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ABSTRACT
The goal of this research is to develop an A/B testing method to
automatically compare the user experience (UX) of alternative de-
signs for a web application in a real context with a large number of
users. The challenge that it poses is to find mechanisms to predict
the UX with machine learning techniques. This submission outlines
the motivation, research goal, current status and remaining work.

CCS CONCEPTS
•Human-centered computing→HCI design and evaluation
methods; •Computingmethodologies→Machine learning ap-
proaches.
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1 INTRODUCTION
While the UX of a web application is a crucial factor that determines
its success, UX evaluation is often neglected, mainly due to its high
cost. Although there are several proposals to reduce the costs of
UX evaluation such as remote user testing [1] and automatic user
interaction analysis [7], as Garcia et. al.[2] evidences, there is a
lack of tools and methods to mediate the collaboration between
designers and developers in the UX evaluation of the application
being developed, which implies not only discovering the UX issues,
but also the identification and the evaluation of alternative designs.

This research is focused on providing support for evaluating
alternative designs of the user interface (UI) of a web application.
Specifically, we are investigating a method similar to A/B testing
to allow designers to compare the UX of different designs and
determine the best solution for a given set of UX problems in the
target application. A/B testing (also called split testing) is a well-
known technique that consists of deploying two or more versions of
a UI [8]. Users are split between the versions in a persistent manner,
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and keymetrics are computed to determine the best version in terms
of “conversion rate”, which refers mostly to increased revenue.

Even though most of the commercial A/B testing tools such as
Google Optimize [4] and Optimizely [9] are intended to evaluate
conversion rate, there are research works that propose a variation
of A/B testing to evaluate usability [10] or user’s preference [11].
Both approaches require user input to compare the alternative de-
signs, which can hinder the evaluation in a real application, lacking
transparency for the subjects. The split testing proposed in [10]
relies on user interaction analysis and user questionnaires to train
models to predict the usability of a UI. These models are specific
for the application under test. On the other side, the evaluation
developed in [11] is not conducted on a working application, but
on screenshots or mockups that are randomly presented to the
users for them to select the preferred one. Another aspect lacking
attention in the literature is the technology needed to set up the
alternative designs to be tested, which is very relevant to prevent
the cost of a manual implementation.

Contrarily to previous approaches, we are interested in automat-
ically evaluating alternative designs in terms of UX, i.e., without
requiring explicit users intervention, in order to easily conduct the
evaluation in a real context with a large number of users. In this
sense, we propose the development of Machine Learning (ML) mod-
els to assess the UX of a design. In a recent work we approached
this proposal by predicting the user interaction effort with some UI
elements through the analysis of user interaction metrics automati-
cally captured [6]. Using the user interaction effort as a measure
of UX, the next step is to define a method to compare alternative
solutions to UX problems. Besides that, to make the A/B testing
affordable, support must be provided from the beginning of the
evaluation, which starts by configuring the designs to be tested.

2 RESEARCH GOAL
The goal of this research is to develop a method to conduct A/B
testing experiments to automatically compare the UX of alternative
designs of a web application. The evaluation method is aimed to
support designers in the task of UX improvement once a set of UX
issues have been discovered, and should work directly on produc-
tion in a transparent way for the users. This research addresses two
different aspects:

• Set up the web application’s versions to be tested. In order to
allow designers to work on their own, we are investigating
a method to create alternative versions of a web application
without altering its source code, i.e, by directly modifying
its UI in the browser.

• Compare different versions of a web application. To support
designers in finding the version that provides a better UX,
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our goal is to develop a method and a tool to automatically
evaluate the UX of these versions by analyzing user inter-
action events. To this end, we believe that ML models are
an important technique to predict users’ behaviour because
its multiple interaction patterns involved cannot be easily
analyzed defining heuristics.

3 CURRENT STATUS
We have been working on both aforementioned goals. Our proposal
to create alternative versions of a web application is based on the
notion of Client-side web refactorings (CSWRs) [3]. Each CSWR is
a predefined transformation that performs small changes in the
client of a web application through a script, like adding or replacing
a widget, with the aim of improving the UX while preserving func-
tionality. Our first approach consisted in a tool that allows creating
a web application version by applying CSWRs semi-automatically,
once usability problems have been found by analyzing user inter-
actions [5]. In that case, the analysis of user interaction events was
based on heuristics, and the tool requires collecting a large amount
of interaction events to be able to discover usability problems and
suggest CSWRs that may solve them. The evaluation of this tool
suggested the need of a method intended for designers to freely
explore potential solutions to UX issues through CSWRs, i.e, by
directly selecting an element from the UI and a CSWR to apply
on it. In this sense, we are working on a visual programming tool
called UX-Painter, a web-extension that allows designers to work
directly on production. Currently, we are conducting experiments
with UX designers to assess its validity.

With respect to the evaluation of designs, since we propose the
application of CSWR to create alternative UIs, our first step was to
investigate a method to measure the effectiveness of the changes
applied by the CSWRs in the context of a specific application. Thus,
we developed a unified score called interaction effort, to assess the
level of effort required by users to interact with different widgets [6].
Since alternatives CSWRs for a specific UX problem apply different
changes, the proposed score aims to compare how different widgets
perform for the same task. This score is predicted from micro-
measures automatically captured from interaction logs, that are
specific to each widget type. To be able to predict the interaction
effort, we have to analyze users interacting in real web applications
in two different moments: in a preliminary study to discover the
micro-measures that influence the user’s interaction effort for each
widget type, and then with the micro-measures defined to obtain
their samples to train each widget’s prediction model. We already
conducted the preliminary study to define the micro-measures that
determine the interaction effort of two widget types, text inputs and
selects, and we have validated this approach obtaining interaction
samples and manually ranking them to train decision tree classifiers
[6]. We decided to use decision trees as preliminary models to
get feedback about the importance of each micro-measure in the
resulting classification. The first results achieved allow us to go
further in the interaction effort prediction, namely collect more
user interaction samples and evaluate the performance of others
prediction models.

4 NEXT STEPS
Concerning the setup of the designs to be tested, the next step
is to develop a method to deploy in production the alternative
versions created with UX-Painter and to split the users between
them consistently. Besides that, we plan to incorporate new CSWRs
to UX-Painter to offer designers different solutions for each UX
issue considered.

Regarding the evaluation of alternative versions, we are creating
tools to support the collection of training data, specifically, to cap-
ture the micro-measures of each widget interaction and to allow UX
experts to easily rank them by looking at recorded screencasts. This
will enable approaching our next challenge, i.e., to obtain a large
amount of samples to implement the prediction models of all the
widgets involved in the CSWRs. Also, this requires analyzing which
ML model works better with the collected dataset. After being able
to obtain the user’s interaction effort of all widget types, we still
need to define a strategy to determine which of the versions under
test is better in terms of UX. The interaction effort score judges the
interaction of a single user in a specific widget of a page, so first
we need to define an overall interaction effort of a specific widget
that considers all the user interactions gathered during the evalua-
tion on that widget. Moreover, considering that each tested version
may include different CSWRs, a method to weight the interaction
effort of the different widgets is required to obtain a measure of
the overall UX of each version to identify the best one. Last but not
least, we may also consider other elements to judge the UX besides
the interaction effort metric, by other ML models that may predict
users’ comfort, joy, or other aspects involved in the UX.
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