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1. Data processing and predictor selection 

1.1. Instrumental Data 

We use the Goddard Institute for Space Studies surface temperature analysis (GISTEMP) 

combined land and ocean temperature grid (Hansen et al., 2010) as target data for our 

reconstructions. The version allowing for a search radius of 1200 km for the temperature 

station measurements of each grid cell is used (details see Hansen et al., 2010). We use the 

latitude weighted spatial average of all grid cells south of the equator as the reconstruction 

target. 

We choose the May to April year as the target seasonal window, because phase changes in 

ENSO, typically occur in austral autumn (Karoly, 1989; Trenberth and Hurrell, 1994; Karoly 

et al., 1996; Karoly and Vincent, 1998). Also, calendar years are not an optimal window for 

Southern Hemisphere (SH) reconstructions because the tree-ring growing season in the SH 

extends over two calendar years during austral summer. Supplementary Figure 1 compares 

our final reconstruction using a May-April target seasonal window to a reconstruction using a 

calendar year mean target. The two reconstructions are very similar, and so the choice of the 

target seasonal window does not affect our conclusions. 
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Supplementary Figure 1 | Reconstruction based on different target seasons. Comparison 
of our reconstruction using May-April averages for the instrumental target data (black) and a 
calendar year average (red). 

 
1.2. Proxy database 

As a basis for our proxy selection we use the SH proxy network presented by Neukom and 

Gergis (2012). Additionally, new records are added to the network (details and references see 

Supplementary Tables 1-4): Laguna Pumacocha and Lake Challa Sediments, the high 

resolution sections (<5 years) of El Junco Lake, Lake Edward and Lake Masoko, a new 

documentary record from New South Wales and sea salt from an ice core at Law Dome, 

Antarctica. 

Some tree-ring records from South America that were used in Neukom and Gergis (2012) had 

to be excluded because of lack of permission from the original authors to make the 

chronologies publicly available (Supplementary Table 1). Correlations of all proxies with the 

dominant climate modes of the SH in the May to April window are provided by Neukom and 

Gergis (2012). 

The most important details of proxy data preparation are summarized in the following 

paragraphs. For further details we refer to Neukom & Gergis (2012). 
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1.2.1. Tree-ring records 

Tree-ring records from individual sites are grouped into regional composites where possible. 

This grouping strengthens the common signal, reduces the number of records from more than 

200 to 84 and improves the balance of records from different climate archives. All composite 

records are listed in Supplementary Table 1, and the individual sub-chronologies that were 

aggregated into the composites are listed in Table S1 in Neukom & Gergis (2012) 

All tree-ring chronologies are established using either signal free detrending (Melvin et al., 

2007; Melvin and Briffa, 2008) or negative exponential curves. In order to avoid 

reconstruction biases based on the detrending method, we randomly choose between one of 

the two methods for each tree-ring record and ensemble member (see below, section 2.2). 

Years where less than five samples are available or where the expressed population signal 

(EPS; Briffa and Jones, 1990) is <0.85 are excluded. 

1.2.2. Subannually resolved coral records 

All coral records with higher than annual resolution are averaged over the May to April 

window. All coral records are listed in Supplementary Table 2. 

1.2.3. Documentary records 

Some documentary records did not originally cover the 20th century (Supplementary Table 4). 

In order to be able to calibrate them, we extend them to present using the “pseudo 

documentary” approach described by Neukom et al. (2009; 2013). In this approach, the 

representative instrumental data for each record are degraded with white noise and then 

classified into the index categories of the documentary record in order to realistically mimic 

its statistical properties and not overweight the record in the multiproxy calibration process. 

The amount of noise to be added is determined based on the overlap correlations with the 

instrumental data. In order to avoid potential biases by using only one iteration of noise-

© 2014 Macmillan Publishers Limited.  All rights reserved. 
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degrading, we create 1,000 “pseudo documentaries” for each record and randomly sample one 

realization for each ensemble member (see below, Section 2.2). All documentary records are 

listed in Supplementary Table 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Table 1 (next page) | Metadata of the available tree-ring records (before 
the proxy screening). Site name, longitude (°E), latitude (°N), altitude (m.a.s.l.), start year 
(Common Era CE), end year (CE), species code, sample depth, number of sub-sites for 
composite records, reference(s). Updated from Neukom & Gergis (2012). The red shaded 
records are excluded from the reconstructions because of lack of permission to publish the 
final chronology. 
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SiteName Lon Lat Alt Start End Species n Subs Reference(s)

Africa
Zimbabwe 27.33 -18.5 1000 1875 1996 PTAN 36 Therrell et al. (2006)
Die Bos, South Africa 19.2 -32.4 1763 1976 WICE 55 Dunwiddie and LaMarche (1980)

Australasia
Teak Indonesia 111 -7 1780 2005 TEGR 239 D'Arrigo et al. (2006)
Northern Territory Callitris 132 -13 1896 2006 CAIN 54 Baker et al. (2008)
Western Australia Callitris 120.8 -33.03 300 1758 2005 CACO 37 Cullen et al. (2009)
Kauri NZ 174 -36 200 1577 2002 AGAU 527 Cook et al. (2006), Fowler et al. (2008)
Baw Baw Victoria 148.3 -36.42 2000 1818 2002 EUPA 223 Brookhouse et al. (2008)
Urewera NZ 177.2 -38.68 930 1462 1987 LIBI 68 Xiong and Palmer (2000)
North Island LIBI Composite 2 174.1 -39.27 1000 1651 1990 LIBI 129 2 Xiong and Palmer (2000)
Mangawhero NZ 175.5 -39.35 1000 1551 1994 LGCO 56 D'Arrigo et al. (2000)
North Island LIBI Composite 1 175.5 -39.5 1100 1526 1992 LIBI 235 5 Xiong and Palmer (2000)
Takapari NZ 176 -40.07 960 1533 1992 LIBI 63 Xiong and Palmer (2000)
Moa Park NZ 172.9 -40.93 1036 1623 1991 LIBI 49 Xiong and Palmer (2000)
Flanagans Hut NZ 172.6 -41.27 950 1776 1991 LIBI 33 Xiong and Palmer (2000)
CTP East Tasmania 148 -42 600 1430 1994 PHAS 165 2 Allen et al. (2001)
CTP West Tasmania 146 -42 600 1547 1998 PHAS 301 8 Allen et al. (2001), Allen (2002), LaMarche et al. (1979c)
Mount Read Tasmania 147 -42 600 -494 1999 LGFR 317 Cook et al. (2000),Cook et al. (2006)
Pink Pine NZ 172 -42 1457 1999 HABI 356 7 Duncan et al. (2010)
Buckley's Chance Tasmania 145.9 -42.26 900 1463 1991 LGFR 84 Buckley et al. (1997)
Oroko Temperature recon 170.3 -43.23 110 1 2003 LGCO 330 Cook et al. (2006)
Stewart Island NZ 168 -47 450 1758 1993 HABI 106 3 D'Arrigo et al. (1995), D'Arrigo et al. (2000)

South America
ALT Composite 1 -69 -17.5 4300 1872 2002 POTA 77 3 Soliz et al. (2009)
ALT Composite 2 -69.08 -18.45 4730 1542 2002 POTA 78 2 Soliz et al. (2009), Christie et al.(2009b)
ALT Composite 3 -67.5 -21.5 4500 1630 2003 POTA 214 6 Argollo et al. (2004), Soliz et al. (2009), Morales et al. (2004)
La Meseda -65.02 -23 1600 1822 1999 CELI 23 unpublished (R. Villalba pers. comm. 2007)
NWA Composite 1 -65 -23 1200 1899 1998 JGAU 35 2 Villalba et al. (1992)
NWA Composite 4 -65 -24 1750 1858 1981 CEAN 50 2 Villalba et al. (1992)
NWA Composite 2 -65 -24 2200 1858 1995 ALAC, CELI, JGAU 126 4 Villalba et al. (1992), Morales et al. (2004)
Rio Sala and Popayan -64.6 -24.6 700 1879 2002 JGAU 39 Villalba et al. (1992)
NWA Composite 5 -65.5 -25 2000 1874 2001 JGAU 92 3 Villalba et al. (1992)
Dique Escaba -65.78 -27.7 900 1877 1985 JGAU 24 Villalba et al. (1992)
El Asiento -70.82 -32.48 1800 1515 1972 AUCH 65 La Marche et al. (1979b)
Le Quesne precip recon -70.5 -34 1700 1200 2000 AUCH 525 7 Le Quesne et al. (2006)
CAN Composite 1 -70.5 -34.5 1200 1520 1975 AUCH 165 3 La Marche et al. (1979b)
Vilches -71.03 -35.6 1530 1873 1996 NOPU 49 Lara et al. (2001)
Christie AUCH Composite -71.3 -37 1135 1346 2004 AUCH 511 5 Christie et al. (2009a)
Huinganco -70.6 -37.75 1400 1673 2000 AUCH 101 La Marche et al. (1979a)
CAN Composite 2 -71 -37.83 1530 1714 2006 ARAR 83 3 La Marche et al. (1979a), Mundo et al. (2012)
CAN Composite 3 -71.25 -38 1570 1868 1975 ARAR 41 2 La Marche et al. (1979a)
Volcan Lonquimay -71.57 -38.38 1510 1700 1975 ARAR 47 La Marche et al. (1979b)
CAN Composite 6 -71.5 -38.5 1400 1435 2006 ARAR 357 8 La Marche et al. (1979a), Villalba (1990a), Mundo et al. (2012)
CAN Composite 5 -71.58 -38.62 1640 1843 1996 NOPU 76 2 Lara et al. (2001)
Pino Hachado -70.75 -38.63 1400 1767 1974 ARAR 31 La Marche et al. (1979a)
Conguillio (Lenga abajo) -71.6 -38.63 1490 1788 1996 NOPU 55 Lara et al. (2001)
CAN Composite 4 -71.5 -39 1500 1807 1994 NOPU 120 4 Lara et al. (2001), Schmelter (2000)
CAN Composite 8 -71.17 -39.17 1125 1773 1989 AUCH 69 2 Villalba and Veblen (1997)
CAN Composite 31 -71.3 -39.2 1168 1731 2006 ARAR 83 2 Mundo et al. (2012)
Lago Rucachoroi -71.17 -39.22 1330 1721 1976 AUCH 26 La Marche et al. (1979a)
CAN Composite 9 -71.25 -39.33 1100 1636 2006 ARAR 283 6 La Marche et al. (1979a), Mundo et al. (2012)
CAN Composite 10 -70.83 -39.5 1320 1784 1989 ARAR, AUCH 44 2 La Marche et al. (1979a), Villalba and Veblen (1997)
CAN Composite 12 -71 -40 800 1645 1992 AUCH 175 5 La Marche et al. (1979b), Villalba and Veblen (1997)
Chapelco -71.23 -40.33 1700 1814 1985 NOPU 29 ITRDB series arge029
CAN Composite 11 -72.32 -40.62 805 1567 2002 PLUV 146 3 Lara et al. (2008)
Paso Cordova -71.25 -40.67 1890 1811 1986 NOPU 37 ITRDB series arge050
CAN Composite 13 -71.25 -41 1000 1532 2003 AUCH 360 11 Villalba and Veblen (1997), Lara et al. (2008)
CAN Composite 16 -71.8 -41.13 1500 1857 1991 NOPU 43 2 Villalba et al. (1997b)
CAN Composite 14 -71.8 -41.13 1500 1859 1994 NOPU 79 3 Villalba et al. (1997b), Schmelter (2000)
CAN Composite 17 -71.83 -41.17 1700 1892 1994 NOPU 55 3 Villalba et al. (1997b), Schmelter (2000)
CAN Composite 15 -71.92 -41.17 1300 1582 1991 NOPU 102 4 Villalba et al. (1997b)
CAN Composite 19 -72.27 -41.17 1225 1858 1998 NOPU 130 2 Lara et al. (2005)
CAN Composite 18 -71.5 -41.25 1550 1639 1994 NOPU 113 3 Schmelter (2000)
CAN Composite 20 -71.83 -41.33 900 1117 1995 FICU 184 4 Villalba (1990b), Lara et al. (2000)
CAN Composite 21 -71.5 -41.5 670 1790 1991 AUCH 38 2 Villalba and Veblen (1997)
CAN Composite 22 -71.75 -41.75 1300 1720 1994 NOPU 71 3 Villalba et al. (1998), Schmelter (2000)
CAN Composite 23 -71.83 -42 1220 1204 1993 FICU 60 2 Lara et al. (2000)
CAN Composite 24 -71.33 -42.5 765 1749 2002 AUCH 33 2 La Marche et al. (1979a), Lara et al. (2008)
CAN Composite 26 -73.83 -42.5 750 1794 1987 FICU, PLUV 60 2 Villalba (1990a), Roig (1991)
CAN Composite 25 -71.83 -42.5 550 769 1990 FICU 137 3 Lara et al. (2000)
Santa Lucia -72.5 -43 540 1680 1986 PLUV 60 Szeicz et al. (2000)
Cisnes -71.7 -44.65 1100 1834 1997 NOPU 54 Lara et al. (2005)
Puesto Miraflores -72.15 -48.45 1039 1755 1998 NOPU 23 Unpublished (R. Villalba pers. comm. 2010)
CAN Composite 32 -72.25 -48.45 945 1730 2007 NOPU 88 2 Villalba et al. (2003)
O Higgins -72.5 -48.5 1200 1886 1999 NOPU 24 Lara et al. (2005)
CAN Composite 27 -72 -49 800 1715 2002 NOPU 199 3 Boninsegna et al. (1989),  Srur et al. (2008)
El Chalten bajo -72.9 -49.37 760 1826 2003 NOPU 100 Srur et al. (2008)
CAN Composite 33 -73.33 -49.45 775 1726 2007 NOPU 125 3 Villalba et al. (2003), unpublished (R. Villalba pers. comm. 2010)
Torre Morena 4 -73.5 -49.5 658 1798 2007 NOPU 42 Unpublished (R. Villalba pers. comm. 2010)
Valle Ameghino -72.17 -50.42 700 1766 1997 NOPU 41 Masiokas and Villalba (2004)
CAN Composite 34 -73.7 -50.6 461 1795 2007 NOPU 67 2 Unpublished (R. Villalba pers. comm. 2010)
Heim Morena Este -73.7 -50.6 650 1806 2007 NOPU 33 Unpublished (R. Villalba pers. comm. 2010)
CAN Composite 30 -70 -53 220 1851 1986 NOPU 128 2 Aravena et al. (2002)
SAN Composite 5 -67.67 -54.75 600 1718 1984 NOBE, NOPU 131 4 Boninsegna et al. (1989)
Puerto Parryn -64.37 -54.83 20 1893 1986 NOBE 25 Boninsegna et al. (1989)
SAN Composite 6 -64.33 -54.83 40 1781 1986 NOBE 49 2 Boninsegna et al. (1989)

© 2014 Macmillan Publishers Limited.  All rights reserved. 
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Supplementary Table 2 | Metadata of the available coral records (before the proxy 
screening). Site name, longitude (°E), latitude (°N), start year (CE), end year (CE), species, 
temporal resolution, proxy variable(s), reference(s). Updated from Neukom & Gergis (2012). 

