
Software Quality Metrics Aggregation

Aristides Dasso, Ana Funes

Software Engineering Group

Universidad Nacional de San Luis

Ejército de los Andes 950

San Luis, Argentina
{arisdas, afunes}@unsl.edu.ar

Abstract. Evaluating Software Quality is a critical and very important aspect of

software development. There are several metrics developed to assess different

characteristics of a software system so as to evaluate its overall quality. One

international standard for Software Quality is the ISO/IEC 9126 International

Standard; this standard is “proposed to make sure the ‘quality of all software-intensive

products’ including safety-critical systems where lives will be at jeopardy if software

components fail to succeed.” However, there is no provision to integrate/aggregate

different metrics into one value allowing the developer to comprehend rapidly the

quality of a software product without having to refer to several different metrics. We

propose in this work a way to aggregate different metrics into a single value using a

Continuous Logic –the one proposed in Logic Score of Preference (LSP) method.

Keywords: Software Engineering. Continuous Logic. Logic Score of Preferences.

LSP Method. Software Quality Metrics. ISO/IEC 9126 Standard.

1 Introduction

In every science and in every engineering branch, quantitative assessment is recognized to

be an essential task. Software Engineering is no exception. Software metrics exist

practically since the dawn of the area. They are measures of different aspects of software

systems, namely size, complexity, quality, etc. The objectives of these metrics are multifold

–they are used to assess costs at early stages of systems development, advances along the

development, etc.

A number of software metrics have been geared to analyze software quality –e. g. Source

Lines Of Code (SLOC)– that have shown to be good metrics to predict defects in software

–an important aspect of software quality since good quality is obviously linked to very few

if none defects.

The aggregation of different metrics to obtain a single value helps in the global

evaluation of a task, project, etc. This need also arises when different metrics are used.

The more traditional aggregation techniques are additive or similar, namely mean,

median, or sum. Sometimes these techniques are too crude to be entirely useful. We think

that the aggregation methodology should be clear to the analyst, but at the same time

sophisticated enough to represent the different aspects of the underlying metrics used and

flexible enough so the model can be easily adapted to new quality assurance requirements.

Let us note that there are two sides to software metrics aggregation. One is when

applying different metrics –or the same metric– at different levels of granularity of a given

piece of software. The other is when applying different metrics –or the same metric– to

different software artifacts intended for comparison purposes. In general all aggregation

techniques apply to both.

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 312

Apart from the simplest strategies of metric aggregation, there are also a number of other

methods for aggregation using different techniques, such as those using indexes or

coefficients employed in other areas such as econometrics, e.g. Gini [18], Theil [2],

coefficients or even the Paretto principle [16].

Other approaches can be found in the literature that propose different methods to

aggregate metrics, either using a standard, such as ISO/IEC 9126 or other methodologies.

We summarize some of them below.

B. Vasilescu [3] analyzes several aggregation methods for the aggregation of software

metrics to measure software quality. This is done from two points of view –first a

theoretical analysis is done and then an empirical one is carried out.

In [14] Mordal-Manet et al present not only the problem that metrics alone are not

enough to characterize software quality but also an empirical model –the Squale model

[19]– for metric aggregation. This model has four levels adding practices as an intermediate

level between criteria and metrics that are the levels suggested in ISO 9126. For assessment

purposes Squale uses an evaluation scale that falls in the interval [0:3], it uses a weighted

average, and the function uses a constant to define hard, medium, or soft weighting.

L. Etaati et al in [15] employ a Fuzzy Group Analytical Network Process method to

integrate metrics to evaluate e-learning systems. This is a similar method to our proposal

however it does not use Continuous Logic functions; moreover the network is not as easy to

comprehend as the models obtained from the application of the LSP method.

Bearing the above in mind we have as a main goal to aggregate the data obtained from

different quality evaluation metrics in coherent groupings so as to get new singular values

that can in turn be aggregated again. The aggregation ends getting a single global indicator

for the software object under evaluation, being this object a software unit or an entire

software project.

