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1 Introduction

Supersymmetric localization has provided a wealth of exact results in many supersymmetric

field theories including various with known gravity duals. The original work of Pestun [1],

addressing Wilson loops inN = 4 supersymmetric Yang-Mills in four dimensions, prompted

holographic computations beyond the leading order stimulating much activity over the past

ten years [2–8].

Following the original large N evaluation of Wilson loops in the ABJM theory in [9],

a number of results have provided answers that are exact in various parameters up to ex-

ponentially small corrections. For example, the exact expectation value of the 1
2 -BPS was

obtained in [10] (see also [11]) and, more recently, for the 1
6 -BPS configuration correspond-

ing to the latitude Wilson loop the exact expectation value was obtained in [12].

It is natural to turn the tools of precision holography to this setup and, indeed, a

subset of the authors addressed this problem in [13] using the zeta-function regularization

tools developed in [14]. In this manuscript we report on the one-loop effective action

of the corresponding strings using the method of Gel’fand-Yaglom. Our result perfectly

matches the field theory result in the appropriate regime of parameters corresponding to

the supergravity regime for large N and large ‘t Hooft coupling λ.

The goal of precision holography has been to use the results of field theory to sharpen

and develop new tools to tackle the supergravity side beyond the leading order. It is fair

to say that this program is now not only bearing fruits but also shedding some light on

the details of various technical methods and clarifying the structure of semi-classical string

perturbation theory on curved backgrounds with Ramond-Ramond fluxes. We hope that
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some of the lessons learned in this arena will be valuable to other precision holography

endeavours such as the computation of quantum corrections to the entropy of black holes

whose field theory duals are by now well understood.

In section 2 we briefly discuss the field theory result that we aim to match as well

as the defining properties of the classical string configurations. Section 3 contains an

abridged presentation of the spectrum of fluctuations (see [13] for more explicit details)

and a summary of the computations of one-loop determinants. We discuss the explicit

details of the cancellation of potential logarithmic divergences and comment on fermionic

boundary conditions in section 4. We conclude in section 5 with a summary of our work

and point out some interesting open questions in precision holography with Wilson loops.

Note added. While preparing this manuscript for publication, a precise match with the

field theory prediction was reported in [15] using the method of phase shifts. Although

there is considerable overlap, our methods differ substantially.

2 The latitude 1
6
-BPS Wilson loop and its holographic dual

The exact expectation value of the so-called fermionic 1
6 -BPS latitude Wilson loop in ABJM

is given by [12]

〈W
1
6
F (ν)〉 =

iνΓ
(
−ν

2

)
sin
(
πν
2

)
Ai
[(

2
π2k

)−1/3 (
N − k

24 −
6ν+1

3k

)]
2ν+1
√
πΓ
(

3−ν
2

)
sin
(

2πν
k

)
Ai
[(

2
π2k

)−1/3 (
N − k

24 −
1
3k

)] , (2.1)

where ν = cos θ0 determines the latitude angle. Notice that this is the un-normalized ver-

sion of the Wilson loop. This result was preceded by an impressive series of papers [16–21].

When expanded in the holographic regime, namely, taking the genus-zero contribution

at leading order in λ = N/k, (2.1) coincides with the minimal area of the dual 1
6 -BPS

string on AdS4 × CP3 [22], whose induced metric on the world-sheet reads

ds2
ind = A2 ds2

cyl , A2 = sinh2 ρ+ sin2 ϑ1 , ds2
cyl = dσ2 + dτ2 , (2.2)

where,

sinh ρ =
1

sinhσ
, sinϑ1 =

1

cosh (σ + σ0)
, σ > 0 , τ ∼ τ + 2π . (2.3)

The integration constant σ0 is related to the latitude angle of the Wilson loop via cos θ0 =

tanhσ0.

