑤-value provides a balance in the search for the best solutions and helps 

to reduce the computational cost measured by the number of solution evaluations 

[15].  

Another approach used in PSO variants is the constriction factor proposed by Clerc 

[19]. The velocity equation is defined in Equation (3): 

𝑣𝑖(𝑡 + 1) = 𝑋 ∗ 𝑣𝑖(𝑡) + 𝑐1 ∗ 𝑟1 ∗ (𝑝𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡)) + 𝑐2 ∗ 𝑟2

∗ (𝑔𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡))

(3) 

and 

𝑋 =
2

|2−𝜑−√𝜑2−4𝜑|
, 

where  𝜑 = 𝑐1 + 𝑐2 y 𝜑 ≥ 4. The parameter 𝑋 controls the extent of exploration and

exploitation. A 𝑋 value close to 0 indicates a high degree of exploitation, whereas a 

value close to 1, a higher degree of exploration is obtained. This value can be constant 

or can change through the search process, usually with high values in the first 

iterations and low values late in the search. 
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3   Fuzzy Logic System 

Fuzzy Logic (FL) is based on the fuzzy set theory proposed by Lotfi Zadeh in 

1965. This approach forms the basis for approximate human reasoning using fuzzy if-

then rules as a tool that allows each object to be assigned a degree of membership in 

one class or another in a smooth and flexible way [4] [5]. Fuzzy inference is the 

process of obtaining an output value for an input value using fuzzy set theory. There 

are two types: the Mamdani model and the TSK model (Takagi, Sugeno and Kang). 

The one proposed by Mamdani in 1975, could be described in four main steps. The 

first step is the Fuzzification of Input Variables, which consists of taking the values of 

the variables and determining the degree of membership in the fuzzy sets. The next 

step is the rule evaluation. The usual knowledge representation in fuzzy terms is done 

by IF A THEN B rules, where A is the antecedent and B the consequent. If a rule has 

multiple antecedents, the AND or OR operator is used to obtain a single number that 

represents the result of the evaluation. This result is applied to the consequent by 

means of an implication operator. The output aggregation consists in the unification 

of all the output membership functions, combining them to obtain a single fuzzy set. 

Finally, defuzzification is the final result of the system [21]. 

4   Control of Parameters through Fuzzy Logic 

A fuzzy system needs to know the condition of the swarm in order to detect swarm 

stagnation. Inspired by [6] [7] [8] [10] [11] [14], the first input variable is Iteration, 

defined in Equation (4) and its value varies between 0 and 1. It can be understood as 

the progress of the optimization process. 

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

(4) 

The second input variable is Diversity. Diversity measures the distances between 

the particles (𝑥𝑖) with respect to the best particle (𝐺𝑏𝑒𝑠𝑡) of the swarm at each

generation. It is calculated using the Euclidean Distance defined in Equation (5), 

where ns is the number of particles and nx is a dimension of particle i. The variables 

𝑚𝑖𝑛𝐷𝑖𝑣 and 𝑚𝑎𝑥𝐷𝑖𝑣 represent the minimum and maximum diversity respectively 

and are used to normalize diversity at each generation. That is, when 𝐷𝑖𝑣𝑁𝑜𝑟𝑚 has a 

value close to 0 the diversity will be low, otherwise, the diversity will be high [7] [8]. 

𝐷𝑖𝑣𝑒𝑟 =
1

𝑛𝑠
∑ √∑(𝑥𝑖_𝑑 − 𝐺𝑏𝑒𝑠𝑡_𝑑)

2
𝑛𝑥

𝑑=1

𝑛𝑠

𝑖=1

𝐷𝑖𝑣𝑁𝑜𝑟𝑚 = {
0,   when  𝑚𝑖𝑛𝐷𝑖𝑣 = 𝑚𝑎𝑥𝐷𝑖𝑣
𝐷𝑖𝑣𝑒𝑟 − 𝑚𝑖𝑛𝐷𝑖𝑣

𝑚𝑎𝑥𝐷𝑖𝑣 − 𝑚𝑖𝑛𝑑𝑖𝑣
,                              otherwise

(5) 

Both, Iteration and Diversity variables have been used in different approaches [6] 

[7] [8] [10] [11] [14], and have showed to be suitable indicators for examining swarm

conditions during the search process. Therefore, they are adopted in this work.

The objective of the fuzzy system is to control the Inertia Weight to improve 

particle velocities. Shi et al. [15] use an inertia weight (𝑤) that decreases linearly 

during the iterations and achieved an improved performance in several applications. 