To achieve this process we use operators from a Continuous Logic, specifically the

Logic employed by the LSP method that proposes the aggregation of preferences by using a

group of logic functions called Generalized Conjunction Disjunction (GCD) operators. So

we show here a model –based on the ISO/IEC 9126 international standard [7]– to aggregate

software quality metrics employing a Continuous Logic. This standard establishes a number

of requirements to evaluate software quality, however there is no prescription for the

aggregation of the different measurements proposed. Therefore, there exists the need to

propose an aggregation model to obtain a single value out the evaluation with different

metrics.

The rest of the article is organized as follows. In Section 2 we give an overview of both

the ISO/IEC 9126 standard and of the LSP method. In Section 3 we describe our proposal

and illustrate it with some examples. A discussion on the approach, conclusions and future

directions for research are given in Section 4.

2 The ISO/IEC 9126 Standard and the LSP Method

To develop our model for software quality evaluation we employ, on the one hand, the

ISO/IEC 9126 International Standard for Software Product Quality. On the other hand, to

aggregate the metrics proposed in the above mentioned standard, we use a Continuous

Logic –the Logic proposed in the Logic Score of Preference (LSP) method. Subsections 2.1

and 2.2 below give an overview of both.

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 313

2.1 The ISO/IEC 9126 International Standard

The ISO/IEC 9126 [7] is an international standard that establishes a set of characteristics to

evaluate Software Quality. The standard is developed by the International Organization for

Standardization (ISO) and the International Electrotechnical Commission (IEC).

Table 1. ISO/IEC 9126 Internal Metrics

1. Functionality metrics 4. Efficiency metrics

1.1. Suitability metrics 4.1. Time behavior metrics

1.2. Accuracy metrics 4.2. Resource utilization metrics

1.3. Interoperability metrics 4.3. Efficiency compliance metrics

1.4. Security metrics 5. Maintainability metrics

1.5. Functionality compliance metrics 5.1. Analyzability metrics

2. Reliability metrics 5.2. Changeability metrics

2.1. Maturity metrics 5.3. Stability metrics

2.2. Fault tolerance metrics 5.4. Testability metrics

2.3. Recoverability metrics 5.5. Maintainability compliance metrics

2.4. Reliability compliance metrics 6. Portability metrics

3. Usability Metrics 6.1. Adaptability metrics

3.1. Understandability metrics 6.2. Installability metrics

3.2. Learnability metrics 6.3. Co-existence metrics

3.3. Operability metrics 6.4. Replaceability metrics

3.4. Attractiveness metrics 6.5. Portability compliance metrics

3.5. Usability compliance metrics

The standard is divided into four parts: quality model, external metrics, internal metrics

and quality in use metrics. The ISO/IEC 9126 quality model sets out six items for the

characteristics to be measured. Table 1 shows the six items and their corresponding sub

items that corresponds to the characteristics that the standard has defined for internal

metrics. An internal metric is one that do not rely on software execution (i.e. static

measure). It is to be noted that the standard also establishes a list of characteristics for

external metrics. External metrics are applicable to running software. Here we have chosen,

for illustrating our approach, only internal metrics, although our methodology can be

applied to both internal and external metrics.

ISO/IEC 9126 defines these six main characteristics as follows [7]:

Functionality metrics are used for predicting if the software product in question will satisfy

prescribed functional requirements and implied user needs. It involve the following

characteristics:

- Suitability that refers to the capability of the software product to provide an

appropriate set of functions for specified tasks and user objectives.

- Accuracy that refers to the capability of the software product to provide the right

or agreed results or effects with the needed degree of precision.

- Interoperability that concerns the capability of the software product to interact

with one or more specified systems.

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 314

- Security that refers to the capability of the software product to protect information

and data so that unauthorised persons or systems cannot read or modify them and

authorised persons or systems are not denied access to them.

- Functionality Compliance that addresses the capability of the software product to

adhere to standards, conventions or regulations in laws and similar prescriptions

relating to functionality.