 

  

SiteName Longitude Latitude Start End Species Resolution Proxy Reference(s)

Indian Ocean
Malindi 40.00 -3.00 1801 1994 Porites lutea Annual d18O Cole et al. (2000)
Mafia, Tanzania 40.00 -8.00 1622 1998 Diploastrea heliopora Monthly d18O Damassa et al. (2006)
Ifaty, Madagascar 1 43.00 -23.00 1882 1994 Porites lutea Annual d18O, Sr/Ca Unpublished (J. Zinke pers. comm.)
Ifaty, Madagascar 4 43.58 -23.15 1658 2007 Porites lutea Bim., ann. d18O, Sr/Ca Zinke et al. (2004), unpublished  (J. Zinke pers. comm.)
Mayotte 45.10 -12.65 1865 1993 Porites solida Bimonthly d18O Zinke et al. (2009)
La Reunion 55.25 -21.03 1832 1995 Porites Bimonthly d18O Pfeiffer et al. (2004)
Seychelles 55.80 -4.62 1846 1995 Porites lutea Monthly d18O Charles et al. (1997), Abram et al. (2008)
Rodrigues 63.00 -19.00 1789 2005 Porites Ann., mon. d18O, Sr/Ca Unpublished (J. Zinke pers. comm.)
Mentawai West Sumatra 98.50 -4.00 1858 1997 Porites Monthly d18O Abram et al. (2008)
Abrolhos 113.77 -28.45 1794 1993 Porites lutea Bimonthly d18O Kuhnert et al. (1999)
Ningaloo 113.97 -21.90 1878 1995 Porites lutea Seasonal d18O Kuhnert et al. (2000)
Bali 115.00 -8.00 1783 1990 Porites Monthly d18O Charles et al. (2003)
Bunaken 123.00 2.80 1863 1990 Porites Monthly d18O Charles et al. (2003)

Pacific Ocean
Laing 144.88 -4.15 1884 1993 Porites Seasonal d18O Tudhope et al. (2001)
Guam 145.00 13.00 1790 2000 Porites lobata Monthly d18O Asami et al. (2005)
Madang Lagoon 145.82 -5.22 1880 1993 Porites Seasonal d18O Tudhope et al. (2001)
Great Barrier Reef precip recon 147.00 -18.00 1639 1981 Porites Annual Luminescence Lough  (2011)
Kavieng, Papua New Guinea 150.50 -2.50 1823 1997 Porites Monthly Sr/Ca, Ba/Ca Alibert and Kinsley (2008a,b)
Rabaul 152.00 -4.00 1867 1997 Porites Monthly d18O, Sr/Ca Quinn et al. (2006)
Abraham 153.00 -20.00 1638 1983 Porites Annual d18O Druffel and Griffin (1999)
Nauru 166.00 -0.83 1897 1995 Porites lutea Seasonal d18O Guilderson et al. (1999)
Amedee New Caledonia 166.45 -22.48 1657 1992 Porites lutea Seasonal d18O Quinn et al. (1998)
Vanuatu 167.00 -15.00 1806 1979 Platygya Annual d18O Quinn et al (1993)
Tarawa 172.00 1.00 1893 1989 Hydnophora microconos Monthly d18O Cole et al. (1993)
Maiana 173.00 1.00 1840 1994 Porites spp. Bimonthly d18O Urban et al. (2000)
Fiji 1F 179.23 -16.82 1780 1997 Porites lutea Monthly d18O, Sr/Ca Linsley et al. (2004)
Fiji AB 179.23 -16.82 1617 2001 Porites lutea 8/year d18O Linsley et al. (2006)
Savusavu, Fiji 179.23 -16.82 1776 2001 Diploastrea heliopora Annual d18O Bagnato et al. (2005)
Tonga TNI2 -174.82 -20.27 1849 2004 Porites lutea 8/year d18O unpublished
Tonga TH1 -174.72 -19.93 1794 2004 Porites lutea Annual d18O unpublished
Palmyra Island -162.13 5.87 1886a 1998 Porites Monthly d18O, Sr/Ca Cobb et al. (2003), Nurhati et al. (2011)
Rarotonga 3R -159.83 -21.23 1874 2000 Porites Seasonal d18O Linsley et al. (2006),Linsley et al. (2008)
Rarotonga -159.83 -21.23 1761 1996 Porites Seas., mon. d18O, Sr/Ca Linsley et al. (2006),Linsley et al. (2008)
Moorea -149.83 -17.50 1852 1990 Porites lutea Annual d18O Boiseau et al. (1999)
Clipperton Atoll -109.22 10.30 1893 1994 Porites lobata Monthly d18O Linsley et al. (2000a)
Urvina, Galapagos Islands -91.23 -0.03 1607 1981 Pavona clavus Annual d18O Dunbar et al. (1994)
Secas -82.05 7.00 1707 1983 Porites Seasonal d18O Linsley et al. (1994)
a Non-continuous fossil d18O sequences extend back to AD 928
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Supplementary Table 3 | Metadata of the available ice records (before the proxy 
screening). Site name, longitude (°E), latitude (°N), altitude (m.a.s.l.), start year (CE), end 
year (CE), proxy variable(s), reference(s). Updated from Neukom & Gergis (2012). 

  

SiteName Longitude Latitude Altitude Start End Proxy Reference(s)

South America
Quelccaya -70.83 -13.93 5670 488 2003 d18O, accumulation Thompson et al. (1984, 2006)
Illimani -67.78 -16.65 6300 1750 1998 dD, NH3 Hoffmann et al.(2003), Ramirez et al. 

(2003), Kellerhals et al. (2010)

Antarctica
James Ross Island -58.13 -64.37 1640 1791 2000 dD Aristarain et al. (2004)
Law Dome 112.80 -66.77 1370 179a 2005 d18O, accumulation, Na, sss, chem. 

species. PC1
VanOmmen & Morgan. (2010), Unpublished 
(M. Curran, T. Vance, A. Moy & T. van 
Ommen pers. comm.)

Dyer Plateau -54.50 -70.66 2002 1505 1988 d18O Thompson et al. (1994)
Princess Elizabeth Land 77.1 -70.85 1850 1745 1996 d18O, accumulation, chem. species. PC1 Xiao et al. (2004)
Dolleman -61.55 -70.97 398 1652 1992 d18O, chem. species. PC1 Russell et al. (2006)
Talos 159.10 -72.80 2316 1217 1996 dD Stenni et al. (2002)
Gomez -70.35 -73.60 1400 1854 2006 d18O, accumulation Thomas et al. (2008, 2009)
Dronning Maud Land 0.00 -75.00 2900 1025 1997 d18O, accumulation, Na Graf et al. (2002), Taufetter et al. (2004)
Siple Station -84.15 -75.92 1054 1417 1983 d18O Mosely-Thompson et al. (1990)
ITASE 2001 5 -89.14 -77.06 1239 1779 2000 d18O Schneider et al. (2005)
ITASE 2000 5 -124.00 -77.67 1828 1800 1999 d18O Schneider et al. (2005)
ITASE 2001 2 -102.91 -77.84 1336 1891 2001 d18O Steig et al. (2005)
ITASE 2000 4 -120.08 -78.08 2595 1794 1999 d18O Steig et al. (2005)
ITASE 2001 3 -95.65 -78.12 1620 1858 2000 d18O Steig et al. (2005)
Vostok Pits 106.83 -78.45 3500 1774 1999 d18O, accumulation Ekaykin et al. (2004)
WDC05A -112.13 -79.46 1759 1775 2004 Accumulation Banta et al. (2008)
WDC05Q -112.09 -79.47 1759 1521 2004 Accumulation Banta et al. (2008)
Berkner Island -45.72 -79.61 886 1000 1994 d18O, accumulation Mulvaney et al. (2002)
ITASE 2000 1 -111.38 -79.63 1791 1800 1999 d18O, accumulation Schneider et al. (2005), Banta et al. (2008)
ITASE 1999 1 -122.63 -80.62 1350 1723 1999 d18O Steig et al. (2005)
Siple Dome A -148.81 -81.65 615 1000 1993 dD Steig et al. (2013)
Siple Dome B -148.81 -81.65 615 1654 1994 d18O Steig et al. (2013)
Siple Dome Na -148.81 -81.65 615 0 1980 Na Mayewski et al. (2004)
ITASE 2002 2 -104.99 -83.50 1957 1894 2001 d18O Jacobel et al. (2005)
ITASE 2002 4 -107.99 -86.50 2586 1593 1997 d18O Jacobel et al. (2005)
b Only d18O goes back to AD 179, the other proxies are available back to the 11th or 13th century
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Supplementary Table 4 | Metadata of the available documentary, sediment and 
speleothem records (before the proxy screening). Site name, longitude (°E), latitude (°N), 
start year (CE), end year (CE), proxy variable, reference(s). Updated from Neukom & Gergis 
(2012). 

 
 
1.3. Predictor selection 

The predictors for the reconstructions are selected based on their local correlations with the 

target grid. We use the domain covering 55°S-10°N and all longitudes for the proxy 

screening. High latitude regions of the grid are excluded from the correlation analysis because 

south of 55°S, the instrumental data are not reliable at the grid-point level over large parts of 

the 20th century due to very sparse data coverage (Hansen et al., 2010). We include the 

regions between 0°N and 10°N because the equatorial regions have a strong influence on SH 

SiteName Longitude Latitude Start End Proxy Reference(s)

Documentary - Africa
Southern Kalahari precipitaitiona 26.00 -25.00 1815 2002 Historical documents Nash & Endfield (2008), Neukom et al. (2013)
Namaqualand precipitaitiona 17.00 -29.00 1817 1997 Historical documents Kelso & Vogel (2007), Neukom et al. (2013)
Lesotho precipitaitiona 27.50 -29.50 1824 1994 Historical documents Nash & Grab (2010), Neukom et al. (2013)
Eastern Cape South Africa precipitaitiona 24.50 -34.00 1821 2007 Historical documents Vogel (1989), Neukom et al. (2013)
Southern Cape South Africa precipitaitiona 20.00 -34.00 1821 1996 Historical documents Vogel (1989), Neukom et al. (2013)

Documentary - South America
Peru ENSO index -79.02 -8.10 1550 1990 Historical documents Garcia-Herrera et al. (2008), Quinn & Neal (1992)
Potosi precipitationa -65.75 -19.58 1585 2005 Historical documents Gioda & Prieto (1999)
Rio Sali / Rio Dulce streamflowa -65.00 -27.00 1750 1977 Historical documents Herrera et al. (2003)
Tucuman precipitaitiona -65.00 -27.03 1548 2005 Historical documents Prieto et al. (2000)
Santiago del Estero precipitaitiona -64.27 -27.77 1750 2005 Historical documents Herrera et al. (2003)
Santa Fe and Corrientes precipitationa -60.00 -30.00 1590 2006 Historical documents Prieto (2007)
Rio Parana streamflowa -60.00 -30.00 1590 1994 Historical documents Prieto (2007)
Cordoba precipitaitiona -64.00 -31.00 1700 2005 Historical documents Prieto & Herrera (2001)
Mendoza precipitaition -68.00 -32.00 1600 1985 Historical documents Prieto et al. (2000)
Rio Mendoza streamflowa -68.00 -32.00 1601 2000 Historical documents Prieto et al. (1999)
Central Andes snow depth -70.00 -33.00 1760 1996 Historical documents Neukom et al. (2009)
Central Andes snow occurrence -70.00 -33.00 1885 1996 Historical documents Prieto et al. (2001)
Santiago de Chile precipitaitiona -70.78 -33.38 1540 2006 Historical documents Taulis (1934)

Documentary - Australia
NSW precipitation 115.20 -33.90 1788 2008 Historical documents Fenby & Gergis (2013)

Lake Sediment
Lake Edward 29.75 -0.4 920b 1974 Mg/Ca ratio Russell & Johnson (2007)
El Junco Lake -89.5 -0.9 1791b 2004 Diatoms Conroy et al. (2009)
Lake Challa 37.75 -3.3 -1050 2005 Varve thickness Wolff et al. (2011)
Lake Masoko 33.75 -9.35 1779b 2002 Magnetic susceptibility Garcin et al. (2007)
Laguna Pumacocha -76.1 -10.75 -277 2007 d18O Bird et al. (2011)
Laguna Aculeo -70.90 -33.83 856 1997 Pigment reflection von Gunten et al. (2009)
Lago Puyehue -72.45 -40.65 1408 1997 Varve thickness Boes & Fagel (2008)
Lago Plomo -72.87 -46.98 1530 2000 Mass accumulation rate Elbert et al. (2011)

Marine Sediment
106KL off Peruvian Coast -77.67 -12.05 -13550 2000 Lithics concentration Rein (2007)
Cariaco Basin -64.77 10.75 1222 1990 Mg/Ca Black et al. (2007)

Speleothem
Avaiki Cave, Niue -169.83 -19.00 1829 2001 Lamina thickness Rasbury & Aharon (2006)
Cascayunga Cave, Peru -77.20 -6.05 1089 2005 d18O Reuter et al. (2009)

b Only the high resolution section (<5 years) is used

a The documentary record ends in the 19th or early 20th century and was extended to present using "pseudo documentaries" (see Neukom et al. 2009 and 
Neukom et al. 2013)
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temperature variability. Proxy records from these areas with a significant local temperature 

correlation are expected to be strongly correlated to SH climate. The spatial mean of the 

domain 55°S-10°N is very similar to the full SH mean, which is used as the reconstruction 

target (Supplementary Figure 2). 