Eberhart et al. [18] show that 𝑤 can be configured to be equivalent to the constriction 

factor equations, then defining the constriction factor as a special case of the inertia 

weight. Based on these works, an adaptive inertia weight with a constriction factor 

approach is proposed as an output variable, where 𝑐1   and 𝑐2  will be constant and

𝑐1 + 𝑐2 ≥ 4. The velocity would then be defined by Equation (6):
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𝑣𝑖(𝑡 + 1) = 𝒘 ∗ [𝑣𝑖(𝑡) + 𝑐1 ∗ 𝑟1 ∗ (𝑝𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡)) + 𝑐2 ∗ 𝑟2

∗ (𝑔𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡))]

(6) 

the velocity will be limited by the value of 𝑤 and its value will be defined between 

[0,1].  

Finally, there is a second output variable for the fuzzy system, called sigma. This 

variable is the swarm ratio for the reset of randomly selected particles. This is 

important because it can potentiate 𝑤 if, for example, the population starts with a low 

diversity. Therefore, Diversity as well as Iteration influence the value that sigma can 

take. Its maximum proportion value must be chosen carefully. Otherwise the 

algorithm may never converge. A sigma value is empirically defined between [0, 0.2]. 

Fig. 1 shows the pseudocode of the implementation of the sigma variable. 

particles=permute(numSwarm) 

Numpartic=Sigma*numSwarm  

 For i=1:Numpartic 

  Pos(particles(i)) 

  Reset Pos 

 End 

Fig. 1. Implementation of the sigma variable 

The membership functions of the fuzzy input and output variables are determined 

according to previous experiments. In Fig. 2-5 the membership functions for each one 

of the fuzzy variables are shown.  

Both fuzzy systems are of Mamdani type and are ideal for this type of control [6] 

[7] [8] [10] [11] [14]. The first fuzzy system is called FPSO1 and the second one as

FPSO2. Each one of the systems is detailed below.

Fig. 2. Input variable: Iteration Fig. 3. Input variable: Diversity 

Fig. 4. Output variable:  inertia weight 

Fig. 5. Output variable: Sigma 
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3.1   FPSO1 

The first variant proposed, called FPSO1, will have two input variables and one 

output variable, see Fig. 6. The input variable are Iteration and Diversity according to 

Figs. 2 and 3. 

Fig. 6. First Fuzzy System FPSO1 

The rules of FPSO1 can be seen in Fig. 7. In general, it is observed that when 

diversity is low in the initial iterations, the value of the inertia weight must be high so 

as to help exploring more promising areas. On the other hand, if the diversity is low in 

the final iterations, the inertia weight must have a very low value to favor exploitation 

of the area already found. The value assigned for the inertia weight is obtained by the 

centroid method. 

1. If (iteration is low) and (diversity is low) then (inertiaWeight is veryHigh)

2. If (iteration is medium) and (diversity is low) then (inertiaWeight is medium)

3. If (iteration is high) and (diversity is low) then (inertiaWeight is veryLow)

4. If (iteration is low) and (diversity is medium) then (inertiaWeight is high)

5. If (iteration is medium) and (diversity is medium) then (inertiaWeight is medium)

6. If (iteration is high) and (diversity is medium) then (inertiaWeight is veryLow)

7. If (iteration is low) and (diversity is high) then (inertiaWeight is veryHigh)

8. If (iteration is medium) and (diversity is high) then (inertiaWeight is low)

9. If (iteration is high) and (diversity is high) then (inertiaWeight is veryLow)

Fig. 7. Rule for fuzzy system FPSO1 

3.2   FPSO2 

The second proposal, called FPSO2, differs from the previous one in the fact that it 

has an additional output variable. This variable is Sigma as can be seen in Fig. 5. The 

rest of the variables are the same defined in Fig. 2, 3, and 4. Therefore, FPSO2 is 

defined as shown in Fig. 8 and the rules are shown in Fig. 9. The value assigned for 

the output variables (inertia weight and sigma) are obtained by the centroid method. 

