
Particle Swarm Optimization with Adaptive Inertia

Weight using Fuzzy Logic for Large-Scale Problems

Fabiola-Patricia Paza,1, Guillermo Leguizamóna,2, Efrén Mezura-Montesb,3

aLIDIC, Universidad Nacional de San Luis, Ejército de Los Andes 950, 5700, San Luis,

ARGENTINA - CONICET
bArtificial Intelligence Research Center, University of Veracruz, Sebastian Camacho 5,

Centro, Xalapa, Veracruz, 91000, MEXICO
1fabyppaz@gmail.com.ar, 2legui@unsl.edu.ar, 3emezura@uv.mx

Abstract. In this paper an alternative approach is proposed to improve the

convergence of Particle Swarm Optimization (PSO) algorithm by adapting the

inertial weight parameter with a fuzzy logic system to solve large-scale

optimization problems. The PSO algorithm is a population-based metaheuristic

inspired by the social behavior of birds, and it has been applied to numerous

optimization problems successfully. However, one of its main disadvantages is

the decaying performance when applied to complex and large-scale problems.

The proposed algorithm uses the fuzzy system to dynamically calculate a value

of the Inertia Weight parameter during the search process to find better

solutions. After carrying out experiments on a well-known benchmark for

large-scale optimization, the proposed approach provides a competitive

performance.

Keywords: Fuzzy logic, Particle Swarm Optimization, convergence control,

adaptive inertia weight.

1 Introduction

Particle Swarm Optimization (PSO) is an algorithm based on Swarm Intelligence

theory, and inspired by the social behavior of certain animals when they interact with

another of their same species to achieve a common goal. It was proposed by Kennedy

and Eberhart in 1995 and was developed to emulate the cooperative work in bird

flocks [1] [2]. Since its original version, PSO has attracted the researchers interest

mainly due to its competitive performance in complex search spaces and also its

simplicity to code it. However, as other swarm intelligence algorithms, PSO may

suffer from premature convergence, especially in complex or large-scale problems

[20] [15]. One of the main reasons for this undesired behavior is due to the rapid

movement of particles when exchanging information, leading to a low diversity of the

swarm in those initial iterations. In recent years, several techniques have been

proposed to avoid PSO’s premature convergence [3]. In the literature, fuzzy logic has

been successfully used to improve the performance of swarm intelligence algorithms.

Some published works that were of interest for this work are the following: Olivas et

al. [7] [8] [14] implemented PSO and ant colony optimizer (ACO), Pérez et al. [6] the

Bat algorithm, Sombra et al. [9] the gravitational search algorithm, Valdez et al. [10]

and [11] a set of algorithms such as PSO, genetic algorithm (GA), and ant colony

optimization (ACO), Norouzzadeh et al. [12] used PSO, Ochoa et al. [13] adopted

differential evolution (DE) and Kumar et al. [16] PSO and other meta-heuristics.

However, most of the before mentioned references solved small-scale problems (less

than 500 dimensions). On the other hand, large-scale global optimization (LSGO)

problems are challenging because the search space grows exponentially as the number

of dimensions increases.

Motivated by the above mentioned, in this paper we propose two variants of the PSO

algorithm using a fuzzy logic system to solve LSGO problems seeking high-quality

solutions with a low computational cost. A set of popular benchmark problems widely

used in the literature is solved in this work as they represent different characteristics

of real-world instances [17] [20]. Another contribution of the proposal is that two

61ISBN 978-987-4417-90-9

CACIC 2020
DIIT UNLaM / Red UNCI

mailto:fabyppaz@gmail.com.ar
mailto:legui@unsl.edu.ar

blurred systems are designed to control the inertia weight with a different approach.

The iteration number and the swarm diversity are defined as input variables, while the

inertia weight and a variable for resetting a part of the swarm are the output variables.

Both, input and output variables are combined into two fuzzy systems designed

exclusively to handle LSGO. A comparative study between the systems is then carried

out to analyze the quality of the results.

This work is organized as follows: Section 2 presents the Inertia weight PSO

algorithm and the Constriction Factor approach. In Section 3, the fuzzy system and its

fundamental elements are defined. Section 4 details the parameter control based on

fuzzy logic for the PSO. In Section 5 the experiments are conducted. Finally, Section

6 presents the conclusions obtained.