The goal of this manuscript is to check that there is still agreement between the gauge

theory and the gravity dual after including the first quantum corrections in 1/
√
λ. In

order to avoid subtleties in the string path integral measure, we consider the ratio between

the 1
6 -BPS Wilson loop expectation value and its 1

2 -BPS limit. The latter corresponds to

θ0 → 0 (ν → 1, σ0 → ∞), for which the induced geometry becomes exactly AdS2. Thus,
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expanding (2.1) in the appropriate limit, we find that the field theory prediction to be

matched with the one-loop effective action of the string configuration takes the form

∆Γ1-loop
effective = ln

 〈W 1
6
F (1)〉

〈W
1
6
F (ν)〉

 = − ln Γ

(
ν + 1

2

)
+ ln Γ(ν + 1) + ln Γ

(
3

2
− ν

2

)
. (2.4)

3 One-loop effective action

On the holographic side, the difference in one-loop effective actions between the 1
6 -BPS

and the 1
2 -BPS strings is given by

e−∆Γ1-loop
effective(θ0) =


∏
α=±

detO1,α(θ0)

detO1,α(0)

(
detO2,α(θ0)

detO2,α(0)

)2
detO3,α(θ0)

detO3,α(0)(detO4(θ0)

detO4(0)

)2 ∏
α=±

detO5,α(θ0)

detO5,α(0)

(
detO6,α(θ0)

detO6,α(0)

)2


1
2

. (3.1)

The precise form of the operators, computed originally in [13], is spelled out in section 3.1.

Roughly speaking, after freezing the longitudinal modes, O4 comes from the two normal

fluctuations of the string in AdS4, whereas O5,α and O6,α correspond to the six fluctuations

in CP3. The fermionic fields give rise to O1,α, O2,α and O3,α.

The determinants in (3.1) are defined using the string induced metric (2.2), which has

the topology of a disk. It is convenient, however, to strip away the conformal factor A

and compute all quantities using the cylinder metric ds2
cyl. This transformation has two

important effects:

i) there is a potential Weyl anomaly in the determinants due to the rescaling of the metric,

ii) there is an additional IR anomaly due to the change in topology of the string world-

sheet.

Since passing to the cylinder corresponds to choosing a conformal gauge, the Weyl anomaly

actually vanishes, as it should in critical String Theory. The second effect was discussed

in [7], and amounts to correcting the 1-loop effective action by

Γ1-loop
effective −→ Γ1-loop

effective + Γ∞ , Γ∞ =
1

2
ln

(
1 + cos θ0

2

)
. (3.2)

This correction, whose origin can be explained by the use of a diffeomorphic-invariant reg-

ulator, must be taken into account in order to get a precise match with the field theory

prediction. In what follows, all quantities will be defined with respect to the flat cylin-

der metric.
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3.1 Spectrum

After stripping away the conformal factor, the bosonic operators in the spectrum of fluc-

tuations of the 1
6 -BPS string are [13]

O4 = −∂2
σ − ∂2

τ + 2 sinh2 ρ ,

O5,α = −∂2
σ − (∂τ + iαA)2 − ∂σA ,

O6,α = −∂2
σ − (∂τ − iαB)2 + ∂σB ,

(3.3)

(3.4)

(3.5)

where

A =

(
cosh ρ cosϑ1 + 1

cosh ρ+ cosϑ1
− 1

)
, B =

1

2
(1− cosϑ1) . (3.6)

Similarly, upon reducing the type IIA spinors down to two dimensions, the fermionic op-

erators read [13]

Oα,β,γ = −iγ1∂σ − iγ0

(
∂τ +

iα

2
A+

i(β + γ)

2
B
)
−Mα,β,γ , (3.7)

with

Mα,β,γ =
1

4
(3βγ − 1)

(
α sinh2 ργ∗ + sin2 ϑ1

)
A−1 +

1

4
(β + γ)Aγ∗ . (3.8)

The labels α, β and γ take values ±1 and γ∗ = −iγ01 is the chirality matrix. The operators

appearing in the 1-loop effective action are defined as

O1,α = Oα,α,α , O2,α = Oα,β,−β , O3,α = Oα,−α,−α . (3.9)

Notice that Oα,β,−β does not depend on the label β. From now on we work in the repre-

sentation

γ0 = σ2 , γ1 = σ1 , ⇒ γ∗ = −σ3 . (3.10)

For both bosons and fermions, we refer to the operators Oα and O−α as charge conjugates

of each other.

