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Abstract 

In the tissue engineering field the design of the scaffold inspired on the natural occurring 

tissue is of vital importance. Ideally, the scaffold surface must promote cell growth and 

differentiation, while promote angiogenesis in the in vivo implant of the scaffold. On the 

other hand, the material selection must be biocompatible and the degradation times should 

meet tissue reparation times. In the present work, we developed a nanofibrous scaffold based 

on chitosan crosslinked with diisopropylfumarate-vinyl acetate copolymer using anodized 

aluminum oxide (AAO) templates. We have previously demonstrated its biocompatibility 

properties with low cytotoxicity and proper degradation times. Now, we extended our studies 

to demonstrate that it can be successfully nanostructured using the AAO templates 

methodology, obtaining a nanorod-like scaffold with a diameter comparable to those of 

collagen fibers of the bone matrix (170 and 300 nm). The nanorods obtained presented a very 

homogeneous pattern in diameter and length, and supports cell attachment and growth. We 

also found that both osteoblastic and chondroblastic matrix production were promoted on 

bone marrow progenitor cells and primary condrocytes growing on the scaffolds, 

respectively. In addition, the nanostructured scaffold presented no cytotoxicity as it was 

evaluated using a model of macrophages on culture. 

 

Keywords: Nanostructured Biomaterials; Bone regeneration; Cartilage regeneration; 

Polyfumarate; Chitosan.  

  

Page 2 of 36

John Wiley & Sons, Inc.

Journal of Biomedical Materials Research: Part A

This article is protected by copyright. All rights reserved.



3 

 

1. Introduction 

 

In the recent years, it has been recognized the role that play the mimicry of the 

extracellular matrix in the tissue engineering field. It is supposed that when a scaffold is 

more similar to the specific extracellular matrix of a tissue better tissue integration and 

reparation was achieved. In this sense, it has been highlighted the importance both of the 

chemical nature and the micro- or nano-structuration of the scaffold surfaces to improve cell 

adhesion and growth 
1
. The design and fabrication of bioinspired nanomaterials for tissue 

engineering applications requires a fundamental understanding of the interactions between 

polymers, nanostructures and cells 
2
. In particular, in bone tissue engineering the organic 

proteins extracellular matrix is composed mainly by collagen fibers with a diameter between 

50 to 500 nm. These nanofibers act as a natural scaffold over which osteoblastic cell 

development and maturation occurs. The development of scaffolds of dimensions similar to 

these fibers could promote the development of bone tissue.  

Nanotechnology has emerged as a powerful technology in applied biomedical 

sciences. Polymeric nanofibers can be obtained by different methodologies and processing 

techniques 
3-6

. Between them, template-based methods facilitate the fabrication of scaffolds 

in the nano-size with very well defined high aspect ratio and very good reproducibility 
6
. The 

wetting of porous anodized aluminum oxide templates (AAO) with polymer-containing 

mixtures is a simple and versatile method for the nanostructuration of materials into tubular 

structures with diameters ranging from a few tens of nanometers to micrometers.  

Nanostructured biomaterials mimic the extracellular matrix providing a better 

environment for cells to grow and survive; in consequence the nano-rough materials could 

also improve cell-biomaterial interactions when compared to macro-rough scaffolds 
4, 7-8

. It 
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has been suggested that nanofibrous scaffolds presented an interconnected porous structure 

which provides a large surface area for cell attachment and sufficient space for nutrient 

exchange as well as angiogenesis 
4
. Moreover, some authors found that scaffolds 

nanostructured improve cellular biocompatibility, increasing cell development and 

differentiation and wound healing while decreasing inflammatory properties 
9-11

.  

Concerning materials of which scaffolds are made of, polymer blending and 

crosslinking are one of the most effective approaches for providing new, desirable polymeric 

materials for particular applications. In this sense, we have previously designed and 

characterized a fumaric copolymer crosslinked with chitosan 
12

. In that work, we 

demonstrated that the scaffold obtained promote osteo- and chondrogenic development, with 

very low inflammatory response and an adequate degradation rate to promote osteochondral 

tissue reparation. In the present work, we have developed nanostructured scaffold based on a 

copolymer of chitosan and polydiisopropyl fumarate (PFVH-CH-B) using AAO. In addition, 

we have study the osteochondral biocompatibility and potential cytotoxicity of this material 

to be used in tissue engineering. 