2 Particle Swarm Optimization

The PSO algorithm is initialized with a set of randomly generated candidate solutions,

called particles, within a D-dimensional search space. Each particle 𝑥𝑖(𝑡) represents a

position within the search space, and has its assigned velocity vector 𝑣𝑖(𝑡) and its best

position 𝑝𝑏𝑒𝑠𝑡𝑖
(𝑡) found so far. The best particle of the whole swarm, based on the

fitness function value, is called (𝑔𝑏𝑒𝑠𝑡(𝑡)). A particle flies to a new position by using

Equation (1), called velocity update, and Equation (2), known as flight operator:

𝑣𝑖(𝑡 + 1) = 𝑤 ∗ 𝑣𝑖(𝑡) + 𝑐1 ∗ 𝑟1 ∗ (𝑝𝑏𝑒𝑠𝑡𝑖
(𝑡) − 𝑥𝑖(𝑡)) + 𝑐2 ∗ 𝑟2

∗ (𝑔𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡))

(1)

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (2);

where 𝑣𝑖 is the velocity of particle 𝑖, 𝑥𝑖 is the current position of particle 𝑖; 𝑟1 and 𝑟2

are random numbers with uniform distribution between [0,1]; 𝑝𝑏𝑒𝑠𝑡𝑖
 is the best

position found by particle 𝑖; and 𝑔𝑏𝑒𝑠𝑡𝑖
 is the best particle of the swarm. The

cognitive and social learning coefficients are represented by 𝑐1 and 𝑐2, respectively.

These values are generally constant, but can also be dynamic. 𝑤 is a static or dynamic

inertia weight [1] [2] [15]. The incorporation of 𝑤 in the original PSO algorithm

allows a better control of the current particle velocities. With this inertia weight, the

exploration and exploitation capabilities can be influenced. A higher inertia weight

facilitates exploration, while a lower inertia weight favors exploitation. An

appropriate 𝑤-value provides a balance in the search for the best solutions and helps

to reduce the computational cost measured by the number of solution evaluations

[15].

Another approach used in PSO variants is the constriction factor proposed by Clerc

[19]. The velocity equation is defined in Equation (3):

𝑣𝑖(𝑡 + 1) = 𝑋 ∗ 𝑣𝑖(𝑡) + 𝑐1 ∗ 𝑟1 ∗ (𝑝𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡)) + 𝑐2 ∗ 𝑟2

∗ (𝑔𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡))

(3)

and

𝑋 =
2

|2−𝜑−√𝜑2−4𝜑|
,

where 𝜑 = 𝑐1 + 𝑐2 y 𝜑 ≥ 4. The parameter 𝑋 controls the extent of exploration and

exploitation. A 𝑋 value close to 0 indicates a high degree of exploitation, whereas a

value close to 1, a higher degree of exploration is obtained. This value can be constant

or can change through the search process, usually with high values in the first

iterations and low values late in the search.

62ISBN 978-987-4417-90-9

CACIC 2020
DIIT UNLaM / Red UNCI

3 Fuzzy Logic System

Fuzzy Logic (FL) is based on the fuzzy set theory proposed by Lotfi Zadeh in

1965. This approach forms the basis for approximate human reasoning using fuzzy if-

then rules as a tool that allows each object to be assigned a degree of membership in

one class or another in a smooth and flexible way [4] [5]. Fuzzy inference is the

process of obtaining an output value for an input value using fuzzy set theory. There

are two types: the Mamdani model and the TSK model (Takagi, Sugeno and Kang).

The one proposed by Mamdani in 1975, could be described in four main steps. The

first step is the Fuzzification of Input Variables, which consists of taking the values of

the variables and determining the degree of membership in the fuzzy sets. The next

step is the rule evaluation. The usual knowledge representation in fuzzy terms is done

by IF A THEN B rules, where A is the antecedent and B the consequent. If a rule has

multiple antecedents, the AND or OR operator is used to obtain a single number that

represents the result of the evaluation. This result is applied to the consequent by

means of an implication operator. The output aggregation consists in the unification

of all the output membership functions, combining them to obtain a single fuzzy set.

Finally, defuzzification is the final result of the system [21].

4 Control of Parameters through Fuzzy Logic

A fuzzy system needs to know the condition of the swarm in order to detect swarm

stagnation. Inspired by [6] [7] [8] [10] [11] [14], the first input variable is Iteration,

defined in Equation (4) and its value varies between 0 and 1. It can be understood as

the progress of the optimization process.