Both the proxy and instrumental data are linearly detrended over the 1911-1990 overlap 

period prior to the correlation analyses. Correlations of each proxy record with all grid cells 

are then calculated for the period 1911-1990. The calculations are repeated after lagging the 

proxy data for one year in both directions. This lagging allows dating uncertainties and the 

different seasonal windows represented by the proxy data to be accounted for. For example, 

ice core, documentary and coral records often represent annual averages based on calendar 

year or rain-year (e.g. July-June) definitions in contrast to our May-April target seasonal 

window. Significance levels (5% threshold) are calculated taking AR1 autocorrelation into 

account (Bretherton et al., 1999). We consider the “local” correlation of each record as the 

highest absolute correlation of a proxy with all grid cells within a radius of 1000 km and for 

all the three lags (0, 1 or -1 years). A proxy record is included in the predictor set if this local 

correlation is significant (p<0.05). Reconstruction results using an alternative search radius of 

500 km, leading to a smaller predictor set (85 instead of 111 records) are similar 

(Supplementary Figure 20, see section 3.2.2). Proxies from Antarctica, which are outside the 

domain used for proxy screening, are included, if they correlate significantly with at least 

10% of the grid-area used for screening (latitude weighted). An alternative reconstruction 

using the full un-screened proxy network yields very similar results (Supplementary Figure 

20, see section 3.2.2), demonstrating that the screening procedure has only a limited effect on 

the reconstruction outcome. The spatial and temporal distribution of the 111 proxy records 

that passed the screening is shown in Figure 1 in the main text and their properties are listed 

in Supplementary Table 5. Supplementary Table 6 shows the local correlations of all selected 

proxies as well as their correlations with the SH mean reconstruction target. 
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More than 99% of the SH proxies are independent from the records used in the NH 

reconstruction (see section 5). The one exception in the 111 records is the Quelccaya d18O 

dataset, which was one out of thirteen proxies in one (Juckes et al., 2007) of the nine 

reconstructions in the NH ensemble. Juckes et al. (2007) furthermore note that this record is 

only of very minor importance in their NH reconstruction, as it is only weakly correlated with 

the composite of their remaining proxies (r=0.15) and omitting the record does not change the 

maximum pre-industrial temperature in their NH reconstruction (∆T=0.000K). 

Nine out of the 111 selected records are from sites located slightly north of the equator 

(Supplementary Table 5). None of these time series has been used in one of the NH 

reconstructions that we use for comparison. With two exceptions, all of the nine low-latitude 

NH-proxies in our dataset have stronger correlations with SH spatial mean temperatures than 

with the NH. The exceptions are Guam, which has very similar correlations with both 

hemispheres (SH: r=-0.49, p<0.01 over 1911-1990; NH: r=-0.51, p<0.01) and Bunaken which 

shows a strong relation to local temperatures (r=-0.56, P<0.01) and NINO3.4 (r=0.52, p<0.01) 

but non-significant correlations with both hemispheric means (SH: r=-0.08, p=0.56; NH: r=-

0.18, p=0.15). Eight out of the nine low latitude NH proxies are corals, one is a marine 

sediment. Supplementary Figure 21 (below, page 43) shows that our reconstruction is robust 

to the removal of corals and marine sediments indicating that our results are not biased by the 

NH proxy records. 

 
1.4. Missing values 1911-1990 

Missing values in the predictor matrix (1.28%) during the 1911-1990 calibration/verification 

period are infilled using RegEM (Mann et al., 2008).  
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Supplementary Figure 2 | Reconstruction vs. screening target. Comparison of the field 
mean of the GISStemp target grid using the full SH average (black; 90°S-0°S) and the domain 
55°S-10°N (red) respectively. The first was used as reconstruction target, the latter for the 
calculation of the local correlations between proxies and instrumental data. Annual averages 
are shown for the May-April window. 
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Supplementary Table 5 | Proxies selected for the SH temperature reconstruction. 

 

Name Archive Proxy Start End Lat (°S) Lon (°E) Reference
Lake Challa Kenya Lake Sediments Varve thickness -1050 2005 3.32 37.7 Wolff et al. (2011)
Mt. Read Tasmania Tree Rings Tree ring width -494 1999 42 147 Cook et al. (2000),Cook et al. (2006)
Laguna Pumacocha Lake Sediments d18O -277 2007 10.7 -76.07 Bird et al. (2011)
Oroko Tree Rings Tree ring width 1 2003 43.23 170.28 Cook et al. (2006)
Law Dome d18O Ice Cores d18O 179 2007 66.83 112.83 Unpublished
Quelccaya Ice Cores d18O 488 2002 13.93 -70.83 Thompson et al. (1984, 2006)
Laguna Aculeo Lake Sediments Pigment reflection 856 1997 33.83 -70.9 von Gunten et al. (2009)
Palmyra Island d18O Corals d18O 928 1998 -5.87 -162.13 Cobb et al. (2003)
Law Dome sea salt Ice Cores Summer sea salt 1000 2009 13 112.83 Unpublished
Talos Ice Cores dD 1217 1996 72.8 159.1 Stenni et al. (2002)
Cariaco Basin Marine Sediments Mg/Ca 1222 1990 -10.75 -64.77 Black et al. (2007)
Lago Puyehue Lake Sediments Lamina thickness 1408 1997 40.65 -72.45 Boes & Fagel (2008)
Siple Station Ice Cores d18O 1417 1983 75.92 -84.15 Graf et al. (2002), Taufetter et al. 

(2004)
CTP East Tasmania Tree Rings Tree ring width 1430 1994 42 148 Allen et al. (2001)
CAN Composite 6 Tree Rings Tree ring width 1435 2006 38.5 -71.5 La Marche et al. (1979a), Villalba 

(1990a), Mundo et al. (2012)
Pink Pine NZ Tree Rings Tree ring width 1457 1999 42 172 Duncan et al. (2010)
Urewera Tree Rings Tree ring width 1462 1987 38.68 177.2 Xiong and Palmer (2000)
Buckleys Chance Tree Rings Tree ring width 1463 1991 42.27 145.87 Buckley et al. (1997)
WDC05Q Accumulation Ice Cores Accumulation 1521 2004 79.45 -112.08 Banta et al. (2008)
NI LIBI Composite 1 Tree Rings Tree ring width 1526 1992 39.5 175.5 Xiong and Palmer (2000)
Takapari Tree Rings Tree ring width 1533 1992 40.07 175.98 Xiong and Palmer (2000)
Santiago de Chile Documentary Documentary 1540 2006 33.38 -70.78 Taulis (1934), Neukom et al. (2009)
CTP West Tasmania Tree Rings Tree ring width 1547 1998 42 146 Allen et al. (2001), Allen (2002), 

LaMarche et al. (1979c)
Tucuman Documentary Documentary 1548 2005 27.03 -65 Prieto et al. (2000), Neukom et al. 

(2009)
Peru ENSO index Documentary Documentary 1550 1990 8.1 -79.02 Garcia-Herrera et al. (2008), Quinn & 

Neal (1992)
Mangawhero Tree Rings Tree ring width 1551 1994 39.35 175.48 D'Arrigo et al. (2000)
Kauri NZ Tree Rings Tree ring width 1577 2002 36 174 Cook et al. (2006), Fowler et al. 

(2008)
CAN Composite 15 Tree Rings Tree ring width 1582 1991 41.17 -71.92 Villalba et al. (1997b)
ITASE 2002 4 Ice Cores d18O 1593 1997 86.5 -108 Jacobel et al. (2005)
Rio Mendoza Documentary Documentary 1601 2000 32 -68 Prieto et al. (1999), Neukom et al. 

(2009)
Urvina, Galapagos Corals d18O 1607 1981 0.03 -91.23 Dunbar et al. (1994)
Fiji AB Corals d18O 1617 2001 16.82 179.23 Linsley et al. (2006)
Mafia, Tanzania Corals d18O 1622 1998 8 40 Damassa et al. (2006)
Moa Park Tree Rings Tree ring width 1623 1991 40.93 172.93 Xiong and Palmer (2000)
CAN Composite 9 Tree Rings Tree ring width 1636 2006 39.33 -71.25 La Marche et al. (1979a), Mundo et 

al. (2012)
Abraham Corals d18O 1638 1983 20 153 Druffel and Griffin (1999)
CAN Composite 12 Tree Rings Tree ring width 1645 1992 40 -71 La Marche et al. (1979b), Villalba 

and Veblen (1997)
NI LIBI Composite 2 Tree Rings Tree ring width 1651 1990 39.27 174.1 Xiong and Palmer (2000)
Dolleman Ice Cores Chem. species PC1 1652 1991 70.57 -60.93 Russell et al. (2006)
Siple Dome B Ice Cores d18O 1654 1994 81.65 -148.8 Steig et al. (2013)
Amedee New Caledonia Corals d18O 1657 1992 22.48 166.45 Quinn et al. (1998)
Ifaty 4 Corals d18O 1660 1994 23 43 Unpublished
Ifaty, Madagascar Corals d18O 1660 1995 23.15 43.58 Zinke et al. (2004)
Huinganco Tree Rings Tree ring width 1673 2000 37.75 -70.6 La Marche et al. (1979a)
Secas Corals d18O 1707 1983 -7 -82.05 Linsley et al. (1994)
CAN Composite 2 Tree Rings Tree ring width 1714 2006 37.83 -71 La Marche et al. (1979a), Mundo et 

al. (2012)
CAN Composite 27 Tree Rings Tree ring width 1715 2002 49 -72 Boninsegna et al. (1989),  Srur et al. 

(2008)
SAN Composite 5 Tree Rings Tree ring width 1718 1984 54.75 -67.67 Boninsegna et al. (1989)
Princess Elizabeth Land Ice Cores Chem. species PC1 1745 1996 70.83 77.07 Xiao et al. (2004)
Santiago del Estero Documentary Documentary 1750 2005 27.77 -64.27 Herrera et al. (2003), Neukom et al. 

(2009)
Stewart Island Tree Rings Tree ring width 1758 1993 47 168 D'Arrigo et al. (1995), D'Arrigo et al. 

(2000)

© 2014 Macmillan Publishers Limited.  All rights reserved. 

 



15 
 

Supplementary Table 5 (continued) 

 

WA Callitris Tree Rings Tree ring width 1758 2005 33.03 120.77 Cullen et al. (2009)
Central Andes snow 
depht

Documentary Documentary 1760 1996 33 -70 Neukom et al. (2009)

Rarotonga d18O Corals d18O 1761 1996 21.23 -159.83 Linsley et al. (2006),Linsley et al. 
(2008)

Rarotonga SrCa Corals Sr/Ca 1761 1996 21.23 -159.83 Linsley et al. (2006),Linsley et al. 
(2008)

Valle Ameghino Tree Rings Tree ring width 1766 1997 50.42 -72.17 Masiokas and Villalba (2004)
Pino Hachado Tree Rings Tree ring width 1767 1974 38.63 -70.75 La Marche et al. (1979a)
CAN Composite 8 Tree Rings Tree ring width 1773 1989 39.17 -71.17 Villalba and Veblen (1997)
Vostok Pits Ice Cores d18O 1774 1999 78.45 106.83 Ekaykin et al. (2004)
Flanagans Hut Tree Rings Tree ring width 1776 1991 41.27 172.6 Xiong and Palmer (2000)
Savusavu, Fiji Corals d18O 1776 2001 16.82 179.23 Bagnato et al. (2005)
Fiji 1F SrCa Corals SrCa 1780 1997 16.82 179.23 Linsley et al. (2004)
Teak Indonesia Tree Rings Tree ring width 1780 2005 7 111 D'Arrigo et al. (2006)
Fiji 1F d18O Corals d18O 1781 1997 16.82 179.23 Linsley et al. (2004)
GBR precip recon rec4 Corals Luminescence 1783 1981 18 147 Lough  (2011)
Eastern NSW Documentary Documentary 1788 2008 33.9 115.2 Fenby & Gergis (2013)
CAN Composite 21 Tree Rings Tree ring width 1790 1991 41.5 -71.5 Villalba and Veblen (1997)
Guam Corals d18O 1790 2000 -13 145 Asami et al. (2005)
James Ross Island Ice Cores dD 1791 2000 64.37 -58.13 Aristarain et al. (2004)
Abrolhos Corals d18O 1794 1993 28.45 113.77 Kuhnert et al. (1999)
Tonga TH1 Corals d18O 1794 2004 19.93 -174.72 Unpublished
CAN Composite 34 Tree Rings Tree ring width 1795 2007 50.6 -73.67 Unpublished
Torre Morena 4 Tree Rings Tree ring width 1798 2007 49.5 -73.5 Unpublished
Illimani Ice Cores NH4 1800 1998 16.65 -67.78 Kellerhals et al. (2010)
ITASE 2000 5 Ice Cores d18O 1800 1999 77.67 -124 Schneider et al. (2005)
Malindi Corals d18O 1801 1994 3 40 Cole et al. (2000)
Paso Cordova Tree Rings Tree ring width 1811 1986 40.67 -71.25 ITRDB series arge050
Chapelco Tree Rings Tree ring width 1814 1985 40.33 -71.23 ITRDB series arge029
Baw Baw Tree Rings Tree ring width 1818 2002 36.42 148.33 Brookhouse et al. (2008)
Eastern Cape Documentary Documentary 1821 2007 34 24.5 Vogel (1989), Neukom et al. (in 

review)
La Meseda Tree Rings Tree ring width 1822 1999 23 -65.02 Unpublished
Kavieng Corals Sr/Ca 1823 1997 2.5 150.5 Alibert and Kinsley (2008a,b)
El Chalten bajo Tree Rings Tree ring width 1826 2003 49.37 -72.9 Srur et al. (2008)
Avaiki Speleothems Lamina thickness 1829 2001 19 -169.83 Rasbury & Aharon (2006)
Maiana Corals d18O 1840 1994 -1 173 Urban et al. (2000)
Seychelles Corals d18O 1846 1995 4.62 55.8 Charles et al. (1997), Abram et al. 