 

2. Materials and methods 

 

2.1. Materials 

Chitosan (CH, Sigma-Aldrich, high molecular weight), Borax (Timper Laboratorios, 

99.9%), Methanol (99.9%, Aldrich), Chloroform (Scharlau), Acetic acid (Scharlau), 

hydrochloric acid (37%, Anhedra RA), and CuCl2 (97%, Aldrich) were used as received 

without further purification. Ultrapure (99.999%) aluminum foils of 12 cm
2
 were purchased 
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from Goodfellow and degreased by sonication into solvents of different polarity (acetone, 

deionized water and ethanol). 

 

2.2. Synthesis anodic aluminum oxide templates  

Three types of anodized aluminum oxide templates (AAO) were prepared with 

different pore dimensions, via a two-step electrochemical anodization process on Aluminum 

sheets, as it was previously described 
13

. The resulting template presented an anodic 

aluminum oxide top layer with pores of around 170 nm in diameter and 750 nm of length 

arranged into a hexagonal lattice (AAO170), and a non-oxidized Al layer substrate at its 

bottom. Treating these templates with phosphoric acid (5 wt% at 35 ºC) during 60 min was 

obtained a second type of templates with a pore size of 300 nm (AAO300) 
14-15

. Moreover, 

using the same method 
13

, we also obtained a third template of 30 µm of length and 170 nm 

in diameter of pore (AAO
30L

). The obtained AAO templates were annealed at 150 ºC in 

vacuum in order to remove the possible adsorbed organic molecules from the pore walls. 

After, the AAO templates were characterized by Scanning Electron Microscopy (SEM), 

FESEM Hitachi model SU8000 microscope. The figure 1 shows the structure of the 

templates of 750 nm of length of pore (3D image, A) before (B) and after (C) phosphoric 

acid treatment. The analysis of the images showed that the templates presented nano-porous 

highly regular on size and diameter. The nanocavities are homogeneous in its length (Fig. 

1A), and its pore diameter was 170 nm (Fig 1B, AAO170) or 300 nm (Fig 1B, after 

phosphoric acid treatment, AAO300).  

 

2.3. Preparation and characterization of the PFVH and chitosan composite biomaterial 
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First, diisopropylfumarate (DIPF)-vinyl acetate (VA) copolymer was synthesized by 

mass radical polymerization, hydrolyzed and characterized following a procedure previously 

described 
12

. Briefly, both monomers (DIPF:VA, 75:25) together with the previously 

weighed mass of the initiator (40 mM) were charged into a reaction vessel and then purged 

with N2 during 30 min. Reaction vessels were irradiated at 140 W during 25 min using a 

microwave oven (Zenith, ZVP-2819) of 2 450 MHz microwave frequency and 700 W 

maximum power. After reaching room temperature, the copolymer was isolated by hexane 

addition, purified by solubilization–precipitation (chloroform:hexane, 1:7), and then dried at 

constant weight for conversion estimation. The copolymer was named PFV. In order to 

introduce a hydroxyl group to the main macromolecular chain, PFV was submitted to basic 

hydrolysis. To this end, the copolymer was suspended in methanol (15% wt/v) and 1% wt/v 

NaOH solution was added (50 ml NaOH/15 g copolymer); then the solution was stirred at 50 

°C for 1 h. After the reaction, the methanol was evaporated under vacuum, and the resulting 

solid was washed with water and dried until constant weight. Scheme 1 shows the chemical 

structure of the copolymer synthesized designated PFVH. 

To obtain the composite biomaterial, a mixture of 50% w/w chitosan (CH) and the 

previously synthesized copolymer were cross-linked in situ with borax. The obtained sample 

was casted by evaporating the solvent (acetic acid) at room temperature on Teflon molds. 

This mixture was designated as PFVH-CH-B. The maximum swelling and water absorption 

capacity of the scaffolds were determined as it was previously reported 
12

. 

In order to thermally characterize the material obtained, the glass transition 

temperature (Tg), PFVH-CH (mixture without borax) and PFVH-CH-B, were determined by 

Differential Scanning Calorimetry (DSC) (DSC 8500 with Hyper DSC-Perkin Elmer) under 

a nitrogen atmosphere. In brief, samples were placed in covered aluminum pans and then 
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placed in the DSC sample holder. Thermal cycles consisted of a heating ramp, followed by a 

cooling ramp, and a final heating ramp, using processes of heating and cooling of  10 ºC/min 

from -20 ºC  to 200 ºC. Also, the thermal stability of PFVH-CH and PFVH-CH-B was 

analyzed by Thermogravimetric analysis (TGA) (TGA Q500-TA Instruments) under nitrogen 

atmosphere, gas purge at 90 mL/min, and ramp from room temperature to 700 ºC. 