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

(4)

The second input variable is Diversity. Diversity measures the distances between

the particles (𝑥𝑖) with respect to the best particle (𝐺𝑏𝑒𝑠𝑡) of the swarm at each

generation. It is calculated using the Euclidean Distance defined in Equation (5),

where ns is the number of particles and nx is a dimension of particle i. The variables

𝑚𝑖𝑛𝐷𝑖𝑣 and 𝑚𝑎𝑥𝐷𝑖𝑣 represent the minimum and maximum diversity respectively

and are used to normalize diversity at each generation. That is, when 𝐷𝑖𝑣𝑁𝑜𝑟𝑚 has a

value close to 0 the diversity will be low, otherwise, the diversity will be high [7] [8].

𝐷𝑖𝑣𝑒𝑟 =
1

𝑛𝑠
∑ √∑(𝑥𝑖_𝑑 − 𝐺𝑏𝑒𝑠𝑡_𝑑)

2
𝑛𝑥

𝑑=1

𝑛𝑠

𝑖=1

𝐷𝑖𝑣𝑁𝑜𝑟𝑚 = {
0, when 𝑚𝑖𝑛𝐷𝑖𝑣 = 𝑚𝑎𝑥𝐷𝑖𝑣
𝐷𝑖𝑣𝑒𝑟 − 𝑚𝑖𝑛𝐷𝑖𝑣

𝑚𝑎𝑥𝐷𝑖𝑣 − 𝑚𝑖𝑛𝑑𝑖𝑣
, otherwise

(5)

Both, Iteration and Diversity variables have been used in different approaches [6]

[7] [8] [10] [11] [14], and have showed to be suitable indicators for examining swarm

conditions during the search process. Therefore, they are adopted in this work.

The objective of the fuzzy system is to control the Inertia Weight to improve

particle velocities. Shi et al. [15] use an inertia weight (𝑤) that decreases linearly

during the iterations and achieved an improved performance in several applications.

Eberhart et al. [18] show that 𝑤 can be configured to be equivalent to the constriction

factor equations, then defining the constriction factor as a special case of the inertia

weight. Based on these works, an adaptive inertia weight with a constriction factor

approach is proposed as an output variable, where 𝑐1 and 𝑐2 will be constant and

𝑐1 + 𝑐2 ≥ 4. The velocity would then be defined by Equation (6):

63ISBN 978-987-4417-90-9

CACIC 2020
DIIT UNLaM / Red UNCI

𝑣𝑖(𝑡 + 1) = 𝒘 ∗ [𝑣𝑖(𝑡) + 𝑐1 ∗ 𝑟1 ∗ (𝑝𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡)) + 𝑐2 ∗ 𝑟2

∗ (𝑔𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡))]

(6)

the velocity will be limited by the value of 𝑤 and its value will be defined between

[0,1].

Finally, there is a second output variable for the fuzzy system, called sigma. This

variable is the swarm ratio for the reset of randomly selected particles. This is

important because it can potentiate 𝑤 if, for example, the population starts with a low

diversity. Therefore, Diversity as well as Iteration influence the value that sigma can

take. Its maximum proportion value must be chosen carefully. Otherwise the

algorithm may never converge. A sigma value is empirically defined between [0, 0.2].

Fig. 1 shows the pseudocode of the implementation of the sigma variable.

particles=permute(numSwarm)

Numpartic=Sigma*numSwarm

 For i=1:Numpartic

 Pos(particles(i))

 Reset Pos

 End

Fig. 1. Implementation of the sigma variable

The membership functions of the fuzzy input and output variables are determined

according to previous experiments. In Fig. 2-5 the membership functions for each one

of the fuzzy variables are shown.

Both fuzzy systems are of Mamdani type and are ideal for this type of control [6]

[7] [8] [10] [11] [14]. The first fuzzy system is called FPSO1 and the second one as

FPSO2. Each one of the systems is detailed below.

Fig. 2. Input variable: Iteration Fig. 3. Input variable: Diversity

Fig. 4. Output variable: inertia weight

Fig. 5. Output variable: Sigma

64ISBN 978-987-4417-90-9

CACIC 2020
DIIT UNLaM / Red UNCI

3.1 FPSO1

The first variant proposed, called FPSO1, will have two input variables and one

output variable, see Fig. 6. The input variable are Iteration and Diversity according to

Figs. 2 and 3.