(2008)
Tonga TNI2 Corals d18O 1849 2004 20.27 -174.82 unpublished
CAN Composite 16 Tree Rings Tree ring width 1857 1991 41.13 -71.8 Villalba et al. (1997b)
Gomez Ice Cores d18O 1857 2005 73.6 -70.35 Thomas et al. (2008, 2009)
ITASE 2001 3 Ice Cores d18O 1858 2000 78.12 -95.65 Steig et al. (2005)
Mentawai West Sumatra Corals d18O 1858 1997 4 98.5 Abram et al. (2008)
CAN Composite 14 Tree Rings Tree ring width 1859 1994 41.13 -71.8 Villalba et al. (1997b), Schmelter 

(2000)
Bunaken Corals d18O 1863 1990 -2.8 123 Charles et al. (2003)
Rabaul d18O Corals d18O 1867 1997 4 152 Quinn et al. (2006)
Rabaul Sr/Ca Corals Sr/Ca 1867 1997 4 152 Quinn et al. (2006)
Rarotonga 3R Corals d18O 1874 2000 21.23 -159.83 Linsley et al. (2006),Linsley et al. 

(2008)
Zimbabwe Tree Rings Tree ring width 1875 1996 18.5 27.33 Therrell et al. (2006)
Ningaloo Corals d18O 1878 1995 21.9 113.97 Kuhnert et al. (2000)
Madang Lagoon Corals d18O 1880 1993 5.22 145.82 Tudhope et al. (2001)
Ifaty 1 Corals d18O 1882 1994 23 43 Unpublished
Laing Corals d18O 1884 1993 4.15 144.88 Tudhope et al. (2001)
Central Andes snow 
occurrence

Documentary Documentary 1885 1996 33 -70 Prieto et al. (2001), Neukom et al. 
(2009)

Palmyra Island SrCa Corals SrCa 1886 1998 -5.87 -162.13 Nurhati et al. (2011)
GBR precip recon rec17 Corals Luminescence 1891 1981 18 147 Lough  (2011)
ITASE 2001 2 Ice Cores d18O 1891 2001 77.83 -102.92 Steig et al. (2005)
CAN Composite 17 Tree Rings Tree ring width 1892 1994 41.17 -71.83 Villalba et al. (1997b), Schmelter 

(2000)
Clipperton Corals d18O 1893 1994 -10.3 -109.22 Linsley et al. (2000a)
Puerto Parryn Tree Rings Tree ring width 1893 1986 54.83 -64.37 Boninsegna et al. (1989)
Tarawa Corals d18O 1893 1989 -1 172 Cole et al. (1993)
NT Callitris Tree Rings Tree ring width 1896 2006 13 132 Baker et al. (2008)
Nauru Corals d18O 1897 1995 0.83 166 Guilderson et al. (1999)
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Supplementary Table 6 | Temperature correlations of proxies. Local correlations (rlocal) 
and correlations with the SH mean reconstruction target (rSH) for the selected predictors. 
Proxies from outside the screening area have no local correlation (NA). 

Name rlocal rSH Name rlocal rSH 
Lake Challa Kenya -0.38 -0.17 Pino Hachado -0.25 0.31 
Mt. Read Tasmania 0.43 0.65 CAN Composite 8 0.23 0.35 
Laguna Pumacocha -0.34 0.28 Vostok Pits NA 0.31 
Oroko 0.36 0.22 Flanagans Hut 0.36 0.13 
Law Dome d18O NA -0.05 Savusavu, Fiji -0.53 -0.26 
Quelccaya 0.32 0.17 Fiji 1F SrCa -0.49 -0.14 
Laguna Aculeo 0.36 0.46 Teak Indonesia 0.29 0.16 
Palmyra Island d18O -0.82 -0.61 Fiji 1F d18O -0.47 -0.24 
Law Dome sea salt NA -0.21 GBR precip recon rec4 0.30 -0.04 
Talos NA -0.12 Eastern NSW -0.39 -0.03 
Cariaco Basin NA 0.76 CAN Composite 21 -0.31 -0.10 
Lago Puyehue 0.34 -0.05 Guam -0.47 -0.49 
Siple Station NA 0.20 James Ross Island NA -0.58 
CTP East Tasmania -0.31 0.37 Abrolhos -0.53 -0.24 
CAN Composite 6 -0.31 0.00 Tonga TH1 -0.37 0.07 
Pink Pine NZ 0.49 0.24 CAN Composite 34 0.30 0.31 
Urewera -0.45 -0.11 Torre Morena 4 -0.27 -0.12 
Buckleys Chance 0.41 -0.03 Illimani 0.45 0.38 
WDC05Q Accumulation NA 0.09 ITASE 2000 5 NA 0.13 
NI LIBI Composite 1 -0.30 0.24 Malindi -0.46 -0.55 
Takapari -0.33 0.59 Paso Cordova -0.28 -0.27 
Santiago de Chile 0.26 0.17 Chapelco -0.30 -0.06 
CTP West Tasmania 0.29 0.57 Baw Baw -0.41 0.04 
Tucuman 0.43 0.37 Eastern Cape 0.31 -0.07 
Peru ENSO index 0.67 0.14 La Meseda -0.29 -0.02 
Mangawhero 0.36 0.51 Kavieng -0.38 -0.02 
Kauri NZ -0.52 0.36 El Chalten bajo -0.32 0.13 
CAN Composite 15 0.28 0.23 Avaiki -0.31 -0.06 
ITASE 2002 4 NA 0.06 Maiana -0.70 -0.58 
Rio Mendoza 0.39 0.12 Seychelles -0.42 -0.55 
Urvina, Galapagos -0.49 -0.14 Tonga TNI2 -0.45 0.14 
Fiji AB -0.59 -0.09 Gomez NA 0.14 
Mafia, Tanzania -0.24 -0.50 CAN Composite 16 0.31 0.01 
Moa Park -0.34 0.08 Mentawai West Sumatra -0.30 -0.41 
CAN Composite 9 -0.30 -0.08 ITASE 2001 3 NA 0.00 
Abraham 0.27 -0.16 CAN Composite 14 0.38 0.49 
CAN Composite 12 -0.41 -0.17 Bunaken -0.65 -0.08 
NI LIBI Composite 2 -0.29 0.38 Rabaul d18O -0.41 -0.03 
Dolleman NA 0.11 Rabaul Sr/Ca -0.46 0.01 
Siple Dome B NA -0.09 Rarotonga 3R 0.41 -0.33 
Amedee New Caledonia -0.44 -0.37 Zimbabwe -0.33 -0.01 
Ifaty, Madagascar -0.30 -0.20 Ningaloo -0.35 -0.58 
Ifaty 4 -0.27 -0.21 Madang Lagoon -0.36 -0.08 
Huinganco -0.33 -0.16 Ifaty 1 -0.32 -0.52 
Secas -0.26 -0.31 Laing -0.54 -0.36 
CAN Composite 2 0.28 -0.36 Central Andes snow occurrence 0.28 0.25 
CAN Composite 27 0.34 0.19 Palmyra Island SrCa -0.59 -0.33 
SAN Composite 5 -0.37 0.24 GBR precip recon rec17 0.35 0.02 
Princess Elizabeth Land NA 0.43 ITASE 2001 2 NA 0.07 
Santiago del Estero 0.27 0.23 CAN Composite 17 0.57 0.64 
Stewart Island 0.40 0.25 Tarawa -0.62 -0.44 
WA Callitris -0.29 -0.03 Clipperton -0.49 -0.63 
Central Andes snow depht 0.24 0.31 Puerto Parryn -0.29 -0.52 
Rarotonga d18O 0.49 -0.22 NT Callitris 0.24 0.19 
Rarotonga SrCa -0.50 0.02 Nauru -0.46 -0.70 
Valle Ameghino 0.32 0.24       
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2. Ensemble reconstruction 

2.1. Reconstruction methodology 

Temperature reconstructions are based on nested multivariate principal component regression 

(PCR; Luterbacher et al., 2002; Luterbacher et al., 2004; Neukom et al., 2010; Neukom et al., 

2011; Neukom et al., 2013). Detailed description of the PCR method is provided in 

Luterbacher et al.(2002), Luterbacher et al. (2004) and Wahl and Smerdon (2012). 

 

2.2. Ensemble parameters 

The ensemble approach (see also Frank et al., 2010; Neukom et al., 2010; Neukom et al., 

2013) allows for the provision of additional uncertainty estimates, complementing the 

traditional error estimates which quantify the unexplained variance in the calibration period 

(cf. Wahl and Smerdon, 2012, for an alternative probabilistic ensemble approach using PCR). 

The outcome of a climate reconstruction depends on the methodological choices that have to 

be made during the reconstruction process. For most of these choices, objective “best” 

solutions are largely missing in literature. The main limitation is that the real-world 

performance of different approaches and parameters can only be verified over the 

instrumental period, which is short and contains a strong trend, complicating quality 

assessments. We assess the influence of these methodological choices by varying 

methodological parameters in the ensemble and quantifying their effect on the reconstruction 

results. Obviously, the range within which these parameters are varied in the ensemble is also 

subjective, but we argue that the ranges chosen herein are within reasonable thresholds, based 

our own experience and the literature. Given the limited possibilities to identify the “best” 

ensemble members, we treat all reconstruction results equally and consider the ensemble 

mean our best estimate. Because our ensemble members can be approximated by a normal 
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distribution (Supplementary Figure 3, see also Supplementary Figure 26 below), the ensemble 

mean also represents the most probable value in the ensemble distribution function. 

We perform an ensemble of 3,000 reconstructions. For each ensemble member we use 

different settings by randomly: 

1. Selecting 10% of the temperature proxies (i.e. 11 records) that are removed from the 

proxy matrix. In the early parts of the reconstruction (CE 1000–1222 ) between nine 

and eleven proxies are available, the number of predictors used for each ensemble 

member varies between one and eleven. 

Rationale: We introduce this ensemble parameter because the proxy matrix in a multi-

proxy reconstruction is always dependent on some pre-reconstruction choices such as 

proxy screening procedures based on statistical calculations, literature review or the 

effort invested in the data compilation. This perturbation allows us to assess the 

robustness of the reconstruction against changes in the predictor network and to assess 

the potential dominance of individual records (see section 3.2.6). This perturbation 

contributes to approximately 11% of the total ensemble spread (calculated during the 

1911-1990 period; this fraction increases back in time due to the decreasing number of 

proxies available). 

2. Sampling the years for calibration (between 40 and 55 years within the 1911-1990 

overlap period). The remaining 25-40 years are used for verification. 

Rationale: Given the limited number of years available in the instrumental-proxy 

overlap period, the outcome of a reconstruction strongly depends on the choice of 

calibration and verification periods (Frank et al., 2010; Gergis et al., 2011). This 

perturbation contributes to approximately 43% of the total ensemble spread. 

3. Sampling the number of PCs to be used. We use the first n PCs that explain between 

50%-90% of the total variance of the predictor matrix. 
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Rationale: There are various approaches described in literature to identify the best PC 

truncation (North et al., 1982; Smerdon et al., 2010) with currently no widely accepted 

“best” approach. Furthermore, the eigenvalues of the proxy PCs are strongly 

depending on the period chosen over which to calculate the PCs. This perturbation 

contributes to approximately 17% of the total ensemble spread. 

4. Sampling the weight that each proxy gets in the PC analysis by increasing its variance 

by a factor of 0.67-1.5 (after scaling all proxies to mean zero and unit standard 

deviation over their common period).  

Rationale: The weight that each proxy record gets in the PC analysis is strongly 

dependent on the time period chosen (Supplementary Figure 4). Given the short period 

available for calibration, there is a high probability that the resulting proxy weights 

may not reflect the “true” weight of each proxy in the data matrix. This perturbation 

contributes to approximately 20% of the total ensemble spread. 

5. Selecting one chronology for proxies where multiple time series based on different 

methods are available (tree-rings and documentaries, sections 1.2.1 and 1.2.3) 

Rationale: The pre-processing of some records also involves some subjective choices. 