Reliability metrics are used for measuring the capability of software to maintain its level of

performance under stated conditions. Reliability is defined by:

- Maturity that concern to the capability of the software product to avoid failure as a

result of faults in the software.

- Fault Tolerance that is the capability of the software product to maintain a

specified level of performance in cases of software faults or of infringement of its

specified interface.

- Recoverability that is the capability of the software product to re-establish a

specified level of performance and recover the data directly affected in the case of

a failure.
- Reliability Compliance that is the capability of the software product to adhere to

standards, conventions or regulations relating to reliability.

Usability metrics are used for predicting the extent to which the software in question can be

understood, learned, operated, attractive and compliant with usability regulations and

guidelines. Usability comprises:

- Understandability that refers to the capability of the software product to enable the

user to understand whether the software is suitable, and how it can be used for

particular tasks and conditions of use. It determines the ease of which the systems

functions can be understood, relates to user mental models in Human Computer

Interaction methods.

- Learnability is the capability of the software product to enable the user to learn its

application; it relates to the learning effort for different users.

- Operability is the capability of the software product to enable the user to operate

and control it.
- Attractiveness is the capability of the software product to be attractive to the user.

- Usability Compliance is the capability of the software product to adhere to

standards, conventions, style guides or regulations relating to usability.

Efficiency is the capability of the software product to provide appropriate performance,

relative to the amount of resources used, under stated conditions. It includes the following

characteristics:

- Time behavior is the capability of the software product to provide appropriate

response and processing times and throughput rates when performing its function,

under stated conditions.

- Resource utilization is the capability of the software product to use appropriate

amounts and types of resources when the software performs its function under

stated conditions.

- Efficiency compliance is the capability of the software product to adhere to

standards or conventions relating to efficiency.

Maintainability is the capability of the software product to be modified. Modifications may

include corrections, improvements or adaptation of the software to changes in environment,

and in requirements and functional specifications.

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 315

- Analyzability The capability of the software product to be diagnosed for

deficiencies or causes of failures in the software, or for the parts to be modified to

be identified.

- Changeability The capability of the software product to enable a specified

modification to be implemented.

- Stability The capability of the software product to avoid unexpected effects from

modifications of the software.

- Testability is the capability of the software product to enable modified software to

be validated.

- Maintainability compliance is the capability of the software product to adhere to

standards or conventions relating to maintainability.

Portability is the capability of the software product to be transferred from one environment

to another.

- Adaptability The capability of the software product to be adapted for different

specified environments without applying actions or means other than those

provided for this purpose for the software considered.

- Installability The capability of the software product to be installed in a specified

environment.

- Co-existence The capability of the software product to co-exist with other

independent software in a common environment sharing common resources.

- Replaceability The capability of the software product to be used in place of

another specified software product for the same purpose in the same environment.

- Portability compliance The capability of the software product to adhere to

standards or conventions relating to portability.

2.2 The Logic Score of Preference Method

The LSP (Logic Score of Preference) method [10], [12], [11], [13], [8], [9] is a method for

the creation and use in the evaluation, optimization, comparison, and selection of all kinds

of complex systems and not necessarily those based on computers.

Figure 1 shows an overview of the LSP method and its different components.

The method proposes:

(a) The creation of a model of the user’s requirements that is called the Preference Tree.

On this tree, the Performance Variables –that are the main attributes of the system–

and their corresponding values are determined. Here the user’s requirements are

elicited so as to be incorporated into the Preference Tree.

(b) The definition of functions called Elementary Criteria. An Elementary Criterion

transforms values from the domain of values a Performance Variable can take into

values in the [0,100] interval. These values represent the percentage of compliance of

the corresponding requirement and are referred as Elementary Preferences.