Fig. 6. First Fuzzy System FPSO1

The rules of FPSO1 can be seen in Fig. 7. In general, it is observed that when

diversity is low in the initial iterations, the value of the inertia weight must be high so

as to help exploring more promising areas. On the other hand, if the diversity is low in

the final iterations, the inertia weight must have a very low value to favor exploitation

of the area already found. The value assigned for the inertia weight is obtained by the

centroid method.

1. If (iteration is low) and (diversity is low) then (inertiaWeight is veryHigh)

2. If (iteration is medium) and (diversity is low) then (inertiaWeight is medium)

3. If (iteration is high) and (diversity is low) then (inertiaWeight is veryLow)

4. If (iteration is low) and (diversity is medium) then (inertiaWeight is high)

5. If (iteration is medium) and (diversity is medium) then (inertiaWeight is medium)

6. If (iteration is high) and (diversity is medium) then (inertiaWeight is veryLow)

7. If (iteration is low) and (diversity is high) then (inertiaWeight is veryHigh)

8. If (iteration is medium) and (diversity is high) then (inertiaWeight is low)

9. If (iteration is high) and (diversity is high) then (inertiaWeight is veryLow)

Fig. 7. Rule for fuzzy system FPSO1

3.2 FPSO2

The second proposal, called FPSO2, differs from the previous one in the fact that it

has an additional output variable. This variable is Sigma as can be seen in Fig. 5. The

rest of the variables are the same defined in Fig. 2, 3, and 4. Therefore, FPSO2 is

defined as shown in Fig. 8 and the rules are shown in Fig. 9. The value assigned for

the output variables (inertia weight and sigma) are obtained by the centroid method.

Fig. 8. Second fuzzy system FPSO2

1. If (iteration is low) and (diversity is low) then (inertiaWeight is veryHigh) (sigma is veryHigh)

2. If (iteration is medium) and (diversity is low) then (inertiaWeight is medium) (sigma is low)

3. If (iteration is high) and (diversity is low) then (inertiaWeight is veryLow) (sigma is veryLow)

4. If (iteration is low) and (diversity is medium) then (inertiaWeight is high) (sigma is high)

5. If (iteration is medium) and (diversity is medium) then (inertiaWeight is medium) (sigma is

medium)

65ISBN 978-987-4417-90-9

CACIC 2020
DIIT UNLaM / Red UNCI

6. If (iteration is high) and (diversity is medium) then (inertiaWeight is veryLow) (sigma is veryLow)

7. If (iteration is low) and (diversity is high) then (inertiaWeight is veryHigh) (sigma is high)

8. If (iteration is medium) and (diversity is high) then (inertiaWeight is medium) (sigma is low)

9. If (iteration is high) and (diversity is high) then (inertiaWeight is veryLow) (sigma is veryLow)

Fig. 9. Rule for fuzzy system FPSO2

5 PSO variants using FPSO1 and FPSO2

The simple PSO algorithm is combined with the fuzzy systems to generate the

following variants:

• FuzzyPSO1: This variant is built with the simple PSO algorithm and the fuzzy

system FPSO1 and its pseudocode is shown in Fig. 10.

Swarm Initialization

Repeat

 calculate_Iteration Eq. (4)

 calculate_Diversity Eq. (5)

 Fis=FPSO1(Iteration,Diversity)

 Update velocity Eq. (6)

 Update position Eq. (2)

 Update pbest

 Update gbest

Until Maximum_iteration

Fig. 10. Pseudocode of the FuzzyPSO1 algorithm

• FuzzyPSO2: the simple PSO algorithm is combined with the fuzzy system FPSO2

and the pseudocode of this variant can be seen in Fig. 11.

Swarm Initialization

Repeat

 calculate_Iteration Eq.(4)

 calculate_Diversity Eq.(5)

 Fis=FPSO2(Iteration,Diversity)

 Reinitialize particles with sigma

 Update velocity Eq. (6)

 Update position Eq. (2)

 Update pbest

 Update gbest

Until Maximum_iteration

Fig. 11. Pseudocode of the FuzzyPSO2 algorithm

6 Experiments

Table 1 presents seven functions for large-scale global optimization, all of them

can scale to different dimensions.