3.2 Determinants and boundary conditions

By now, a considerable body of work exists showing the merits and drawbacks of the

different techniques used to compute functional determinants. In this manuscript, we will

take advantage of the rotational symmetry of the worldsheet and Fourier-decompose the

two-dimensional operators into an infinite number of one-dimensional ones,

OE = O
∣∣∣
∂τ→−iE

, (3.11)

with E ∈ Z for bosons and E ∈ Z + 1
2 for fermions. Then, we will use the Gel’fand-

Yaglom method [23, 24] to compute the corresponding ratio of determinants along the

radial direction and sum over the Fourier modes. This procedure has been applied to a

number of problems in the context of holographic Wilson loops and we refer the interested

reader to [3–5, 25] for details.
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As usual, functional determinants suffer from divergences that demand a careful treat-

ment. In the present context, the infinite volume of the worldsheet requires the introduction

of a UV cutoff for the radial coordinate at σ = ε, as well as a large IR regulator at σ = R.

As it turns out, these subtleties are taken care of by considering the ratio of determinants

between the 1
6 -BPS and 1

2 -BPS configurations, which renders the ε→ 0 and R→∞ limits

well-defined. Additionally, there are divergences coming from the sum over Fourier modes

which require an additional UV cutoff Λ. Even though these divergences are unavoidable

for each individual determinant, even after taking the ratio, they end up canceling due to

supersymmetry and the intricacies of the string spectrum of fluctuations. We will say more

about this in the discussion section.

A key ingredient in computing any determinant are the boundary conditions imposed

on the fields. The treatment of bosonic boundary conditions is standard so we avoid

presenting too many details. We follow the same procedure as in [4, 5]. It suffices to

recall that, according to the Gel’fand-Yaglom method, the ratio of determinants between

the 1
6 -BPS and the 1

2 -BPS radial operators with Dirichlet-Dirichlet boundary conditions

on the interval [ε, R] is given by

ΩE(θ0) ≡ detOE(θ0)

detOE(0)
= lim

ε→0
lim
R→∞

χ(R)

lim
θ0→0

χ(R)
, (3.12)

where χ is the solution to the intial value problem

OEχ = 0 , χ(ε) = 0 , χ′(ε) = 1 . (3.13)

As mentioned above, the ε → 0 and R → ∞ limits can be safely taken in this ratio.

Although the prescription varies for other choices of boundary conditions, in the present

problem all choices give the same result.

The real issue lies in the fermionic sector, where the Gel’fand-Yaglom method is slightly

more involved and the choice of boundary conditions does affect the final result. In this

case, one must first solve the (first order, two-component) differential equation OE = 0.

The two linearly independent solutions can be conveniently organized into a 2 × 2 matrix

Y (σ) satisfying

OEY = 0 , Y (ε) = 12×2 , Y (σ) =

(
ψI1(σ) ψII1 (σ)

ψI2(σ) ψII2 (σ)

)
. (3.14)

Here, the subscript labels the two components of the spinor and the superscript the two

independent solutions. The ratio of determinants is then given by the expression1

ΩE(θ0) ≡ detOE(θ0)

detOE(0)
= lim

ε→0
lim
R→∞

det (M +NY (R))

lim
θ0→0

det (M +NY (R))
, (3.15)

1For operators of the form O = P0∂σ +P1, the determinants include a prefactor involving Tr
(
RP1P

−1
0

)
,

where R is a projector selecting half of the eigenvalues of P0. To avoid this subtlety, we compute instead

the determinants of P−1
0 O = ∂σ + P−1

0 P1. Then, according to lemma 3.1 in [24], one can choose R = 0.
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where the 2 × 2 matrices M and N parametrize the boundary conditions at σ = ε and

σ = R via

Mψ(ε) +Nψ(R) = 0 . (3.16)

In the present case, the fermionic operators (3.9) satisfy O−αE = γ1Oα−Eγ1. Since we

expect charge conjugate fields to contribute identically to the one-loop effective action,

this motivates relating the boundary conditions for OαE and O−αE by

M−α = γ1M
αγ1 , N−α = γ1N

αγ1 . (3.17)

We then choose

M+ =

(
M1 M2

0 0

)
, N+ =

(
0 0

N1 N2

)
, Mi, Nj ∈ C, (3.18)

so as not to mix the conditions at the two boundaries (i.e. to have local boundary condi-

tions). As we will see below, the boundary conditions at σ = R are irrelevant, but at σ = ε

only a particular choice of M1 and M2 gives the correct answer.