Fig. 8. Second fuzzy system FPSO2 

1. If (iteration is low) and (diversity is low) then (inertiaWeight is veryHigh) (sigma is veryHigh)

2. If (iteration is medium) and (diversity is low) then (inertiaWeight is medium) (sigma is low)

3. If (iteration is high) and (diversity is low) then (inertiaWeight is veryLow) (sigma is veryLow)

4. If (iteration is low) and (diversity is medium) then (inertiaWeight is high) (sigma is high)

5. If (iteration is medium) and (diversity is medium) then (inertiaWeight is medium) (sigma is

medium)
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6. If (iteration is high) and (diversity is medium) then (inertiaWeight is veryLow) (sigma is veryLow)

7. If (iteration is low) and (diversity is high) then (inertiaWeight is veryHigh) (sigma is high)

8. If (iteration is medium) and (diversity is high) then (inertiaWeight is medium) (sigma is low)

9. If (iteration is high) and (diversity is high) then (inertiaWeight is veryLow) (sigma is veryLow)

Fig. 9. Rule for fuzzy system FPSO2 

5   PSO variants using FPSO1 and FPSO2 

The simple PSO algorithm is combined with the fuzzy systems to generate the 

following variants:  

• FuzzyPSO1: This variant is built with the simple PSO algorithm and the fuzzy

system FPSO1 and its pseudocode is shown in Fig. 10.

Swarm Initialization 

Repeat 

  calculate_Iteration Eq. (4) 

  calculate_Diversity Eq. (5) 

  Fis=FPSO1(Iteration,Diversity) 

  Update velocity Eq. (6) 

  Update position Eq. (2) 

  Update pbest 

  Update gbest 

Until Maximum_iteration 

Fig. 10. Pseudocode of the FuzzyPSO1 algorithm 

• FuzzyPSO2: the simple PSO algorithm is combined with the fuzzy system FPSO2

and the pseudocode of this variant can be seen in Fig. 11.

Swarm Initialization 

Repeat 

  calculate_Iteration Eq.(4) 

  calculate_Diversity Eq.(5) 

  Fis=FPSO2(Iteration,Diversity) 

  Reinitialize particles with sigma  

  Update velocity Eq. (6) 

  Update position Eq. (2) 

  Update pbest 

  Update gbest 

Until Maximum_iteration 

Fig. 11. Pseudocode of the FuzzyPSO2 algorithm 

6   Experiments 

Table 1 presents seven functions for large-scale global optimization, all of them 

can scale to different dimensions. 

Table 1.  Large-scale benchmark problems 

Function Limits Optimum 
F1 

unimodal 
Shifted Sphere Function 𝑥 ∈ [−100,100] 0 

F2 Shifted Schwefel’s Problem 2.21 𝑥 ∈ [−100,100] 0 

F3 

multimodal 

Shifted Rosenbrock’s Function 𝑥 ∈ [−100,100] 0 

F4 Shifted Rastrigin’s Function 𝑥 ∈ [−5,5] 0 

F5 Shifted Griewank’s Function 𝑥 ∈ [−600,600] 0 

F6 Shifted Ackley’s Function 𝑥 ∈ [−32,32] 0 

F7 FastFractal “DoubleDip” Function 𝑥 ∈ [−1,1] unknown 
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6.1   Experimental Results 

The comparisons of the simple PSO algorithm, and the FuzzyPSO1 and 

FuzzyPSO1 proposals were performed with the functions defined in Table 1 for 500 

(500 -D) and 1000 (1000-D) dimensions. The following configurations were 

considered: population size 50 for 500-D and 100 for 1000-D, based on [19] the 

cognitive learning coefficient 𝑐1=2, social learning coefficient 𝑐2=3 (𝑐1+𝑐2>4),

maximum velocity equal to the maximum value of the variables. There were 

5E+03*D fitness evaluations (FEs) and 25 runs for each function as suggested in [20] 

and the best and mean statistical values were obtained and the better one is 

highlighted with gray background. The results of the seven test functions in 500-D 

and 1000-D are shown in Table 2 and representative convergence plots based on the 

median run of the three algorithms are presented in Fig. 12.  

Table 2.  Experimental results of F1-F7 in 500-D and 1000-D (mean (best)) 
Fun D PSO FuzzyPSO1 FuzzyPSO2 

F1 
500 8,930E+05(7,981E+05) 3,132E+05(2,6E+05) 2,901E+04 (2,1E+04) 

1000 3,276E+06(2,4E+06) 1,155E+06(1,0E+06) 9,227E+04 (7,6E+04) 

F2 
500 1,535E+02 (1,5E+02) 1,350E+02(1,3E+02) 9,491E+01(9,5E+01) 

1000 1,724E+02 (1,7E+02) 1,522E+02(1, 5E+02) 9,535E+01(9,5E+01) 

F3 
500 5,318E+11(4,6E+11) 6,483E+10(3,6E+10) 1,198E+03(9,0E+02) 

1000 4,188E+12(2,3E+12) 5,726E+11(4,6E+11) 3,379E+03(2,7E+03) 