Table 1. Large-scale benchmark problems

Function Limits Optimum
F1

unimodal
Shifted Sphere Function 𝑥 ∈ [−100,100] 0

F2 Shifted Schwefel’s Problem 2.21 𝑥 ∈ [−100,100] 0

F3

multimodal

Shifted Rosenbrock’s Function 𝑥 ∈ [−100,100] 0

F4 Shifted Rastrigin’s Function 𝑥 ∈ [−5,5] 0

F5 Shifted Griewank’s Function 𝑥 ∈ [−600,600] 0

F6 Shifted Ackley’s Function 𝑥 ∈ [−32,32] 0

F7 FastFractal “DoubleDip” Function 𝑥 ∈ [−1,1] unknown

66ISBN 978-987-4417-90-9

CACIC 2020
DIIT UNLaM / Red UNCI

6.1 Experimental Results

The comparisons of the simple PSO algorithm, and the FuzzyPSO1 and

FuzzyPSO1 proposals were performed with the functions defined in Table 1 for 500

(500 -D) and 1000 (1000-D) dimensions. The following configurations were

considered: population size 50 for 500-D and 100 for 1000-D, based on [19] the

cognitive learning coefficient 𝑐1=2, social learning coefficient 𝑐2=3 (𝑐1+𝑐2>4),

maximum velocity equal to the maximum value of the variables. There were

5E+03*D fitness evaluations (FEs) and 25 runs for each function as suggested in [20]

and the best and mean statistical values were obtained and the better one is

highlighted with gray background. The results of the seven test functions in 500-D

and 1000-D are shown in Table 2 and representative convergence plots based on the

median run of the three algorithms are presented in Fig. 12.

Table 2. Experimental results of F1-F7 in 500-D and 1000-D (mean (best))
Fun D PSO FuzzyPSO1 FuzzyPSO2

F1
500 8,930E+05(7,981E+05) 3,132E+05(2,6E+05) 2,901E+04 (2,1E+04)

1000 3,276E+06(2,4E+06) 1,155E+06(1,0E+06) 9,227E+04 (7,6E+04)

F2
500 1,535E+02 (1,5E+02) 1,350E+02(1,3E+02) 9,491E+01(9,5E+01)

1000 1,724E+02 (1,7E+02) 1,522E+02(1, 5E+02) 9,535E+01(9,5E+01)

F3
500 5,318E+11(4,6E+11) 6,483E+10(3,6E+10) 1,198E+03(9,0E+02)

1000 4,188E+12(2,3E+12) 5,726E+11(4,6E+11) 3,379E+03(2,7E+03)

F4
500 7,832E+03(7,4E+03) 5,338E+03(4,6E+03) 3,467E+03(2,6E+03)

1000 1,949E+04(1,7E+04) 1,427E+04(1,3E+04) 9,231E+03(8,1E+03)

F5
500 8,224E+03(7,3E+03) 2,723E+03(2,2E+03) 1,989E+02(1,5E+02)

1000 2,675E+04(2,3E+04) 1,015E+04(8,7E+03) 7,828E+02(7,0E+02)

F6
500 2,080E+01(2,0E+01) 2,041E+01(2,0E+01) 1,775E+01(1,7E+01)

1000 2,144E+01(2,1E+01) 2,070E+01(2,1E+01) 1,958E+01(1,9E+01)

F7
500 -3,514E+03(-3,6E+03) -4,808E+03(-5,0E+03) -4,943E+03(-5,6E+03)

1000 -6,646E+03(-6,8E+03) -8,929E+03(-9,3E+03) -9,316E+03(-1,0E+04)

The Wilcoxon Signed Rank test [22] was computed to determine if there are

significant differences among the proposed algorithms. The results of this test are

shown in Table 3 and were calculated using a significance level (α) of 0.05. The null

hypothesis (H0) indicates that there is no significant difference between the "mean"

values of the compared algorithms. While the alternative hypothesis is (H1) indicates

that if there are significant differences between the “mean” values of the compared

algorithms. Three comparisons were made: (1) FuzzyPSO1 with PSO, (2) FuzzyPSO2

with PSO, and (3) FuzzyPSO1 with FuzzyPSO2.