To overcome this limitation to a certain extent, we allow multiple versions of the same 

record to be used in different ensemble members. This perturbation contributes to 

approximately 8% of the total ensemble spread. 
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Supplementary Figure 3 | Ensemble distribution. Distribution of the difference between 
the individual ensemble members and the reconstruction ensemble mean. Distribution over all 
years within 1000-2000 (bold black) and within 200-year blocks (coloured lines) are shown. 
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Supplementary Figure 4 | Sensitivity of proxy weight in the PC-routine. PCs of the proxy 
matrix are calculated over different time windows (black line) and using artificial variance 
inflation as in the ensemble perturbation #4 (red line). Weights of each proxy record are 
calculated as the average absolute loading to the first five PCs and expressed relative to the 
value of the unweighted proxy matrix over 1911-1990. For the temporal dependence (black 
line) PCs are calculated over 80-year periods starting between 1850 and 1910. Prior to 1850, 
the number of proxy records available strongly decreases and the change in the composition 
of the proxy matrix becomes more important, masking the effect of the choice of period. For 
the red line, variance inflation with random factors between 0.67 and 1.5 was applied to each 
proxy. The figure illustrates that this variance inflation mimics the temporal sensitivity of the 
PC calculation. 

 
2.3. Required number of ensemble members 

Supplementary Figure 5 shows the variability of different measures as a function of the 

number of ensemble members. The black line shows the difference between the ensemble 

mean using n members and the ensemble mean using 10,000 members. For an ensemble of 

3,000 members, all measures are sufficiently close to a very large ensemble (e.g. the 

difference for the ensemble mean reconstruction is less than 0.001°C over the 1911-1990 

period) but allow a significant reduction in the computational time and disk space required. 

For the AR-noise reconstructions (see below section 3.1.5), the use of 1000 member 

ensembles is sufficient because we only work with the RE skill values of these 
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reconstructions, which are still very close to the values of the large 10,000 member ensemble 

(Supplementary Figure 5, bottom). 

 
Supplementary Figure 5 | Reconstruction statistics for different ensemble sizes. The 
absolute differences between an ensemble of n members and an ensemble of 10,000 members 
is shown. We use the statistics for the period 1911-1990 of the most replicated nest (111 
proxies). Top: Ensemble mean reconstruction (black), standard deviation between ensemble 
members (red) and 5th percentile of ensemble members (green). All values are shown relative 
to the instrumental standard deviation 1911-1990 (0.15°C). Bottom: Ensemble median RE 
(black), standard deviation between RE of ensemble members (red) and 5th percentile of RE 
of ensemble members (green). The dotted vertical lines represent the ensemble sizes used for 
the SH-mean reconstruction (3,000 members), the AR noise reconstructions (1,000 members, 
see below) and 500 and 100 members, respectively. 
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2.4. Reconstruction uncertainties 

The combined calibration and ensemble uncertainties (SE) are calculated where �� =
�����	 + ����	  with σres denoting the standard deviation of the regression residuals and σens the 

standard deviation of the ensemble members. σres remains constant for all years with the same 

predictor availability, whereas σens is different for each year. Blue shaded probabilities in 

Figure 2 in the main text represent the quantiles of a normal distribution around the ensemble 

mean with a standard deviation of SE. Temporal evolution of the interannual and 30-year 

filtered reconstruction uncertainties are shown in Supplementary Figure 6 and Supplementary 

Figure 7, respectively. The increasing ensemble uncertainties back in time are caused by the 

decrease of available proxy records further back in time 

 
Supplementary Figure 6 | Reconstruction uncertainties. Ensemble standard deviation σens 
(black), residual standard deviation σres (red) and combined SE uncertainties (green) of the 
unfiltered reconstruction. 
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Supplementary Figure 7 | Filtered reconstruction uncertainties. Same as Supplementary 
Figure 6 but for the 30-year filtered reconstruction. 

 
 
2.5. Unfiltered SH mean reconstruction 

Supplementary Figure 8 shows the unfiltered reconstruction ensemble mean and associated 

uncertainties. The unfiltered data shows some long-term changes in the variance structure 

(Supplementary Figure 9) that may be an artifact of changes in proxy replication over time. 

The long-term changes in variance are not so evident at decadal to centennial time-scales 

(Supplementary Figure 9). Because our interpretations and conclusions focus on the decadal 

and lower resolution, these potential variance artifacts do not influence or findings or 

conclusions. We note that long-term trends in climate variability, e.g., related to ENSO, have 

been advocated in literature (e.g., McGregor et al., 2013, who also find a reduction of 

temperature variance in their ENSO record over 1590-1880), so we do not wish to exclude a 

priori the possibility that long-term changes in climate variability exist, but rather to draw 

attention to possible uncertainties in the variance structure of our new record. 
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Supplementary Figure 8 | Unfiltered SH reconstruction. Black: reconstruction ensemble 
mean; dark grey shading: ensemble 2σ bounds, light grey shading: combined 2SE 
uncertainties. Green: Instrumental target data. 

 

 

Supplementary Figure 9 | Running standard deviations. 30-year running standard 
deviations of the unfiltered SH reconstruction ensemble mean (black) and of the 30-year (red) 
and 100-year (green) loess filtered ensemble mean. 
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3. Reconstruction reliability  

To assess the ‘reliability’ of the reconstruction we consider a range of reconstruction ‘skill’ 

and ‘robustness’ measures. Reconstruction skill assesses the ability of our proxies to 

reconstruct instrumental temperatures over verification periods that are independent from the 

calibration years. Robustness is assessed by investigating the effect of different reconstruction 

methods, proxy archives and individual records on the outcome of the reconstruction. 

3.1. Reconstruction skill 

The aim of reconstruction skill assessments is to verify the ability to capture temperature 

fluctuations during a verification period, which is independent from the time window used for 

calibration. Traditionally, a time slice of the overlap-period between proxy and instrumental 

data is used for this verification exercise. This time slice can be at the beginning, at the end or 

within the calibration period. The ensemble approach with individual calibration/verification 

windows for each member allows us to further elaborate this concept to ensemble-based 

verification metrics. We adapt the traditional RE (reduction of error) and RMSE (root mean 

square error) statistics (Cook et al., 1994) to quantify the reconstruction skill over the 

ensemble members as well as for the ensemble mean. The RE measure is defined as 

RE = 1 − ∑ ������� �������� ���� !∑ ������� ��"#$�%���� !  , 

with xinst denoting instrumental values and xrecon the reconstructed values for each year i of the 

verification period. xcalib is the calibration period mean of the instrumental data. The RE tests 

whether the reconstruction has more predictive skill than the climatology of the calibration 

period (xcalib). RE values between 0 and 1 (a hypothetically perfect reconstruction) indicate a 

skillful reconstruction, while RE values <0 indicate no predictive skill. 

The RMSE is defined as  

© 2014 Macmillan Publishers Limited.  All rights reserved. 

 



27 
 

RMSE = (1)*+xinst� − xrecon� 5	�
�67  

 We calculate the verification values for each existing proxy combination (proxy nest) during 

the reconstruction period. The value of the calibration/verification exercise using only the 

proxies available in the year 1000 is assigned to the year 1000 etc. This yields a time series of 

validation values covering the full reconstruction period (Figure 1b in the main text and 

Supplementary Figure 10). The ensemble-based validation metrics are described in the 

following sections. 

3.1.1. Ensemble validation 

For each reconstruction ensemble member, we calculate the RE statistic from years withheld 

for verification within the 1911–1990 calibration/verification period. The number of years 

available for verification varies between 25 and 40 years. The ensemble median RE time 

series is derived by calculating the median of the RE values of all ensemble members for each 

year. We use the median here, because the distribution of the RE values is strongly skewed 

and a small number of very large negative RE values can bias the ensemble distribution and 

lead to an artificially low ensemble mean RE. The ensemble median RE of our reconstruction 

is consistently positive over the 1000-2000 period, except for the year 2000 which has a 

negative value (Supplementary Figure 10). 

3.1.2. Ensemble mean early verification 

The ensemble mean reconstruction is verified against the instrumental data in the 1880–1910 

period, which is independent from the 1911–1990 calibration/verification interval and does 

not exhibit a significant temperature trend. Note, however, that the quality of the instrumental 

record is very limited in the SH during this early period. The early verification RE of our 

reconstruction is positive over the full 1000-2000 period. 
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3.1.3. Ensemble mean verification and calibration years 

For each year over the 1911–1990 calibration/verification period, the ensemble mean 

reconstruction is calculated for all members where the year was used for verification (and not 

for calibration). This returns a time series covering 1911–1990 and representing the ensemble 

mean based only on verification years. This ‘verification ensemble mean’ is then used as xrecon 

and tested against the instrumental target over the full 1911–1990 period. This RE value is 

slightly different from the traditional RE statistic because the verification years (covered by 

xinst and xrecon) and the calibration years (represented by xcalib) are both drawn from the same 

1911–1990 period. Similarly we also calculate the calibration years RE using the ensemble 

mean of all years that are used for calibration as xrecon. The calibration and verification years 

RE are shown in Figure 1b in the main text. They are positive over the full 1000-2000 period. 

3.1.4. Ensemble mean RMSE 

The RMSE between the ensemble mean reconstruction and the instrumental data is calculated 

over the 1911-1990 calibration/verification window. 

3.1.5. Noise predictors 

To test if our reconstruction has more predictive skill than noise predictors, we compare the 

above RE values against the REs of reconstructions based on AR noise proxies. The ‘AR 

noise proxies’ are noise time series of the same length and autoregressive properties as our 

real proxy data (reflecting the full temporal autoregressive structure of the proxies; Wahl and 

Smerdon, 2012). For this exercise, AR noise proxy generation, screening and reconstructions 

are repeated 100 times using 1000-member ensembles.  

Supplementary Figure 10 shows the temporal evolution of the reconstruction skill measures 

using real and AR noise proxies. The results demonstrate that RE values using real proxies are 

consistently positive (except for the negative ensemble median RE in the year 2000) and all 
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RE and RMSE measures clearly outperform the noise reconstructions, indicating a skillful 

temperature reconstruction is possible over the full 1000-2000 period. Less than 0.24% of 

noise reconstructions outperform our real temperature reconstruction over the entire 

reconstruction period using the ensemble median RE. The corresponding numbers for the 

early verification RE and verification years RE are 2.88% and 0.50%. Note that the fraction of 

predictors selected in the proxy-screening procedure (see section 1.3) is much smaller in the 

case of noise-proxies (74.6±12 out of 191 proxies reflecting a fraction of 39.1%±6.3%) than 

for the real proxies (111 out of 191 proxies reflecting 58.1%). 

Our results demonstrate that even though our conservative approach to derive noise-predictors 

can yield noise-based reconstructions with positive skill, it is very unlikely that noise 

predictors can reproduce the levels of predictive skill observed in the real proxy based 

reconstructions (cf. Wahl and Smerdon, 2012, section 4 and Fig. 2, for a parallel result). As a 

result, we have increased confidence that the skill we see in the reconstruction is evidence of a 

realistic estimation of past temperature variations. 
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Supplementary Figure 10 | Reconstruction skill: RE and RMSE skill measures of our PCR 
reconstruction using real proxies (black lines) and median of 100 reconstructions using AR 
noise proxies (red lines). a Ensemble median RE, b early verification RE c verification years 
RE and d RMSE. The shaded areas represent the relative probability distribution of the results 
from 100 AR noise proxy reconstructions, expressed as percentiles: the lightest shading 
encloses the area between the minimum and maximum value, the next darker shading the area 
between the 5th and 95th percentile and so on. The darkest shading represents the area 
between the 45th and the 55th percentile. Values below -1.5 are not shown. 

 

3.1.6. Ensemble vs. single reconstruction 

Supplementary Figure 11 and Supplementary Figure 12 illustrate the RMSE and RE values of 

the individual ensemble members and the ensemble mean, respectively. They show that the 

skill of the ensemble mean is clearly higher than the average skill of the individual ensemble 

members, indicating that using ensemble reconstructions not only allows us to better address 

reconstruction uncertainties but also leads to more accurate results compared to single-

member approaches. Supplementary Figure 11 and Supplementary Figure 12 also show that in 
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the most replicated nest during the 20th century, where AR noise reconstructions also have 

positive RE values, the real proxies clearly outperform the artificial data. 

 
Supplementary Figure 11 | Ensemble vs. single-reconstruction RMSE: Dashed lines: 
Ensemble distribution of verification RMSE values of the most replicated proxy nest in the 
reconstruction using real proxies (black) and AR-noise proxies (red). Solid lines represent the 
RMSE of the ensemble mean reconstruction using real proxies (black) and distribution of 100 
AR-noise based ensemble reconstructions (red). 

 

 
Supplementary Figure 12 | Ensemble vs. single-reconstruction RE. Same as 
Supplementary Figure 11 but for the RE. Solid lines represent the Verification years RE (see 
section 3.1.3). 
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3.2. Reconstruction robustness 

Ideally, the reconstructed signal in multi-proxy reconstructions is inherent in multiple 

predictors and not dominated by a single proxy. Hence, the final reconstruction should not be 

too sensitive to changes in the proxy network. Similarly, individual archives (such as tree-

rings or corals) should not dominate the reconstruction. Also, the choice of the reconstruction 

method should not influence the conclusions. Our ensemble reconstruction approach allows 

these questions to be addressed and allows the robustness of our reconstruction to be 

evaluated. 