3.2.1 Bosons

We now compute the ratio of bosonic determinants with Dirichlet-Dirichlet boundary con-

ditions in σ ∈ [ε, R] using (3.12). For the operator O4
E this trivial since it does not depend

on θ0. Thus,

ln Ω4
E = 0 . (3.19)

For O5,α
E and O6,α

E , the general solution to the equation OEχ = 0 reads [4, 5]

χ = e−W
(
C1 + C2

∫
dσ e2W

)
, (3.20)

with

W5 = −αEσ +

∫
dσA , W6 = −αEσ −

∫
dσ B . (3.21)

Imposing the boundary conditions (3.13) and taking the ratios we find

Ω5,α
E =



(
1 + cos θ0

2

) 1
2

αE ≤ 0

(
1 + cos θ0

2

)− 1
2
(
αE + 1 + cos θ0

αE + 2

)
αE ≥ 0

, (3.22)

Ω6,α
E =



(
1 + cos θ0

2

) 1
2

αE ≤ 0

(
1 + cos θ0

2

)− 1
2

(
αE + 1+cos θ0

2

αE + 1

)
αE ≥ 0

. (3.23)
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Notice that both regulators, ε and R, have disappeared. It is convenient at this point to

combine the charge conjugate operators into a single expression, namely,2

ln Ω4
E ≡ ln Ω4

E = 0 ,

ln Ω5
E ≡

1

2

(
ln Ω5,+

E + ln Ω5,−
E

)
=

1

2
ln

(
|E|+ 1 + cos θ0

|E|+ 2

)
,

ln Ω6
E ≡

1

2

(
ln Ω6,+

E + ln Ω6,−
E

)
=

1

2
ln

(
|E|+ 1+cos θ0

2

|E|+ 1

)
.

(3.24)

(3.25)

(3.26)

This has the effect of removing the E-independent prefactors in ΩE , making the absence

of linear Λ divergences manifest.

3.2.2 Fermions

Let us move on to the fermionic fields. After Fourier-transforming ∂τ → −iE and defining

the spinor projections

ψ± ≡
1

2
(1∓ αγ∗)ψ =

1

2

(
(1± α)ψ1

(1∓ α)ψ2

)
, (3.27)

the equation OEψ = 0 can be written as

−iγ1D
∓
σ ψ± −M±ψ∓ = 0 , (3.28)

with

D±σ = ∂σ ±
(
−αE +

1

2
A+

α(β + γ)

2
B
)
,

M± = ±1

4
(3βγ − 1)

(
sinh2 ρ± sin2 ϑ1

)
A−1 ± 1

4
α(β + γ)A .

(3.29)

(3.30)

Notice that the projections ψ± depend on the charge α. The general solution for the

operators O1,α and O2,α, corresponding, respectively, to β = γ = α and β = −γ, is given

by [4, 5]

ψ+ = A
1
2 e−W

(
C1 + C2

∫
dσ e2W

)
,

ψ− = −ipA−
1
2 γ1

[
−2e−W

(
C1 + C2

∫
dσ e2W

)
∂σW + C2e

W
]
,

(3.31)

(3.32)

where p = (3βγ − 1 + α(β + γ)) /4 = ±1. Similarly, for O3,α (β = γ = −α) one has

ψ+ = A
1
2 eWC+ ,

ψ− = A−
1
2 e−W

(
C− + iγ1C+

∫
dσ sin2 ϑ1e

2W
)
.