Table 3. Wilcoxon test results with α=0.05

Algorithms D p-value Decision

FuzzyPSO1 / PSO
500 0.01563 H0 is rejected

1000 0.01563 H0 is rejected

FuzzyPSO2 / PSO
500 0.01563 H0 is rejected

1000 0.01563 H0 is rejected

FuzzyPSO2 /FuzzyPSO1
500 0.01563 H0 is rejected

1000 0.01563 H0 is rejected

PSO with FuzzyPSO1: FuzzyPSO1 performed significantly better against PSO.

Table 2 shows that the results of FuzzyPSO1 are superior in all functions. However,

both algorithms were affected by dimensionality. The graphs in Fig. 12 show that the

convergence of FuzzyPSO1 is better and faster than PSO.

PSO with FuzzyPSO2: The FuzzyPSO2 variant outperforms simple PSO in the

different types of high dimensionality problems. In terms of scalability from 500-D to

1000-D, FuzzyPSO2 is much less affected than PSO. The convergence of FuzzyPSO2

is better in both unimodal (F1-F2) and multimodal (F3-F7) functions (see Fig. 12).

FuzzyPSO1 with FuzzyPSO2: The performance of FuzzyPSO2 is statistically better

than that of FuzzyPSO1 in 500-D and 1000-D in all 7 test functions. FuzzyPSO2

converges faster and better on test problems F1, F2, F3, F5, F6. However, in F7 both,

67ISBN 978-987-4417-90-9

CACIC 2020
DIIT UNLaM / Red UNCI

500-D and 1000-D, FuzzyPSO2 seems to get trapped in local optima in the first

cycles, following a convergence to better solutions late in the search. F7 is a complex

multimodal function that represents many real-world problems, and both variants had

a similar convergence, as seen in Fig.12.

Fig. 12. F1-F7 representative convergence plots at 1000-D and 500-D based on median run.

68ISBN 978-987-4417-90-9

CACIC 2020
DIIT UNLaM / Red UNCI

7. Conclusions

In this paper two variants named FuzzyPSO1 and FuzzyPSO2 were presented to solve

large-scale global optimization problems. The original PSO was combined with the

FPSO1 fuzzy system, while the original PSO was merged with the FPSO2 fuzzy

system. These systems dynamically manage the inertial weight according to the

number of iterations and population diversity. They differ in the fact that FPSO2

restarts a proportion of the population if the diversity is low in the first iterations and

that proportion decreases as the iterations increase. It was shown that the FuzzyPSO2

variant had a better performance in all test functions compared to FuzzyPSO1 and a

simple PSO. However, in the case of F1 and F3 functions their performance is not yet

the expected, and more work is needed to improve the results. Large-scale global

optimization problems are challenging and finding the optimal one is not an easy task.

However, the results obtained in this initial work are encouraging and suggest that

fuzzy concepts can improve the scalability of PSO. As future work we will focus on

the performance in unimodal functions and we will also test our approach in large-

scale constrained optimization problems.

References

1. Kennedy, J., Eberhart, R.C. (2001) Swarm Intelligence. Morgan Kaufmann, San Francisco

(2001)

2. Kennedy, J., & Eberhart, R. (1995, November). Particle swarm optimization. In Proceedings

of ICNN'95-International Conference on Neural Networks (Vol. 4, pp. 1942-1948). IEEE.

3. Jie, J., Zeng, J., & Han, C. (2006). Adaptive particle swarm optimization with feedback

control of diversity. In International Conference on Intelligent Computing (pp. 81-92).

Springer, Berlin, Heidelberg.

4. Zadeh, L.: Fuzzy sets. Information & Control 8, 338–353 (1965). DOI: 10.1016/S0019-

9958(65)90241-X.

5. Olivas, J. A. (2001). La lógica borrosa y sus aplicaciones. Pag. Web arantxa. ii. uam.

es/dcamacho/lógica/recursos/fuzzy-into-esp. pdf.

6. Pérez, J., Valdez, F., Castillo, O. et al. (2017) Interval type-2 fuzzy logic for dynamic

parameter adaptation in the bat algorithm, Soft Computing 21: 667. DOI: 10.1007/s00500-

016-2469-3.

7. Olivas, F., Valdez, F., & Castillo, O. (2013). Particle swarm optimization with dynamic

parameter adaptation using interval type-2 fuzzy logic for benchmark mathematical

functions. In 2013 World Congress on Nature and Biologically Inspired Computing (pp. 36-

40). IEEE.