(c) The creation of an Aggregation Structure. The input to this structure are the

Elementary Preferences obtained from the application of the defined Elementary

Criteria to the Performance Variables. This model is built by aggregating, in as many

levels as is deemed necessary, the Elementary Preferences and the intermediate

resulting preferences by means of Continuous Logic functions called Generalized

Conjunction Disjunction (GCD) operators [13]. The aggregation in intermediate levels

gives partial results corresponding to groups of requirements. The complete final

model of the Aggregation Structure, also called the LSP criterion function, returns a

unique value that is an indicator of the degree of compliance with respect to the total

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 316

requirements of the system.

Figure 1. An overview of the LSP evaluation process.

So if we want to aggregate n elementary preferences E1,...,En in a single preference E, the

resulting preference E –interpreted as the degree of satisfaction of the n requirements– must

be expressed as a function having the following properties:

1. The relative importance of each elementary preference Ei (i = 1...n) can be expressed

by a weight Wi ,

2. min(E1,...,En) ≤ E ≤ max(E1,..., En) .

These properties can be achieved using a family of functions (the weighted power

means):

E(r) = (W1 E
r
1 + W2 E

r
2 +...+ Wn E

r
n)

1/r
 , where

0 < Wi < 100, 0 ≤ Ei ≤ 100, i = 1, ... , n, W1 + ...+Wn = 1, −∞ ≤ r ≤ +∞

The choice of r determines the location of E(r) between the minimum value

Emin=min(E1,...,En) and the maximum value Emax=max(E1,...,En) , giving place to a

Continuous Logic Preference (CPL). For r = −∞ the weighted power mean reduces to the

pure conjunction (the minimum function) and for r = +∞ to the pure disjunction (the

maximum function). The range between pure conjunction and pure disjunction is usually

covered by a sequence of equidistantly located CPL operators (also referred as GCD

operators) named: C, C++, C+, C+–, CA, C–+, C–, C– –, A, D– –, D–, D–+, DA, D+–, D+,

D++, D.

Once the Aggregation Structure has been calibrated using the different GCD operators

and the corresponding weights, then every system under analysis can be evaluated and a

single indicator for each can be obtained.

E0

Function LSP

(Logic

Aggregation

of

Preferences)

Performance

Variables

 (Metric

values)

Elementary
Criteria

Elementary

Preferences

X1

X2

•

•

•

Xn

E1

g1(X1)

Final

Global

Preference

E2

g1(X2)

En

g1(Xn)

Aggregation

of GCD
Operators

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 317

In our case we will obtain –from all the metrics employed– a single aggregated value

between 0 and 100 indicating the degree of quality the software under consideration has

reached. This value could be contrasted with previous values obtained for the different

versions of the same system to asses progress in software quality or against other

competing systems under evaluation.

3 The Aggregated Software Evaluation Model

In this section we show a partial aggregation structure illustrating the proposal with some

examples.

As we said before the LSP method starts by building a Requirement Tree –a structure

that holds all the user’s requirements. In this particular case we start building our

Requirement Tree from the ISO/IEC 9126 list of characteristics and sub characteristics as

shown in Table 1.

Let us note that the tree shown in Table 1 has only two levels: the first level corresponds

to the main software quality characteristics and the second level is where the sub

characteristics are. The Requirement Tree will contain at least three levels, being level three

where new sub characteristics or particular metrics are. We can found in the literature

several different metrics for each sub characteristic in level two, which can be aggregated to

obtain a single value.

To illustrate our approach we are going to suppose that a single value has been obtained

from the evaluation of each particular metric. In general, these values can be of different

data types: real, integer, nominal or categorical (i.e.: bad, poor, fair, good, excellent), etc.

They correspond, in the LSP terminology, to the Performance Variables. For each of them,

the LSP method proposes the definition of an Elementary Criterion function that takes as its

input the value of the corresponding Performance Variable and transforms it to a value in

the interval [0, 100]; these new values are referred in LSP as Elementary Preferences.

By using the GCD operators we combine these Elementary Preferences to construct an

evaluation model or LSP Aggregation Structure. This model corresponds with the user’s

needs –in this case the needs to perform a particular software quality evaluation.