3.2.1. Alternative reconstruction methods: CPS 

To address the influence of the reconstruction method on our results, we perform an 

additional 3000-member reconstruction using the Composite Plus Scale method (CPS; Mann 

et al., 2008; Neukom et al., 2011). We use the CPS approach of Neukom et al. (2011), which 

calculates the predictor composite by weighting each record with its correlation coefficient 

with the target over the calibration period. Supplementary Figure 13 compares the PCR and 

CPS reconstructions. They are generally very similar, indicating robustness of the results with 

regards to the reconstruction methodology. The low frequency amplitude is slightly larger in 

the CPS reconstruction resulting in colder reconstructed pre-industrial temperatures as 

compared to PCR. In terms of reconstruction skill, PCR performs slightly better. Therefore 

PCR is used for the analysis in the main manuscript. 
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Supplementary Figure 13 | PCR vs. CPS reconstruction. Top: 30-year filtered ensemble 
mean PCR (black, with grey shaded 2SE uncertainties) and CPS (red) reconstructions. 
Bottom: Verification years RE values of the PCR (black) and CPS (red) reconstructions. 
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3.2.2. Alternative reconstruction methods: LNA 

We compare our results to an independent reconstruction using Bayesian hierarchical models 

developed by Li et al. (2010) , referred to as “LNA” in Hanhijärvi et al. (2013) and PAGES 

(2013). We used the same parameters as in PAGES (2013). The resulting reconstruction is 

compared to our PCR reconstruction in Supplementary Figure 14. We use the 2σ ensemble 

standard deviation of the LNA reconstruction as uncertainties to compare with our combined 

2SE (see section 2.4). While the two methods yield a qualitatively similar temperature 

evolution, the LNA reconstruction shows a much larger amplitude between pre-industrial and 

present day temperatures. This amplitude is smaller (larger) in the PCR (LNA) reconstruction 

than in the NH reconstruction and most simulations of both hemispheres. Correlation between 

the two ensemble mean reconstructions is 0.71 (p<<0.01) and 0.74 (p=0.01) on interannual 

and 30-year filtered timescales, respectively. Supplementary Table 7 provides further 

comparison between the two reconstruction approaches. Notably we find that the early 

verification statistics of the LNA method are substantially weaker (e.g., RE values of 0.52 

versus 0.9 for LNA and PCR, respectively). Yet, interestingly, most of the quantification 

provided in the main text related to NH-SH coherence and extreme periods (with the 

exception of the temperature amplitude) is similar for these two reconstruction approaches. 

The two methods also show very similar results in terms of extreme periods and inter-

hemispheric differences. Given that our conclusions are based on decadal to centennial time-

scale analyses, uncertainties in the overall amplitude (e.g., plausibly larger amplitude in the 

LNA reconstruction despite weaker early verification statistics) do not affect our main 

findings. 
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Supplementary Figure 14 | PCR vs. LNA reconstruction. a Comparison of 30-year filtered 
PCR (blue) and LNA (red) reconstruction ensemble means with shaded uncertainties and 
instrumental data (green). b Comparison of 30-year filtered PCR (blue) and LNA (red) 
reconstruction ensemble means after standardization to a mean of zero and unit standard 
deviation over the period 1000-2000.  
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Supplementary Table 7 | Comparison of PCR and LNA reconstructions. Comparison of 
early verification statistics, uncertainties and the statistics and properties mentioned in the 
main text. 

  PCR LNA 

Early verification statistics (1880-

1910; full proxy replication) 

  

r
2
 0.57 0.02 

RE 0.9 0.52 

    

Percentage of members with decade 

of highest temperature after 1970 

(main text, line 93) 

99.7 98.8 

    

Reconstruction-model correlations 

(line 114) 

  

ensemble mean correlations 0.29 0.46 

ensemble 2*std. dev. 0.22 0.24 

correlation of ensemble means 0.35 0.58 

    

Periods with decades showing a 

certain fraction of ensemble 

members with extreme temperatures 

synchronously in both 

hemispheres(lines 120ff) 

  

>= 33% members with cold extremes within 1594-1677 within 1449-1452 and 1597-1695 

>66% members with positive 

extremes 

since 1974 since 1974 

>90% members with positive 

extremes 

since 1979 since 1979 

    

Fraction of years (%) with ensemble 

mean NH-SH difference outside the 

10th-90th percentile range of model 

simulations (line 148) 

41.6 43.1 

    

Pre-industrial temperature amplitude 

(°C; line 155) 

  

Ensemble mean 0.37 0.75 

Ensemble 2*std. dev. 0.11 0.13 

    

Uncertainties (°C; temporal average)   

Interannual data 0.22 0.27 

30-year filtered data 0.13 0.11 
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3.2.3. Influence of changes in proxy replication 

A potential uncertainty of nested climate reconstructions is that the changes in proxy 

replication may bias the temporal representativity of the reconstruction. The proxy databases 

available throughout the reconstruction period may have different properties such as spatial 

distribution, land/ocean signal, seasonal response and spectral properties. If these differences 

are substantial, the reconstructions of different proxy combinations (nests) may not be 

comparable and splicing them together can lead to misinterpretations. To test this, we 

performed an additional reconstruction using only the records that extend back to the year 

1000 or beyond (henceforth R8 reconstruction), resulting in a reconstruction with constant 

proxy replication over time. 

Supplementary Figure 15 shows the spatial distribution of proxy data over time. 

Supplementary Figure 16 compares the R8 reconstruction to the full spliced reconstruction 

using all 111 records. The figure shows that the two reconstructions generally have a very 

similar temperature evolution. The greatest differences occur between 1700 and 1900, where 

the R8 reconstruction shows warmer temperatures but the fluctuations are mostly in phase 

with the full reconstruction. Inclusion of the floating Palmyra coral record does not 

substantially change the R8 reconstruction except that it yields colder conditions in the late 

11th century. Supplementary Figure 17-Supplementary Figure 19 show the analogues of 

Figures 2-4 in the main text for the R8 network. The figures are very similar to the results 

using the full network, indicating that our conclusions are not affected by the changing proxy 

replication over time. 

© 2014 Macmillan Publishers Limited.  All rights reserved. 

 



38 
 

 

Supplementary Figure 15 | Spatial distribution of proxy data over time. Same as Figure 
1a in the main text but showing proxy data availability for different years within the last 
millennium. The R8 network is shown in the top left panel (where the discontinuous Palmyra 
coral record is shown additionally as blue circle). 

 
Supplementary Figure 16 | R8 reconstruction. Comparison of our SH reconstruction 
(black) with alternative reconstructions using only the proxies covering the full AD1000-2000 
period (R8, blue) and additionally the floating and interrupted Palmyra coral record (green). 
Top: 30-year filtered reconstruction ensemble means. Grey shading represents the 2SE 
uncertainty bounds of the fully replicated reconstruction. Bottom: Corresponding verification 
years RE values. 
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Supplementary Figure 17 | Temperature variability over the last millennium using long 
proxies only. Same as Figure 2 in the main text but using the SH reconstuction that includes 
only the proxies extending to the year 1000. 

 
 

 
Supplementary Figure 18 | Extreme periods using long proxies only. Same as Figure 3 in 
the main text but using the SH reconstuction that includes only the proxies extending to the 
year 1000. 
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Supplementary Figure 19 | Inter-hemispheric temperature difference using long proxies 
only. Same as Figure 4 in the main text but using the SH reconstuction that includes only the 
proxies extending to the year 1000. 
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3.2.4. Influence of different proxy screening approaches 

Supplementary Figure 20 compares our 30-year filtered reconstruction with alternative 

reconstructions using the same method but different proxy matrices: a pre-screened network 

using a search radius of 500 km (instead of 1000 km) and the full, unscreened network. The 

resulting reconstructions are very similar to the results presented in the main text and always 

remain within the 2SE uncertainty bands. Additionally a simple unweighted average of all 

111 proxies used in the final reconstruction is shown by the green line in Supplementary 

Figure 20. This composite shows a similar temperature history, but with stronger cooling 

during the period 1400-1900. We interpret this difference as meaning that some regions with a 

high density of proxy data may have experienced colder conditions than the hemispheric 

average. 

 

 

Supplementary Figure 20 | Influence of proxy screening. Comparison of 30-year filtered 
ensemble mean temperature reconstruction (top) and verification years RE (bottom) based on 
different predictor sets. Black: final predictor selection based on a search radius of 1,000 km 
(111 proxies). Blue: Predictor selection based on a search radius of 500 km (85 proxies). Red: 
No pre-screening of the proxies, all records are used (205 proxies). The green line represents a 
simple average of the 111 proxies used in the reconstruction (after adjusting them to a mean 
of zero and unit variance over the 1911-1990 period). 

© 2014 Macmillan Publishers Limited.  All rights reserved. 

 



42 
 

3.2.5. Influence of different proxy archives 

Our proxy records are not evenly distributed over the different paleoclimate archives. Figure 

1b in the main text shows that tree-rings and corals are the archives with the largest fraction of 

proxies used. This bias towards tree-rings and corals is very strong in the more recent past, 

but less distinct in the early period of the reconstruction. In the year 1000, our predictor set 

consists of three lake sediment and ice core chronologies, two tree-ring and one coral record. 

To assess whether one archive dominates the reconstruction and biases the results, we 

recalculated the reconstruction omitting all records from each archive separately. The 

resulting reconstructions and RE measures are shown in Supplementary Figure 21 and 

Supplementary Figure 22, respectively. The reconstructions with the individual archives 

removed always remain within the 2SE uncertainties of the final reconstruction 

(Supplementary Figure 21). Comparison of the RE values (Supplementary Figure 22) shows 

that in the first 200 years of the reconstruction, tree-ring data are required to obtain positive 

ensemble median RE values. For the other archives and skill measures, removing individual 

archives only marginally changes the reconstruction skill. 
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Supplementary Figure 21 | Influence of proxy archives. 30-year filtered ensemble mean 
reconstructions based on different combinations of proxy archives. Bold black is the final 
reconstruction using all archives with 2SE uncertainty bands shaded in grey. Blue is the 
reconstruction after removing all coral records; similarly for documentaries (red), lake 
sediments (thin black), speleothems (pink), marine sediments (yellow), tree-rings (green) and 
ice cores (orange). 

 

 
Supplementary Figure 22 | Influence of proxy archives on reconstruction skill. Same as 
Supplementary Figure 21 but for the RE measures of the reconstructions. 
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3.2.6. Influence of individual proxy records 

To assess whether our reconstruction is dominated by individual proxy records, we compare 

the ensemble members where a proxy was included and excluded, respectively. For each 

proxy we repeat the following calculations. The ensemble mean of all members where the 

proxy was included in the reconstruction (meaninc) and excluded from the reconstrution 

(meanexc) are calculated, respectively. The ensemble standard deviation of all members where 

the proxy was included (σinc) was also calculated. If the meanexc fell outside the meaninc±2σinc 

range in one or more years, these periods are considered less robust. Note that this ±2σinc 

range is different from the total combined uncertainties as it represents only the spread of a 

sub-sample of the full ensemble and does not include calibration uncertainties. This analysis 

was repeated using the 30-year filtered data. Supplementary Figure 23 illustrates the results 

using the example of proxy #2 (Mt. Read Tasmania) and the 30-year filtered data. 

Supplementary Figure 24 and Supplementary Figure 25 show the results of the interannual 

analysis for the same proxy. Note that out of all 111 proxies, the effect of removing a record 

is largest for the proxy #2 shown in these Figures. Over all proxies, this robustness criterion is 

not fulfilled during 25 (0) years of our unfiltered (30-year filtered) reconstruction. The 25 

years where the criterion is not fulfilled on interannual timescales are all between 1000 and 

1360. The proxies affected are #2 (Mt. Read; 23 years) and #8 (Palmyra, 2 years). Given this 

small fraction of years and proxies affected, we conclude that our reconstruction is robust 

with regard to changes in the predictor network, particularly during the post-1360 period and 

on decadal timescales. 
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Supplementary Figure 23 | Example for the influence of single proxies. Effect of 
removing proxy #2 (Mt. Read) from the predictor set on the 30-year filtered reconstructions. 
Black: mean of all ensemble members where this proxy was included into the reconstruction 
(meaninc). Grey shading: 2 standard deviation bounds of these ensemble members 
(meaninc±2σinc). Red dashed: mean of all members where this proxy was withheld from the 
reconstruction (meanexc).  

 
 

 

Supplementary Figure 24 | Example for the influence of single proxies on interannual 
scale. Same as Supplementary Figure 23 but for the unfiltered data. Blue circles indicate less 
robust years where the red dashed line falls outside the grey 2 standard deviation bounds. 
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Supplementary Figure 25 | Example for the influence of single proxies on interannual 
scale between 1000-1350. Same as Supplementary Figure 24 but over the period 1000-1350. 

 
 

3.2.7. Ensemble median vs. mean 

Supplementary Figure 5 shows the reconstruction ensemble median and mean, which are very 

similar (see also Supplementary Figure 4). The largest (average) absolute difference between 

the mean and the median over the period 1001-2000 is 0.15 (0.02) standard deviations of 

instrumental temperatures 1901-1999. For computational reasons we therefore use the 

ensemble mean to estimate the most probable reconstructed value. However, for the RE 

measures we use the ensemble median, as the mean is often biased by a small number of 

ensemble members with extremely large negative REs. 
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Supplementary Figure 26 | Ensemble mean vs. median. SH mean reconstruction ensemble 
mean (black) and median (red). See also Supplementary Figure 3 

 
 
3.3. Conclusions 

In summary, our reliability assessments indicate a skilful and robust reconstruction over the 

last millennium. More high resolution proxy records are required to allow a robust SH 

temperature reconstruction prior the year 1000. 
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4. Sensitivity to instrumental target data 

Supplementary Figure 27 shows the sensitivity of our reconstruction to the choice of the 

instrumental dataset used for calibration. While the SH means of the three instrumental grids 

GISS (Hansen et al., 2010), HadCRUT4 (Morice et al., 2012) and MLOST (Smith et al., 

2008) are highly correlated over the 1911-1990 calibration period (all r>0.94, p<<0.01), they 

exhibit some differences in amplitude and trend (GISS: 0.50°C/century; HadCRUT4: 

0.58°C/century; MLOST: 0.74°C/century). The NH-SH differences, however, are similar and 

do not affect our conclusions (see also Drost and Karoly, 2012; Drost et al., 2012).  