8. Olivas, F., & Castillo, O. (2013). Particle swarm optimization with dynamic parameter

adaptation using fuzzy logic for benchmark mathematical functions. In Recent Advances on

Hybrid Intelligent Systems (pp. 247-258). Springer, Berlin, Heidelberg.

9. Sombra, A., Valdez, F., Melín, P., & Castillo, O. (2013). A new gravitational search

algorithm using fuzzy logic to parameter adaptation. In 2013 IEEE Congress on

Evolutionary Computation (pp. 1068-1074). IEEE.

10. Valdez, F., Melín, P., & Castillo, O. (2011). An improved evolutionary method with fuzzy

logic for combining particle swarm optimization and genetic algorithms. Applied Soft

Computing, 11(2), 2625-2632.

11. Valdez, F., Melín, P., & Castillo, O. (2014). A survey on nature-inspired optimization

algorithms with fuzzy logic for dynamic parameter adaptation. Expert systems with

applications, 41(14), 6459-6466.

12. Norouzzadeh, M. S., Ahmadzadeh, M. R., & Palhang, M. (2012). LADPSO: using fuzzy

logic to conduct PSO algorithm. Applied Intelligence, 37(2), 290-304.

13. Ochoa, P., Castillo, O., & Soria, J. (2017). Differential evolution using fuzzy logic and a

comparative study with other metaheuristics. In Nature-Inspired Design of Hybrid

Intelligent Systems (pp. 257-268). Springer, Cham.

14. Olivas, F., Valdez, F., Castillo, O., Gonzalez, C. I., Martínez, G., & Melín, P. (2017). Ant

colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic

systems. Applied Soft Computing, 53, 74-87.

15. Shi, Y., & Eberhart, R. C. (1998). Parameter selection in particle swarm optimization. In

International conference on evolutionary programming (pp. 591-600). Springer, Berlin,

Heidelberg.

69ISBN 978-987-4417-90-9

CACIC 2020
DIIT UNLaM / Red UNCI

16. Kumar, S., & Chaturvedi, D. K. (2011). Tuning of particle swarm optimization parameter

using fuzzy logic. In 2011 International Conference on Communication Systems and

Network Technologies (pp. 174-179). IEEE.

17. Awad, N. H., Ali, M. Z., Liang, J. J., Qu, B. Y., Suganthan, P. N., & Definitions, P. (2016).

Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective

Real-Parameter Numerical Optimization, Nanyang Technological University, Jordan

University of Science and Technology and Zhengzhou University. Tech. Rep.

18. Eberhart, R. C., & Shi, Y. (2000). Comparing inertia weights and constriction factors in

particle swarm optimization. In Proceedings of the 2000 congress on evolutionary

computation. CEC00 (Cat. No. 00TH8512) (Vol. 1, pp. 84-88). IEEE.

19. Clerc, M. (1999) The swarm and the queen: towards a deterministic and adaptive particle

swarm optimization, Proceedings of the 1999 Congress on Evolutionary Computation-

CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 1999, pp. 1951-1957 Vol. 3, doi:

10.1109/CEC.1999.785513.

20. Tang, K., Yao, X., Suganthan, P. N., MacNish, C., Chen, Y. P., Chen, C. M., & Yang, Z.

(2007). Benchmark functions for the CEC’2008 special session and competition on large

scale global optimization. Nature Inspired Computation and Applications Laboratory,

USTC, China, 24.

21. González Morcillo C. (2005). Lógica Difusa. Una introducción práctica. Técnicas de Soft

Computing.

22. Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of

nonparametric statistical tests as a methodology for comparing evolutionary and swarm

intelligence algorithms. Swarm and Evolutionary Computation, 1(1), 3-18.

23. Li, X., & Yao, X. (2011). Cooperatively coevolving particle swarms for large scale

optimization. IEEE Transactions on Evolutionary Computation, 16(2), 210-224.

70ISBN 978-987-4417-90-9

CACIC 2020
DIIT UNLaM / Red UNCI

	Workshops
	WASI - Agentes y Sistemas Inteligentes
	Particle Swarm Optimization with Adaptive Inertia Weight using Fuzzy Logic for Large-Scale Problems (13433)

	WPDP - Procesamiento Distribuido y Paralelo