Let us suppose that, according to the user’s needs, item 2 (Reliability) has a high

significance. This can be represented by penalizing those models whose sub items, namely

2.1, 2.2, 2.3 and 2.4, have values less than a given threshold u. Therefore the corresponding

Elementary Criteria (ec2.i) for items 2.1, 2.2, 2.3 and 2.4, could be defined as in equation

(1):

where:

ec2.i is the Elementary Criterion for the Performance Variable x2.i (1≤ i ≤ 4).

norm is a transformation function that returns a value in the interval [0,100].

In Figure 2 we can see an Aggregation Structure where the Elementary Preferences

obtained from the application of the Elementary Criteria ec2.i(x2.i, ui) corresponding to the

sub characteristics 2.1 (Maturity), 2.2 (Fault tolerance), 2.3 (Recoverability) and 2.4

(Reliability compliance) have been aggregated using the GCD operator CA. CA is a

mandatory function meaning that if any of the Elementary Preferences that constitute item 2

is zero (i.e. the value given by the Elementary Criterion defined in equation (1) for each sub

characteristic 2.i) then the mandatory aggregation operator will return zero whichever value

the other variables have taken.

ec2.i (x2.i, ui) =
0 if x2.i < ui

norm(x2.i)
(1)

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 318

Note that apart from being able to choose the GCD function, each of the inputs has an

associated weight that plays a part in the final value. In the case shown in Figure 2, item 2.2

has a greater weight than the other items therefore its value will have a bigger impact in the

total value of the CA function. This fact has been explained in Section 2.2.

In the example shown in Figure 2 we have chosen the CA function, but in case we

wanted to make it more conjunctive making at the same time the aggregated characteristics

more mandatory, then the functions C+ or even C could had been chosen.

Figure 2. The mandatory conjunctive GCD function CA returns 0 if any of the inputs 2.i is 0.

Sometimes not all the characteristics are essentials (mandatory), some of them could be

desirable and others optional, i.e. they can be present or not. This can be achieved using a

special aggregation structure, namely Partial Absorption. Figure 3 shows a partial

absorption where the attributes 2.1 (Maturity), 2.3 (Recoverability) and 2.4 (Reliability

compliance) are considered optional, i.e. they describe characteristics that are strongly

wanted but are not absolutely essentials to satisfy the sub tree requirements, while the

attribute 2.2 (Fault tolerance) is considered mandatory (essential), i.e. it is an attribute that

the system under evaluation must satisfy and whose absence should be penalized so that the

whole sub tree is zero.

Figure 3. Partial Absorption.

When programmers try to reuse or need to maintain a software system developed by

other programmers the difficulty of understanding the system limits reuses.

Understandability of software is an important dimension in software usability. In Table 2

we show a part of the Requirement tree corresponding to the sub characteristic 3.1

(Understandability) where we use Halstead Complexity Measures [5] and the cyclomatic

number of McCabe [17].We also include Card and Glass design complexity metrics [4].

Since Card and Glass metrics give a measure of the complexity of the software under

analysis they may well be used as a measure of the understandability of the software under

evaluation. A design should be as simple as possible. In fact, an elegant design is usually

simple. Simplicity facilitates understandability and maintainability.

2.1

CA

20

20

30 2.2

2.3

2.4

40

20

2.1

A

10

10

40

2.2

2.3

2.4

10

 CA

70 60

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 319

Table 2. Item 3.1 Understandability.

3.1.1. Halstead’s complexity.

 3.1.1.1. Calculated length (n)

 3.1.1.2. Volume (V)

 3.1.1.3. Difficulty (D)

3.1.2. McCabe’s cyclomatic number (M)

3.1.3. Card & Glass’s complexity

3.1.3.1. Structural complexity (S(i))

3.1.3.2. Data complexity (D(i))

3.1.3.3. System complexity (C(i))

Halstead has proposed metrics for length and volume of a program based on the number

of operators and operands. Halstead’s metrics basically produces –among others– the

Program Vocabulary (n), the Program Length (0), the Volume (V) and the Difficulty (D).