To assess the influence of the instrumental dataset on our reconstruction, we re-scaled our 

ensemble mean reconstruction to the mean and variance of the three instrumental data 

(Supplementary Figure 27c). While the results from GISS and HadCRUT4 are very similar, 

the reconstruction rescaled to MLOST reveals lower pre-industrial temperatures (average 

offset of 0.1°C between GISS and MLOST over 1000-1850). This suggests that our estimates 

of the unusual nature of late 20th century temperatures are rather conservative given our 

choice of the instrumental calibration dataset. 

 
Supplementary Figure 27 | Comparison of different instrumental temperature datasets. 
Comparison of the GISS dataset (cyan; Hansen et al., 2010) used for our reconstruction with 
the other gridded instrumental temperature records HadCRUT4 (red; Morice et al., 2012) and 
NOAA MLOST (black; Smith et al., 2008). Instrumental 2SE envelopes are blue shaded. a 
Instrumental SH mean temperatures (cf. Figure 1c in the main text). Start and end dates of the 
calibration/verification period of our reconstruction (1911-1990) are indicated by vertical 
dotted lines. b NH-SH differences 1850-2010 (cf. Figure 4a in the main text). c 30-year 
filtered SH reconstruction ensemble means re-scaled to the mean and variance of each 
instrumental target over the 1911-1990 period.  
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5. NH reconstruction ensemble 

Details concerning the NH reconstructions are provided in Frank et al. (2010). The most 

important difference from our SH reconstruction is that it is not based on a single predictor 

matrix but uses nine published NH reconstructions, based on different (but not independent) 

proxy sets and various reconstruction methodologies (Jones et al., 1998; Briffa, 2000; Mann 

and Jones, 2003; Moberg et al., 2005; D'Arrigo et al., 2006a; Frank et al., 2007; Hegerl et al., 

2007; Juckes et al., 2007; Mann et al., 2008). In Frank et al. (2010), the individual single-

member reconstructions were recalibrated to instrumental temperature data using different 

calibration periods as ensemble parameters, resulting in a total of 521 ensemble members. 

Although the approach is different, the NH reconstruction ensemble also represents a 

combination of calibration, proxy data and methodological perturbations. The latter two are 

introduced through the nine different original reconstructions in the NH, whereas for the SH 

they are sampled for each ensemble member. In the NH approach, the variable calibration 

window resulted in a quantification of amplitude uncertainty only, whereas in our SH 

approach changing the calibration period also influences the shape of the reconstructed 

temperature history. The NH ensemble spread is larger than in the SH due to the relatively 

large differences between some of the original sub-reconstructions and the composite-plus-

scaling approach over a range of time-windows in ref. (Frank et al., 2010). Note that the 

increase in ensemble uncertainties back in time is much larger in the SH (the ratio of 

uncertainties 11th century/20th century is 2.34 for the SH and 1.2 for the NH). To best 

illustrate these two approaches, the ensemble means of the nine sub-reconstructions are shown 

for the NH in Figure 2a. As a consequence of these methodological differences and the larger 

ensemble spread in the NH, one would expect generally reduced probabilities for extreme 

periods in the NH. However, Figures 3a-b show similar fractions of periods with high 

probabilities for extremes, indicating a similar consistency between ensemble members in the 

timing of extreme periods in both hemispheres. The relatively small ensemble spread in the 

NH-SH differences (Figure 4a), particularly during extreme phases, where in most cases all 

ensemble members are of the same sign, also indicates consistency among the NH 

reconstructions in identifying decadal-scale temperature trends. 
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6. Simultaneous extreme periods 

Supplementary Table 8 | Synchronous extreme periods. Periods where both hemispheres 
exhibit extreme periods in at least 33% of their reconstruction ensemble members. The years 
indicated are the start years of 10-year running temperature averages as used to generate 
Figure 3 in the main text. Extremes are defined as 10-year averages exceeding one standard 
deviation above or below the 1000-2000 CE baseline. Note that 1986 is the last year of this 
analysis (representing the average of 1986-1995), because the NH reconstruction ends in 
1995. 

Negative extremes 1594, 1595, 1596, 1597, 1598, 1599, 1600, 1601, 1602, 1603, 1619, 1620, 
1621, 1622, 1623, 1635, 1636, 1639, 1640, 1641, 1642, 1643, 1644, 1645, 
1646, 1671, 1672, 1673, 1674, 1675, 1676, 1677 

Positive extremes 1030, 1965, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 
1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986 
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7. Details on climate model simulations 

Supplementary Table 9 provides an overview over the 24 model simulations used in this 

study. Ten of the simulations belong to the latest coordinated PMIP3-CMIP5 simulation effort 

(Taylor et al., 2012) using recommendations for forcings from Schmidt et al. (2011; 2012). 

For further details we refer to the references provided in the table. We use hemispheric 

averages and May-April years for the SH and calendar years for the NH, as represented by the 

reconstructions. 
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Supplementary Table 9 | Details of the model simulations used in this study. Name, time period covered and forcing datasets used. Weak/Strong 
in the column for solar forcing is a qualitative remark for the strength of solar variability over the last millennium (see e.g. Jungclaus et al., 2010). 
For further details we refer to the references provided in the table. Note that for some simulations, references for the simulation of the last 
millennium are not yet available. In these cases, general references to the model are provided. The last column indicates whether the simulation 
belongs to the latest PMIP3/CMIP5 dataset (Taylor et al., 2012) using recommendations for forcings from Schmidt et al. (2011; 2012). 

Model Simulation Time span Volcanic 
forcing 

Solar forcing GHG forcing Orbital forcing Land-use-
land-cover 
forcing 

Aerosol 
forcing 

Reference(s) PMIP3/
CMIP5 

BCC-CSM  0850-2000 (Gao et al., 
2008) 

Weak (Vieira and 
Solanki, 
2010) spliced 
to  (Wang et al., 
2005) 

(MacFarling–Meure et al., 
2006); (Schmidt et al., 
2011 and references 
therein) 

(Berger, 1978)  (Lamarque et 
al., 2010) 

(Xin et al., 
2013) 

X 

CCSM3  1000-2000 (Ammann et 
al., 2003) 

Strong (Bard et al., 
2000), spliced to 
(Lean et al., 1995) 

CO2: (Etheridge et al., 
1996), CH4: Blunier et al. 
(1995), 
 (Blunier et al., 1995), 
N2O: (Flückiger et al., 
1999; Flückiger et al., 
2002) 

   (Hofer et al., 
2011) 

 

CCSM4  850-2005 (Gao et al., 
2008) 

Weak (Vieira and 
Solanki, 
2010) spliced 
to  (Wang et al., 
2005) 

(Schmidt et al., 2011 and 
references therein) 

(Berger, 1978) (Pongratz et 
al., 2009) 
spliced to 
(Hurtt et al., 
2006) 

(Lamarque et 
al., 2010) 

(Laundrum et 
al., 2013) 

X 

CSIRO 
Mk3L-1-2 

1-3 1000-2000 (Gao et al., 
2008) 

Weak (Steinhilber 
et al., 2009) 
spliced to  (Wang 
et al., 2005) 

(MacFarling–Meure et al., 
2006) 

(Berger, 1978)   (Phipps et al., 
2011; Phipps 
et al., 2012; 
Phipps et al., 
2013) 

 

CSIRO-
Mk3L-1-2 

 0850-2000 (Crowley and 
Unterman, 
2013) 

Weak (Steinhilber 
et al., 2009) 
spliced to  (Wang 
et al., 2005) 

(MacFarling–Meure et al., 
2006); (Schmidt et al., 
2011 and references 
therein) 

(Berger, 1978)   (Phipps et al., 
2011; Phipps 
et al., 2012) 

X 

ECHO-G Erik 1 & 2 1000-1990 (Crowley, 
2000) 

Strong (Bard et al., 
2000), spliced to 
(Lean et al., 1995) 

CO2: (Etheridge et al., 
1996), CH4: (Etheridge et 
al., 1998), N2O: (Battle et 
al., 1996) 

   (González-
Rouco et al., 
2006) 

 

FGOALS-gl  1000-1999 (Crowley, 
2000) 

Strong (Bard et al., 
2000), spliced to 
(Lean et al., 1995) 

CO2: (Etheridge et al., 
1996), CH4: Blunier et al. 
(1995), 
 (Blunier et al., 1995), 
N2O: (Flückiger et al., 
1999; Flückiger et al., 
2002) 

   (Yongqiang et 
al., 2002; 
Yongqiang et 
al., 2004) 

Xa 
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Model Simulation Time span Volcanic 
forcing 

Solar forcing GHG forcing Orbital forcing Land-use-
land-cover 
forcing 

Aerosol 
forcing 

Reference(s) PMIP3/
CMIP5 

GISS-E2-R p121 850-2005 (Crowley and 
Unterman, 
2013) 

Weak (Steinhilber 
et al., 2009) 
spliced to  (Wang 
et al., 2005) 

(MacFarling–Meure et al., 
2006); (Schmidt et al., 
2011 and references 
therein) 

(Berger, 1978) (Pongratz et 
al., 2009) 
spliced to 
(Hurtt et al., 
2006) 

(Lamarque et 
al., 2010) 

(Schmidt et 
al., 2006) 

X 

GISS-E2-R p124 850-2005 (Crowley and 
Unterman, 
2013) 

Weak (Vieira and 
Solanki, 
2010) spliced 
to  (Wang et al., 
2005) 

(MacFarling–Meure et al., 
2006); (Schmidt et al., 
2011 and references 
therein) 

(Berger, 1978) (Pongratz et 
al., 2009) 
spliced to 
(Hurtt et al., 
2006) 

(Lamarque et 
al., 2010) 

(Schmidt et 
al., 2006) 

X 

GISS-E2-R p127 850-2005 (Crowley and 
Unterman, 
2013) 

Weak (Vieira and 
Solanki, 
2010) spliced 
to  (Wang et al., 
2005) 

(MacFarling–Meure et al., 
2006); (Schmidt et al., 
2011 and references 
therein) 

(Berger, 1978) (Kaplan et al., 
2011) 

(Lamarque et 
al., 2010) 

(Schmidt et 
al., 2006) 

X 

HadCM3  800-2000 (Crowley and 
Unterman, 
2013) 

Weak (Steinhilber 
et al., 2009) 
spliced to  (Wang 
et al., 2005) 

(MacFarling–Meure et al., 
2006); (Schmidt et al., 
2011 and references 
therein) 

(Berger, 1978) (Pongratz et 
al., 2009) 
spliced to 
(Hurtt et al., 
2006) 

(Johns et al., 
2003) 

(Schurer et al., 
2013) 

X 

IPSL-
CM5A-LR 

 0850-2005 (Ammann et 
al., 2007) 

Weak (Vieira and 
Solanki, 
2010) spliced 
to  (Wang et al., 
2005) 

(MacFarling–Meure et al., 
2006); (Schmidt et al., 
2011 and references 
therein) 

(Berger, 1978)   (Dufresne et 
al., 2012) 

X 

MPI-ESM 
E1 

1-5 800-2005 (Crowley and 
Unterman, 
2013) 

Weak (Krivova et 
al., 2007) 

CO2: diagnosed (Marland 
et al., 2003) CH4 and 
N2O: (MacFarling–Meure 
et al., 2006) 

(Bretagnon 
and Francou, 
1988) 

(Pongratz et 
al., 2008) 

(Lefohn et al., 
1999) 

(Jungclaus et 
al., 2010)  

 

MPI-ESM 
E2 

1-3 800-2005 (Crowley and 
Unterman, 
2013) 

Strong (Bard et al., 
2000) 

CO2: diagnosed (Marland 
et al., 2003) CH4 and 
N2O: (MacFarling–Meure 
et al., 2006) 

(Bretagnon 
and Francou, 
1988) 

(Pongratz et 
al., 2008) 

(Lefohn et al., 
1999) 

(Jungclaus et 
al., 2010)  

 

MPI-ESM-P   850-2005 (Crowley and 
Unterman, 
2013) 

Weak (Vieira and 
Solanki, 
2010) spliced 
to  (Wang et al., 
2005) 

(MacFarling–Meure et al., 
2006); (Schmidt et al., 
2011 and references 
therein) 

(Berger, 1978) (Pongratz et 
al., 2009) 
spliced to 
(Hurtt et al., 
2006) 

(Lamarque et 
al., 2010) 

(Jungclaus et 
al., 2012; 
Jungclaus et 
al., 2013) 

X 

a Does not follow the Schmidt et al. (2011; 2012) guidelines for PMIP3/CMIP5 forcing.  
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8. Lag between the hemispheres 

The statement in the main text that we find no evidence for a consistent lag between NH and 

SH temperatures is supported by a correlation analysis. We correlate each NH reconstruction 

ensemble members with a randomly chosen SH reconstruction member which is temporally 

lagged by -200 to 200 years (Supplementary Figure 28). The maximum correlation 

(r=0.30±0.19) is identified at a lag of +23 years, being slightly higher than the correlation at 

lag 0 (r=0.21±0.18). However, this peak around lags of 10-30 years is dominated by the 

industrial period, where the SH temperature rise is ~25 years delayed compared to the NH. 

This peak disappears if the analysis is only calculated over the 1000-1900 period (red line in 

Supplementary Figure 28). The second peak around a lag of +110 years is not evident if the 

analysis is reduced to the 1250-1750 period (green line in Supplementary Figure 28), 

indicating that these peaks are not stable over time but influenced by individual periods. 

 

 
Supplementary Figure 28 | Lagged inter-hemispheric temperature correlations. 
Correlation between reconstructed NH and SH temperatures lagging the SH data for -200 to 
200 years. Black: Ensemble mean correlations using the full 1000-2000 period. Grey shading 
represents the 2σ ensemble range. Red (green): Same as black but using only the 1000-1900 
(1250-1750) period. 
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9. Alternative reference period and comparison with earlier SH and 

regional reconstructions 

Supplementary Figure 29 shows an alternative illustration of Figure 2, using 1961-1990 as the 

reference period. It illustrates the reduced pre-industrial cooling in the SH seen in the 

reconstructions and simulations (compared to the stronger 20th century warming in the NH, 

expressed by the 1000-2000 baseline in Figure 2 in the main text). 