(3.33)

(3.34)

These last modes become massless in the 1
2 -BPS limit θ0 = 0, which explains the decoupling

between ψ+ and ψ−. In all cases the prepotential is

W = −
(
αE +

1

2
− 1

4
α(β + γ)

)
σ − 1

2
ln sinh ρ− 1

4
(2− α(β + γ)) ln sinϑ1 . (3.35)

2Even though the operator O4 is real, we define Ω4 in this way for notational convenience.
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Using the above solutions one can construct the fundamental matrix Y and compute

the determinants entering in the Gel’fand-Yaglom formula (3.15) with boundary condi-

tions (3.17)–(3.18). The results are

Ω1,α
E =


(

1 + cos θ0

2

)− 1
4

αE ≤ −1
2(

1 + cos θ0

2

) 1
4

αE ≥ 1
2

, (3.36)

Ω2,α
E =


(

1 + cos θ0

2

) 1
4

αE ≤ −1
2(

1 + cos θ0

2

)− 1
4

(
αE + 1

2 + cos θ0

αE + 3
2

)
αE ≥ 1

2

, (3.37)

Ω3,α
E =


(

1 + cos θ0

2

) 3
4

αE ≤ −1
2(

1 + cos θ0

2

)− 3
4

((
αE + 1

2

) (
αE + 3

2

)
− iM2

4M1
sin2 θ0(

αE + 1
2

) (
αE + 3

2

) )
αE ≥ 1

2

. (3.38)

Here we have already taken the ε→ 0 andR→∞ limits. As with the bosonic determinants,

it is convenient to combine the charge conjugate fields as

ln Ω1
E ≡

1

2

(
ln Ω1,+

E + ln Ω1,−
E

)
= 0 ,

ln Ω2
E ≡

1

2

(
ln Ω2,+

E + ln Ω2,−
E

)
=

1

2
ln

(
|E|+ 1

2 + cos θ0

|E|+ 3
2

)
,

ln Ω3
E ≡

1

2

(
ln Ω3,+

E + ln Ω3,−
E

)
=

1

2
ln

((
|E|+ 1

2

) (
|E|+ 3

2

)
− iM2

4M1
sin2 θ0(

|E|+ 1
2

) (
|E|+ 3

2

) )
.

(3.39)

(3.40)

(3.41)

Notice that these expressions do not depend on the boundary conditions N1 and N2 at

σ = R, and that only the determinants for the massless fermions Ω3,α depend on the choice

of boundary conditions M1 and M2 at σ = 0. Moreover, for M2 = iM1 the roots of the

polynomial in the numerator of (3.41) drastically simplify, leading to the nice factorization(
|E|+ 1

2

)(
|E|+ 3

2

)
+

1

4
sin2 θ0 =

(
|E|+ 1− cos θ0

2

)(
|E|+ 1 +

cos θ0

2

)
. (3.42)

Of course, for general M1 and M2 a similar factorization is still possible, but the roots

are more cumbersome. Ultimately, this is our main empirical reason for this choice of

boundary conditions; the correct θ0 dependence.

3.3 Final result

We are now ready to sum the ratios of determinants over the Fourier modes E. Given that

equations (3.24)–(3.26) and (3.39)–(3.41) are symmetric under E → −E, we perform the

– 8 –
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summations with a symmetric cutoff Λ, namely,

∑
E ∈Z

ln ΩE −→ ln Ω0 + 2

Λ∑
E=1

ln ΩE , for bosons ,

∑
E ∈Z+ 1

2

ln ΩE −→ 2

Λ∑
E=0

ln ΩE+ 1
2
, for fermions .

(3.43)

(3.44)

As argued in [5] in the context of type IIB strings, for Λ → ∞ this coincides with a

supersymmetric regularization scheme. Using this prescription, the sums for each charge

conjugate pair of operators give

ln Ω4
0 + 2

Λ∑
E=1

ln Ω4
E = 0 ,

ln Ω5
0 + 2

Λ∑
E=1

ln Ω5
E = ln

(
Γ (Λ + 2 + cos θ0)

Γ (Λ + 3) Γ (1 + cos θ0)

)
− 1

2
ln

(
1 + cos θ0

2

)
,

ln Ω6
0 + 2

Λ∑
E=1

ln Ω6
E = ln

 Γ
(

Λ + 1 + 1+cos θ0
2

)
Γ (Λ + 2) Γ

(
1+cos θ0

2

)
− 1

2
ln

(
1 + cos θ0

2

)
,

2

Λ∑
E=0

ln Ω1
E+ 1

2

= 0 ,

2

Λ∑
E=0

ln Ω2
E+ 1

2

= ln

(
Γ (Λ + 2 + cos θ0)

Γ (Λ + 3) Γ (1 + cos θ0)

)
,

2
Λ∑

E=0

ln Ω3
E+ 1

2

= ln

 Γ
(

Λ + 2 + 1+cos θ0
2

)
Γ
(

Λ + 3− 1+cos θ0
2

)
Γ (Λ + 3) Γ (Λ + 2) Γ

(
3+cos θ0

2

)
Γ
(

3−cos θ0
2

)
 .