 

2.4. Biomaterial nanostructuration and characterization 

The nanostructured scaffolds (NS) were prepared by infiltration of PFVH-CH-B into 

the AAO nanocavities by the melt precursor film - wetting method 
13

. For the infiltration 

procedure, the copolymer film was placed on the AAO170 and AAO300 template surfaces and 

then infiltrated in an oven at 140 °C (higher temperature than the Tg of copolymer), under 

nitrogen atmosphere during 6 h 
16

. During this process, the copolymer was pressed over the 

template every 15 min to promote infiltration. For the template of 30 µm of length of pore 

(AAO
30L

) the infiltration conditions used were 140 °C under nitrogen atmosphere during 18 

h. At the end of the infiltration process, the excess of copolymer was removed from the top 

surface of AAO template with a sharp blade. Following this methodology three 

nanostructured scaffolds were obtained NS170, NS300 and NS30L using AAO170, AAO300 or 

AAO
30L 

templates, respectively. 

The AAO templates and all the infiltrated samples were morphologically 

characterized by SEM. In order to perform the analysis of free copolymer nanofibers the 

aluminum substrate was eliminated by treatment with a mixture of HCl, CuCl2 and H2O. 

Then, the alumina was dissolved in 10 wt% H3PO4 over night at room temperature. 

Previously, in order to support the free nanostructures, a polymethyl methacrylate coating 

Page 7 of 36

John Wiley & Sons, Inc.

Journal of Biomedical Materials Research: Part A

This article is protected by copyright. All rights reserved.



8 

 

was placed over the template, that has been seen does not interfere with future determinations 

17-18
.  

In order to see the effect of infiltration of copolymer distribution in AAO, Raman 

measurements were carried out using a Renishaw In Via Reflex Raman system with an 

optical microscope coupled to the system. The Raman scattering is excited using a diode 

laser at a wavelength of 785 nm. The laser beam is focused on the sample with a 0.85 x 100 

microscope objective. The laser power at the sample, the exposure time and number of 

accumulations for the Raman measurements correspond to 320 mW, 10 seconds and 10 

scans, respectively. PFVH-CH-B infiltrated into AAO templates of 30 µm of length and 

PFVH, CH, PFVH-CH-B, were studied by Raman spectroscopy at room temperature. Depth 

profiles were obtained by focusing the microscope stepwise, at 5 µm intervals, through the 

AAO template. The samples were measured in the 3 500–300 cm
-1

 spectral range.  

Water contact angles (WCA) were measured in NS170 and NS300 using a KSV Theta 

goniometer at room temperature. Double-distilled water was placed on the air facing surfaces 

of the samples and a charge coupled device camera was used to capture the images of the 

water droplets for the determination of the contact angles. At least six measurements on 

different positions on the sample surface were performed to calculate the mean static contact 

angle. 

 

2.5. Biocompatibility assay 

2.5.1. Cell cultures and incubations 

For biocompatibility assays bone marrow progenitor (BMPC) and chondrocyte cells 

were used. BMPC were isolated from the femora of Sprague-Dawley rats and cultured 

according to Molinuevo et al. 
19

. Cells were maintained in basal media (DMEM-10 % FBS) 
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at 37 ºC. Cell adhesion and proliferation was evaluated by the MTT assay. This assay 

measures the reduction of the tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl 

tetrazolium bromide (MTT) to formazan by intact mitochondria in living cells. Thus, 

absorbance change is directly proportional to the number of viable cells. Briefly, 2.5 x 10
4
 

cells / well in basal media were plated onto the scaffolds which were casted on multiwell 

culture plates and cultured during 2 h (adhesion), 24 h and 72 h (proliferation). After these 

culture periods, cells were incubated for two additional hours with a solution of 0.1 mg/ml 

MTT. After washing, the formazan precipitate was dissolved in DMSO and the absorbance 

read at 570 nm. 

Alternatively, chondrocytes were isolated from the xiphoid process of the sternum of 

Sprague-Dawley adult rats after dissection of the perichondrium. Briefly, the cartilage was 

minced, washed three times in phosphate saline buffer pH 7.4 (PBS) and treated with trypsin 

for 15 min at 37 °C. After that cartilage was washed three times with DMEM-10% FBS and 

maintained in culture at 37 °C under 95% air and 5% CO2 with half of the culture media 

changed every three days 
20

. After 15 days, chondrocytes outgrowths from the cartilage were 

replated on the scaffolds and the differentiation assay was conducted as described above. 

All procedures were in accordance with the Guide for the Care and Use of Laboratory 

Animals published by the National Institutes of Health, and they were approved by the 

Institutional Laboratory Animal Care and Use Committee (CICUAL Protocol Number 019-

06-15, Facultad de Ciencias Exactas, UNLP). 