The cyclomatic number of McCabe (M) represents the number of linearly independent

execution paths through the program. For a well structured module, the cyclomatic number

is simply one plus the number of branching statements in the module.

Card and Glass define three measures for design complexity: structural complexity

(S(i)), data complexity (D(i)) and system complexity (C(i)). Let us note that the software

architectural complexity increases at the same time that the complexity measures increase

as well. The complex architecture is inversely proportional to the software

understandability.

Figure 4. LSP Aggregation Structure for item 3.1.

Figure 4 shows a typical LSP aggregation for the sub structure corresponding to item 3.1

(Understandability). In this aggregation structure the characteristics have been classified in

three groups: essential, desirable and optional. Essential parameters are those that describe

aspects that the system under evaluation must satisfy and whose absence must be penalized

in such a way that the whole sub tree evaluates to zero. Desirable parameters are those that

describe features that are strongly desired but are not absolutely essential for satisfying the

requirements of the sub tree; therefore its absence does not cause the preference rating to be

zero. Optional parameters describe features of a system that are nonessential and whose

presence or absence impacts minimally on the overall preference rating of the sub tree.

CA
3.1.1.1

20

3.1.1.2

3.1.1.3

3.1.2.

3.1.3.3

3.1.3.2
A A

20

60

33

33

80

80

30

3.1.3.1

C-

70
33

A C-
20 20

70

30

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 320

In this model, we can see that the item 3.1.1 (Halstead Complexity) is more mandatory

than the item 3.1.2 (McCabe’s cyclomatic number), which has been considered a desirable

requirement. At the same time item 3.1.3 (Card & Glass’s complexity) has been considered

optional. These differences are expressed not only through the corresponding weights but

also by the assignment of more conjunctive GCD operators as it is shown in the aggregation

shown in Figure 4.

Let us note that both the desirable preference (item 3.1.2) and the optional preference

(items 3.1.3.x) may be zero, but if the essential preference (item 3.1.1) is not zero, then the

aggregate preference will also be not zero. However, in some situations, it may be

reasonable to expect that the evaluated systems will have optional and desirable preference

that also evaluates to nonzero values. In these cases it is possible to use a simpler

aggregation structure as that shown in Figure 5.

In this new aggregation structure we have assumed that desired and optional items are

non zero. Under this assumption, the aggregation structure yields similar results as the

structure of Figure 4. Obviously, this is a critical assumption since otherwise the zero rating

of the desired and optional items would yield a zero rating for the whole structure.

Figure 5. An alternative LSP Aggregation Structure for item 3.1.

4 Discussion and Future Work

Being able to aggregate all the different metrics in one value is an important asset for

software quality analysts since it gives them the ability to compare quickly and simply not

only different implementations of the same kind of software –with the same functionality–

but it also gives the opportunity to compare different versions of the same software at

different development stages.

The aggregation of software quality metrics using the LSP method –presented here–

allows a complete aggregation of the desired characteristics but it also allows partial

aggregations, namely only one or more metrics of the software quality method chosen and

not necessarily the complete ISO/IEC 9126 standard. However, having the complete

aggregation model does not limit the capability of having partial results since the LSP

model permits the collection of these partial results through partial aggregation structures

that are part of the entire model.

Experimenting with different aggregation models is an easy task since, at the very least,

it only involves changing functions or weights, especially if a software tool is used to

construct and calibrate the model [1].

CA
3.1.1.1

20

3.1.1.2

3.1.1.3

3.1.2.

3.1.3.3

3.1.3.2
A A

20

60

33

33

80

80

30

3.1.3.1

C-

70
33

CA

20 20

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 321

As part of future work we are considering applying the proposed approach in a more

industrial setting comparing different versions of a given software as well as a same kind of

software product developed by different software development teams.

We also believe that the approach presented here can be further explored extending it to

other standards such as ISO/IEC 14598 [6] that is sometimes used in conjunction with

ISO/IEC 9126 amongst others.