F4 
500 7,832E+03(7,4E+03) 5,338E+03(4,6E+03) 3,467E+03(2,6E+03) 

1000 1,949E+04(1,7E+04) 1,427E+04(1,3E+04) 9,231E+03(8,1E+03) 

F5 
500 8,224E+03(7,3E+03) 2,723E+03(2,2E+03) 1,989E+02(1,5E+02) 

1000 2,675E+04(2,3E+04) 1,015E+04(8,7E+03) 7,828E+02(7,0E+02) 

F6 
500 2,080E+01(2,0E+01) 2,041E+01(2,0E+01) 1,775E+01(1,7E+01) 

1000 2,144E+01(2,1E+01) 2,070E+01(2,1E+01) 1,958E+01(1,9E+01) 

F7 
500 -3,514E+03(-3,6E+03) -4,808E+03(-5,0E+03) -4,943E+03(-5,6E+03)

1000 -6,646E+03(-6,8E+03) -8,929E+03(-9,3E+03) -9,316E+03(-1,0E+04)

The Wilcoxon Signed Rank test [22] was computed to determine if there are 

significant differences among the proposed algorithms. The results of this test are 

shown in Table 3 and were calculated using a significance level (α) of 0.05. The null 

hypothesis (H0) indicates that there is no significant difference between the "mean" 

values of the compared algorithms. While the alternative hypothesis is (H1) indicates 

that if there are significant differences between the “mean” values of the compared 

algorithms.  Three comparisons were made: (1) FuzzyPSO1 with PSO, (2) FuzzyPSO2 

with PSO, and (3) FuzzyPSO1 with FuzzyPSO2.  

Table 3.  Wilcoxon test results with α=0.05 

Algorithms D p-value Decision 

FuzzyPSO1 / PSO 
500 0.01563 H0 is rejected 

1000 0.01563 H0 is rejected 

FuzzyPSO2 / PSO 
500 0.01563 H0 is rejected 

1000 0.01563 H0 is rejected 

FuzzyPSO2 /FuzzyPSO1 
500 0.01563 H0 is rejected 

1000 0.01563 H0 is rejected 

PSO with FuzzyPSO1: FuzzyPSO1 performed significantly better against PSO. 

Table 2 shows that the results of FuzzyPSO1 are superior in all functions. However, 

both algorithms were affected by dimensionality. The graphs in Fig. 12 show that the 

convergence of FuzzyPSO1 is better and faster than PSO.  

PSO with FuzzyPSO2: The FuzzyPSO2 variant outperforms simple PSO in the 

different types of high dimensionality problems. In terms of scalability from 500-D to 

1000-D, FuzzyPSO2 is much less affected than PSO. The convergence of FuzzyPSO2 

is better in both unimodal (F1-F2) and multimodal (F3-F7) functions (see Fig. 12).  

FuzzyPSO1 with FuzzyPSO2: The performance of FuzzyPSO2 is statistically better 

than that of FuzzyPSO1 in 500-D and 1000-D in all 7 test functions. FuzzyPSO2 

converges faster and better on test problems F1, F2, F3, F5, F6. However, in F7 both, 
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500-D and 1000-D, FuzzyPSO2 seems to get trapped in local optima in the first

cycles, following a convergence to better solutions late in the search. F7 is a complex

multimodal function that represents many real-world problems, and both variants had

a similar convergence, as seen in Fig.12.

Fig. 12. F1-F7 representative convergence plots at 1000-D and 500-D based on median run. 
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7. Conclusions

In this paper two variants named FuzzyPSO1 and FuzzyPSO2 were presented to solve 

large-scale global optimization problems. The original PSO was combined with the 

FPSO1 fuzzy system, while the original PSO was merged with the FPSO2 fuzzy 

system. These systems dynamically manage the inertial weight according to the 

number of iterations and population diversity. They differ in the fact that FPSO2 

restarts a proportion of the population if the diversity is low in the first iterations and 

that proportion decreases as the iterations increase. It was shown that the FuzzyPSO2 

variant had a better performance in all test functions compared to FuzzyPSO1 and a 

simple PSO. However, in the case of F1 and F3 functions their performance is not yet 

the expected, and more work is needed to improve the results. Large-scale global 

optimization problems are challenging and finding the optimal one is not an easy task. 

However, the results obtained in this initial work are encouraging and suggest that 

fuzzy concepts can improve the scalability of PSO. As future work we will focus on 

the performance in unimodal functions and we will also test our approach in large-

scale constrained optimization problems. 
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