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

For the massless fermions Ω3
E we have set the boundary condition M2 = iM1, although

one can easily compute the sums for arbitrary M1 and M2. Combining the full spectrum

in (3.1) with the correct multiplicities and taking into account the IR anomaly (3.2),

∆Γ1-loop
effective =

1

2

[∑
E∈Z

(
2lnΩ4

E+2lnΩ5
E+4lnΩ6

E

)
−

∑
E∈Z+ 1

2

(
2lnΩ1

E+4lnΩ2
E+2lnΩ3

E

)]
+Γ∞ ,

(3.51)

we get

e−∆Γ1-loop
effective =

Γ
(

1+cos θ0
2

)
Γ
(

3−cos θ0
2

)
Γ (1 + cos θ0)

. (3.52)

Here we have already taken the Λ → ∞ limit since the result is divergence-free. As

advertised, this agrees with the field theory prediction (2.4).
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4 Discussion

Having shown that the String Theory answer precisely matches the field theory result,

we proceed to discuss in some detail the mechanisms for the cancellation of potential

divergences. What we see in precision holography situations such as this one is a subtle

balance between the effective number of bosonic and fermionic degrees of freedom. By

effective we mean those modes in the spectrum of fluctuations that are not identical for

two different string configurations.

When summing over Fourier modes, linear Λ divergences are controlled by the |E| → ∞
behavior of ln ΩE . As we can see from equations (3.24)–(3.26) and (3.39)–(3.41), in all cases

ln ΩE → 0, immediately implying the cancellation of linear divergences. Notice that the

pairing of charge conjugate contributions into ln ΩE = 1
2

(
ln Ω+

E + ln Ω−E
)
, as done above,

is equivalent to combining ln Ωα
E + ln Ωα

−E within each operator.

Regarding logarithmic divergences, the generic sums of the kind encountered here

behave as

Λ∑
E

ln

(
E2 + uE + s

E2 + vE + t

)
= (u− v) ln Λ +O(Λ0) ,

Λ∑
E

ln

(
E + u

E + v

)
= (u− v) ln Λ +O(Λ0) ,

(4.1)

where u, v, s, t are real numbers. The fact that the fermionic sums are over half-integers

does not affect this structure. In our case, except for the massless fermionic determinant,

all of the sums are linear in E. Taking a closer look at (3.51) we find that

Λ∑
E

(
2 ln Ω4

E + 2 ln Ω5
E + 4 ln Ω6

E − 2 ln Ω1
E − 4 ln Ω2

E − 2 ln Ω3
E

)
=[

2× 0 + 2× 1 + 4× 1

2
− 2× 0− 4× 1− 2× 0

]
(cos θ0 − 1) ln Λ +O(Λ0) = O(Λ0) , (4.2)

verifying that the total logarithmic divergence cancels indeed. We emphasize that, given

the different multiplicities in the spectrum, it is crucial that the massless fermionic modes

Ω3
E do not contribute to the divergence (since u = v in (3.41)), regardless of the boundary

conditions, and that the bosonic modes Ω6
E enter with a relative factor of 1

2 . At the risk

of being repetitive, we compare this result with the analogous cancellation in type IIB

described in [5]. Recall that in that case the non-trivial bosonic contributions came from

a pair of charged fields and a neutral triplet (denoted by 5,6 and 7,8,9 in [5]), while all the

fermionic modes had O2,α as their fluctuation operator. The potentially divergent piece of

the one-loop effective action then took the form

[3× 0 + 2× 1 + 3× 2− 8× 1] (cos θ0 − 1) ln Λ +O(Λ0) = O(Λ0) . (4.3)

Even though these cancellations are expected from general principles of string perturbation

theory, it is satisfying to see the inner workings case by case. In the language of zeta-

function regularization, such logarithmic divergences were explicitly discussed in [6, 13]
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and shown to be proportional to ∆ζ(0), thus the association with the effective number of

degrees of freedom as seen in the Gel’fand-Yaglom approach.