References

[1] A. Dasso, A. Funes, M. Peralta, C. Salgado, “Una Herramienta para la Evaluación de

Sistemas”, Proceedings de WICC 2001, San Luis, Argentina, 22 de Mayo de 2001.

[2] A. Serebrenik, M. van den Brand, “Theil index for aggregation of software metrics values”. In

ICSM, pages 1–9, IEEE Computer Society, 2010.

[3] B. Vasilescu, “Analysis of Advanced Aggregation Techniques for Software Metrics”. Master

thesis, Eindhoven University of Technology, Department of Mathematics and Computer

Science. Eindhoven, Netherlands, July 2011.

[4] Card, D., y N. R. L. Glass, Measuring Software Design Qualit-y, Prentice-Hall, 1990.

[5] Halstead, Maurice. “Elements of Software Science”. Elsevier North-Holland, Inc.

Amsterdam, 1977.

[6] ISO/IEC 14598 Information technology, Software product evaluation. URL: www.iso.org/

[7] ISO/IEC TR 9126, Software engineering - Product quality, Parts 1, 2, 3, 4. ISO/IEC 2001.

URL: www.iso.org/

[8] J. J. Dujmovic and A. Bayucan, “Evaluation and Comparison of Windowed environments”,

Proceedings of the IASTED Interna Conference Software Engineering (SE'97), pp 102-105,

1997.

[9] J. J. Dujmovic and R. Elnicki, “A DMS Cost/Benefit Decision Model: Mathematical Models

for Data management System Evaluation, Comparison, and Selection”, National Bureau of

Standards, Washington, D.C., No. NBS-GCR-82-374, NTIS No. PB82-170150 (155 pages),

1982.

[10] J. J. Dujmovic, “A Method for Evaluation and Selection of Complex Hardware and Software

Systems”, The 22nd International Conference for the Resource Management and Performance

Evaluation of Enterprise Computing Systems. CMG96 Proceedings, vol. 1, pp.368-378, 1996.

[11] J. J. Dujmovic, “Continuous Preference Logic for System Evaluation”, IEEE Transactions on

Fuzzy Systems, Vol. 15, Nº 6, December 2007.

[12] J. J. Dujmovic, “Quantitative Evaluation of Software”, Proceedings of the IASTED

International Conference on Software Engineering, edited by M.H. Hamza, pp. 3-7,

IASTED/Acta Press, 1997.

[13] J.J. Dujmovic, “Characteristic forms of generalized conjunction/disjunction”; En Fuzzy

Systems, 2008 (FUZZ-IEEE 2008). (IEEE World Congress on Computational Intelligence).

1-6 June 2008, pp. 1075 – 1080, ISSN: 1098-7584, E-ISBN: 978-1-4244-1819-0, Print ISBN:

978-1-4244-1818-3.

[14] K. Mordal-Manet et al., “An empirical model for continuous and weighted metric

aggregation”. 2011 15th European Conference on Software Maintenance and Reengineering.

March 1–4, 2011, Oldenburg, Germany

[15] L. Etaati, S. Sadi-Nezhad, A, Makue, “Using Fuzzy Analytical Network Process and ISO

9126 Quality Model in Software Selection: A case study in E-learnig Systems”. Journal of

Applied Sciences 11 (1): 96-103, 2011, ISSN 1812-5654 / DOI: 10.3923/jas.2011.96.103

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 322

[16] M. Goeminne, T. Mens. “Evidence for the Pareto principle in Open Source Software

Activity”. Fifth International Workshop on Software Quality and Maintainability (SQM 2011)

Oldenburg, Germany, March 1, 2011.

[17] McCabe, T.H. A complexity measure. IEEE Trans. Softw. Eng. SE-2, 6 (Dec.1976). 308-320.

[18] R. Vasa, M. Lumpe, P. Branch, O. Nierstrasz. “Comparative Analysis of Evolving Software

Systems Using the Gini Coefficient”. Proceedings of the 25th International Conference on

Software Maintenance (ICSM 2009), pp. 179–188, IEEE Computer Society.

[19] Squale Model. http://www.squale.org/

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 323