Supplementary Figure 30 compares our SH reconstruction with the model ensemble median 

and provides comparison with earlier SH temperature reconstructions (Jones et al., 1998; 

Mann and Jones, 2003; Mann et al., 2008). The number of proxy records available for these 

earlier reconstructions is seven (Jones et al., 1998), five (Mann and Jones, 2003) and 165 

(Mann et al., 2008; 173 records if decadally resolved data are counted as well), respectively, 

compared to our network of 325 sites (Supplementary Table 1-4; to allow comparison, all 

tree-ring sites that were aggregated to composites herein need to be counted individually). 

The overlap of our proxy network with the Mann et al. (2008) records is small: Out of the 

nine long proxies extending to the year 1000, three have also been used by Mann et al. (2008): 

Mt. Read, Oroko and Quelccaya (Law Dome δ18O is in the Mann et al. (2008) dataset as 

well, but they used an older record that covers only the period 1761-1970). For the records 

extending back to the year 1500 and beyond, 5 out of 18 records overlap (28%) plus one tree-

ring composite with partial overlap. 

Supplementary Figure 31 compares our SH reconstruction with regional reconstructions from 

Antarctica, Australasia and South America (PAGES 2013). Note that the regional 

reconstructions have different targets in terms of seasons and coverage (Antarctica and South 

America are land only, whereas Australasia is also a combined land-ocean reconstruction). 

This may explain the large differences in variance among the reconstructions. The SH 

reconstruction is strongly correlated with the Australasian (r=0.46, p<<0.01 over 1000-2000) 

and South American reconstructions (r=0.33, p<<0.01) and only weakly but significantly with 
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Antarctica (r=0.15, p<<0.01). This numbers are qualitatively comparable, albeit with lower 

values, to the corresponding instrumental data (Antarctica: r=0.33, p=0.10 over 1957-1990; 

Australasia: r=0.63, p<<0.01, over 1911-1990; South America: r=0.42, p<0.01 over 1911-

1990). The SH relative warm period between ca. 1250-1350 and the cold periods in the 17th 

and 19th centuries are also inherent in the Australasian and South American reconstructions. 

These three datasets also show similar average pre-industrial temperatures relative to the 

1961-1990 mean. The 14th-century cooling as well as the relatively warm 18th century are 

much stronger in the South American data. The Antarctic reconstruction shows a clearly 

different temperature history with reduced low-frequency variability. Given the small 

influence of Antarctica on the SH mean temperatures (Supplementary Figure 2), these 

differences are not surprising. Note that the regional reconstructions are not independent from 

our SH data due to considerable overlaps in the proxy data. 

 
 

 
Supplementary Figure 29 | Temperature variability over the last millennium with 
alternative reference period. Same as Figure 2 in the main text but using a 1961-1990 
reference period.  
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Supplementary Figure 30 | Direct comparison with simulations and earlier SH 
reconstructions. Top: Comparison of our SH reconstruction ensemble mean (blue) with the 
ensemble median of the simulations (brown) relative to the 1961-1990 baseline. Lower 
panels: Comparisons of earlier SH temperature reconstructions (Jones et al., 1998; Mann and 
Jones, 2003; Mann et al., 2008) with the model ensemble median. 
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Supplementary Figure 31 | Comparison with regional SH reconstructions. Comparison of 
our SH reconstruction ensemble mean (black with shaded 2SE bounds), with regional 
reconstsructions from Antarctica (red), Australasia (green) and South America (blue) 
published in a global synthesis of regional reconstructions (PAGES 2013).  
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10. Alternative illustrations of inter-hemispheric differences 

10.1. Inter-model comparisons 

A potential caveat in our data-model comparisons is the fact that the reconstructions are noisy 

estimates of temperature variability with different and largely independent noise in the 

reconstructions of the two hemispheres. In contrast, within each model simulation there is no 

such noise between the hemispheres. Although the simulations do not reflect the true 

temperature history, the hemispheric extractions reflect a direct picture of temperatures in the 

model world. Inter-hemispheric differences are potentially inflated in the reconstructions 

relative to the simulations because of the noisy nature of the reconstructions. This may 

partially explain the larger values in reconstructed NH-SH differences shown in Figure 4 in 

the main text. To test this hypothesis, we repeat the analysis calculating the NH-SH 

differences not only within each simulation but also across the 24 different model simulations, 

to mimic the noisy behavior of the reconstructions. Results are shown in Supplementary 

Figure 32. Although the simulated NH-SH differences have increased with the inter-model 

calculations, they are still clearly smaller than in the reconstructions. We therefore argue that 

our conclusions are not biased by the different noise structure in reconstructions and 

simulations but reflect true differences between reconstructed and simulated temperatures. 
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Supplementary Figure 32 | NH-SH differences using inter-model calculations. Same as 
Figure 4 in the main text but after calculating the NH-SH differences across all model 
simulations. Boxes and whiskers of the boxplots in c and d represent the interquartile range 
and 5th/95th percentiles, respectively; circles represent results outside the 5th and 95th 
percentiles. 
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10.2. Raw vs. detrended data 

Given that we focus on decadal to multi-decadal timescales in our analyses, we show the NH-

SH differences in Figure 4 after detrending reconstructed and simulated temperatures with a 

200-year filter. An alternative illustration for the reconstructions using non-detrended data is 

provided in Supplementary Figure 33. The NH-SH differences based on raw data show larger 

absolute values before 1400 and in the 20th century (see also Figure 2a), but the general 

pattern remains similar and the differences do not affect our conclusions. We show the 

detrended data in the main text, as this illustration is less dependent on the reference period 

chosen. 

 

 
Supplementary Figure 33 | Raw vs. detrended NH-SH differences. NH-SH temperature 
difference using 200-year detrended data (black; as in Figure 4a in the main text) and raw data 
(red). 
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10.3. Bimodal distribution in Figure 4b 

Figure 4b in the main text shows a bimodal distribution for the reconstruction data with two 

peaks around 0.6 and 0.75. This is caused by the fact that the NH reconstruction ensemble 

consists of nine sub-ensembles generated from different published reconstructions (see 

Methods). The distributions for these sub-ensembles are shown in Supplementary Figure 34. 

Three of these reconstructions (Mann and Jones, 2003; Hegerl et al., 2007; Mann et al., 2008) 

are only available at decadal resolution, leading to higher values in the NH-SH differences. 

 
Supplementary Figure 34 | NH-SH differences for the NH sub-ensembles. Distribution of 
absolute NH-SH differences in the reconstructions during the pre-1900 period. Black solid: 
Full ensemble (as in Figure 4b in the main text); coloured lines: Individual sub-ensembles 
from the NH reconstruction. 
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10.4. Outlier in the model simulations (Figures 4b and 4c) 

Figure 4b and 4c in the main text show an outlier in the model simulations, which has similar 

magnitudes in the NH-SH differences as the reconstructions. This outlier represents the model 

BCC-CSM. The SH temperatures of this model show repeated warming peaks that last about 

three decades in both the last millennium run (Supplementary Figure 35) as well as the pre-

industrial control simulation (not shown). These warm peaks are mostly not reflected in the 

NH, which leads to very large NH-SH differences during these periods (see Supplementary 

Figure 36), explaining the larger values compared to the other simulations. The positive 

excursions in the SH are mostly limited to a very strong warming in the Southern Ocean off 

Antarctica in the Weddell Sea area (not shown). Given the temporal and spatial nature of 

these anomalies, we regard these as model-specific features that are unrealistically simulated 

by the BCC-CSM model. 

 

Supplementary Figure 35 | Hemispheric temeperatures in the BCC-CSM model. 30-year 
filtered SH (blue) and NH (red) temperatures over the period 850-2000 for the BCC-CSM 
model. 
  

© 2014 Macmillan Publishers Limited.  All rights reserved. 

 



64 
 

11. NH-SH differences in the individual model simulations 

Supplementary Figure 39 - Supplementary Figure 59show the NH-SH differences over the 

last millennium for the individual climate model simulations and compare them to the 

reconstructions (see also Figure 4 in the main text).  

 
Supplementary Figure 36 | NH-SH differences for individual model simulations: BCC-
CSM. Same as Figure 4a in the main text but showing the NH-SH difference for the climate 
model simulation BCC-CSM in red, instead of the 10th and 90th percentiles of all model 
simulations. Volcanic dataset (brown) is the forcing time series used for this simulation (Gao 
et al., 2008). Instrumental data are cyan (Hansen et al., 2010). 
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Supplementary Figure 37 | NH-SH differences CCSM3. Same as Supplementary Figure 36 
but for the CCSM3 simulation and the corresponding volcanic forcing dataset (Crowley, 
2000). 
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Supplementary Figure 38 | NH-SH differences CCSM4. Same as Supplementary Figure 36 
but for the CCSM4 simulation and the corresponding volcanic forcing dataset (Gao et al., 
2008). 
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Supplementary Figure 39 | NH-SH differences for individual model simulations: CSIRO 
Mk3L-1. Same as Supplementary Figure 36 but for the CSIRO Mk3L, ensemble member 
1and the corresponding volcanic forcing dataset (Gao et al., 2008). 
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Supplementary Figure 40 | NH-SH differences CSIRO Mk3L-2. Same as Supplementary 
Figure 36 but for the CSIRO Mk3L simulation, ensemble member 2. 
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Supplementary Figure 41 | NH-SH differences CSIRO Mk3L-3. Same as Supplementary 
Figure 36 but for the CSIRO Mk3L simulation, ensemble member 3. 
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Supplementary Figure 42 | NH-SH differences CSIRO Mk3L PMIP3/CMIP5. Same as 
Supplementary Figure 36 but for the CSIRO Mk3L PMIP3/CMIP5 simulation and the 
corresponding volcanic forcing dataset (Crowley and Unterman, 2013). 
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Supplementary Figure 43 | NH-SH differences ECHO-G Erik 1. Same as Supplementary 
Figure 36 but for the ECHO-G Erik 1 simulation and the corresponding volcanic forcing 
dataset (Crowley, 2000). 
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Supplementary Figure 44 | NH-SH differences ECHO-G Erik 2. Same as Supplementary 
Figure 36 but for the ECHO-G Erik 2 simulation and the corresponding volcanic forcing 
dataset (Crowley, 2000). 
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Supplementary Figure 45 | NH-SH differences FGOALS-gl. Same as Supplementary 
Figure 36 but for the FGOALS-gl simulation and the corresponding volcanic forcing dataset 
(Crowley, 2000). 
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Supplementary Figure 46 | NH-SH differences GISS-E2-R p121. Same as Supplementary 
Figure 36 but for the GISS-E2-R p121 simulation and the corresponding volcanic forcing 
dataset (Crowley and Unterman, 2013). 
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Supplementary Figure 47 | NH-SH differences GISS-E2-R p124. Same Supplementary 
Figure 36 but for the GISS-E2-R p124 simulation and the corresponding volcanic forcing 
dataset (Crowley and Unterman, 2013). 
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Supplementary Figure 48 | NH-SH differences GISS-E2-R p127. Same as Supplementary 
Figure 36 but for the GISS-E2-R p127 simulation and the corresponding volcanic forcing 
dataset (Crowley and Unterman, 2013). 
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Supplementary Figure 49 | NH-SH differences HadCM3. Same as Supplementary Figure 
36 but for HadCM3 simulation and the corresponding volcanic forcing dataset (Crowley and 
Unterman, 2013). 
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Supplementary Figure 50 | NH-SH differences IPSL-CM5A-LR. Same as Supplementary 
Figure 36 but for the IPSL-CM5A-LR simulation and the corresponding volcanic forcing 
dataset (Gao et al., 2008). 
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Supplementary Figure 51 | NH-SH differences MPI-ESM E1-1. Same as Supplementary 
Figure 36 but for the MPI ESM E1 simulation, ensemble member 1 and the corresponding 
volcanic forcing dataset (Crowley and Unterman, 2013). 
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Supplementary Figure 52 | NH-SH differences MPI-ESM E1-2: Same as Supplementary 
Figure 51 but for the MPI-ESM E1 simulation, ensemble member 2. 
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Supplementary Figure 53 | NH-SH differences MPI-ESM E1-3. Same as Supplementary 
Figure 51 but for the MPI-ESM E1 simulation, ensemble member 3. 
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Supplementary Figure 54 | NH-SH differences MPI-ESM E1-4. Same as Supplementary 
Figure 51 but for the MPI-ESM E1 simulation, ensemble member 4. 
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Supplementary Figure 55 | NH-SH differences MPI-ESM E1-5. Same as Supplementary 
Figure 51 but for the MPI-ESM E1 simulation, ensemble member 5. 
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Supplementary Figure 56 | NH-SH differences MPI-ESM E2-1. Same as Supplementary 
Figure 51 but for the MPI -ESM E2 simulation, ensemble member 1. 
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Supplementary Figure 57 | NH-SH differences MPI-ESM E2-2. Same as Supplementary 
Figure 51 but for the MPI-ESM E2 simulation, ensemble member 2. 
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Supplementary Figure 58 | NH-SH differences MPI-ESM E2-3. Same as Supplementary 
Figure 51 but for the MPI -ESM E2 simulation, ensemble member 3. 
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Supplementary Figure 59 | NH-SH differences MPI-ESM-P. Same as Supplementary 
Figure 36 but for the MPI-ESM-P simulation and the corresponding volcanic forcing dataset 
(Crowley and Unterman, 2013). 
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