Finally, we comment on the boundary conditions for the fermionic modes. On the

one hand, as seen in (3.36)–(3.38), all the determinants turn out to be independent of the

choice of boundary conditions N1 and N2 at σ = R. This is in agreement with the general

expectation that, when putting a system in a finite box of length R, many of the details

of the spectral density of eigenvalues are lost in the R→∞ limit. On the other hand, we

found that only the massless fields are sensitive to the boundary conditions M1 and M2

at σ = ε. This is related to the fact that, for massive fields, regularity at σ = 0 discards

half of the eigenfunctions, whereas for massless modes all eigenfunctions are regular and

an additional condition needs to be imposed [15]. Furthermore, in order to get a precise

match with the field theory prediction, we had to choose M2 = iM1 in (3.18), which, taking

into account the relation (3.17) for the charge conjugate operators, corresponds to setting

ψ1(ε) + iαψ2(ε) = 0 . (4.4)

Written in a basis-independent way, this is equivalent to

Παψ(ε) = 0 , Πα =
1

2
(1 + iαnµγ

µγ∗) . (4.5)

The projectors Π± are precisely the ones used in [15]. However, contrary to the anal-

ysis of [15], in our approach the boundary conditions for charge conjugate fermionic

fields involve opposite projections. It would be interesting to understand the origin of

this discrepancy.

5 Conclusions

In this brief note, we have computed the one-loop effective action for the latitude string in

AdS4×CP3 finding perfect agreement with the localization result in field theory. We have

further shown explicitly how divergences, known to be present in various other contexts,

are cancelled in this case. It is interesting to note that the mechanism for cancellations

is different in details from the one arising in the analogous context of holographic Wilson

loops in Type IIB string theory on AdS5 × S5. This understanding and control of the

potential divergences is a necessary condition in the analysis of precision holography.

A similar holographic computation with precise agreement with field theory has re-

cently been reported in [15], where the method of phase shifts was employed. Our results

in this note elucidate the compatibility of the Gel’fand-Yaglom method to that of phase

shifts for this problem. These are currently some of the most popular methods in the tool

box required for precision holography with Wilson loops. Although we hope to discuss

such equivalence somewhere else, it is clear that the methods deal with similar difficulties,

such as boundary conditions, in their own idiosyncratic ways.

It is certain that progress has been made in the field of precision holography with

Wilson loops. Various one-loop computations can now be clearly sketched and compared

among themselves. There are, nevertheless, a number of important questions that would

– 11 –
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be useful to clarify. We leave a number of interesting question for future work. Most

pressing in our view is a rigorous proof of the equivalence between the phase shifts and

Gel’fand-Yaglom methods and their connection to the zeta-function regularization.

A particularly interesting avenue to test many of these ideas is the problem of the

k-wound Wilson loops in N = 4 SYM and in the ABJM theory; in both cases, the field

theory answers are known exactly and can be readily extrapolated to the regime where

a comparison with string theory is appropriate. Indeed, a number of attempts has been

taken with the goal of matching the field theory result with the effective action of string

configurations without achieving an exact match [3, 26, 27]. We hope to report on this

fascinating problem in the near future.

Considering the success of precision holography for Wilson loops dual to string con-

figurations, it may be time to revisit Wilson loops whose dual are branes. There was one

attempt for the 1
2 -BPS Wilson loop in N = 4 in the totally symmetric representation [28].

The dual of this system is a D3 brane and in this case, the fluctuations were completely

described in [29]. In addition, it would be worth revisiting the one-loop effective action

of the Wilson loop in the anti-symmetric representation whose dual is a D5 brane [30]. A

summary of the situation for higher representations Wilson loops was given in [31], where

a number of discrepancies was noted.
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