 

2.5.2. Osteoblastic differentiation 

The effect of the material properties (nanostructuration) on the osteogenic 

commitment was evaluated by growing BMPC on the scaffolds during 21 days and then the 
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activity of alkaline phosphatase, production of type I collagen, and mineral deposition was 

Additionally, osteogenic induction of BMPC was performed by incubating the cells in 

basal media plus β-glycerol-phosphate and ascorbic acid during different periods of time: 15 

and 21 days. After that time points type I collagen was evaluated through the colorimetric 

assay with Sirius red and alkaline phosphatase activity by the conversion of p-nitrophenyl 

phosphate to p-nitrophenol in a glycine buffer pH 10, and mineral deposits were analyzed 

with the colorimetric assays of Alizarin S red 
12

. 

2.5.3. Chondroblastic assays 

To evaluate the cartilage extracellular matrix produced by chondrocytes we 

determined the proteoglycans deposits after 15 days by the colorimetric method using alcian 

blue pH 2.5. Briefly, cells were fixed with formalin during 15 min and stained overnight with 

alcian blue. After washing, the stained material was distained with 1ml of dimethyl sulfoxide 

(DMSO). The absorbance was determined at 600 nm. 

 

2.5.4. Evaluation of cytotoxicity 

To determinate the eventual cytotoxicity of the biomaterial we evaluated the 

production of nitric oxide (NO) and interleukin-1β (IL1β) using a model of macrophages in 

culture. Briefly, RAW264.7 macrophages were grown on the scaffolds or the tissue culture 

plates (control condition) in DMEM without phenol red 5% FBS. After 6, 48 and 72 h the 

supernatants were collected and evaluated for NO production by the Griess’ assay. IL1β 

production was evaluated by ELISA kits (BD OptEIA™ mouse IL-1β ELISA) in the 

conditioned media 24, 48 and 72 h of incubation. Alternatively, for PCR studies total RNA 

was isolated from cultured RAW264.7 after 72 h by the TRIZOL reagent method as 
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suggested by the manufacturer (Invitrogen, Argentina). The RNA expression of citotoxicity 

markers (IL1β, tumor necrosis factor α (TNFα) and Nitric oxide synthase (iNOS)) were 

analyzed using the semi-quantitative reverse transcription–polymerase chain reaction (PCR) 

using MMLV-RT (Invitrogen, Argentina). All the markers were normalized using actin as 

housekeeping. The specific primers for the markers were designed from NCBI sequence 

data, using CLC Genomics Workbench software (QIAGEN) (Table 1) and band intensity 

was quantified using the gels plug-in of MBF ImageJ program.  

Additionally, the effect of the degradation products of the biomaterials on cell 

viability was also evaluated. Briefly, the scaffolds were incubated in DMEM at 37°C during 

2 weeks. After this the supernatants (conditioned media) were exposed to the monolayer of 

BMPC during 24 and 72h. Thereafter, the MTT assay was performed as it was described 

above. 

 

2.6. Statistical analysis 

Results are expressed as the mean ± SEM and, unless indicated otherwise, were 

obtained from two separate experiments performed in triplicate. Differences between groups 

were assessed by one-way ANOVA with Tukey post hoc test. For non-Normal distributed 

data non-parametrical Kruskal–Wallis with Dunn’s post hoc test was performed, using Graph 

Pad InStat v. 3.00 (Graph Pad Software, San Diego, CA, USA). p< 0.05 was considered 

significant for all statistical analyses. 

 

3. Results and Discussion 
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3.1. AAO Templates 

As described in the experimental section, AAO templates were synthesized by a two-

step electrochemical anodization process to yield well defined porous nanocavities. Figure 1 

presents the SEM images of the templates. The characteristic dimensions of the templates 

synthesized are given in Table 2: AAO170 and AAO300 represent the templates of 750 nm of 

length with 170 nm and 300 nm in diameter, respectively. While AAO
30L

 represent the 

template of 30 µm of length and 170 nm in diameter. 

 

3.2. Characterization of the PFVH-CH and PFVH-CH-B 

The swelling behavior of PFVH-CH and PFVH-CH-B were compared in PBS buffer 

at 37 
o
C. Both samples maintained its structural integrity up to the maximum time tested (90 

min) and they showed a similar behavior as a function of time, reaching the equilibrium 

within 30 min. However, the maximum swelling attained was different: 300 ± 13 % and 180 

± 7 % for PFVH-CH-B and PFVH-CH, respectively. Since the proportion of PFVH and CH 

was the same in both materials, the highest swelling attained by the cross-linked material 

could be assigned to the inclusion of the ionic crosslinker (borax). 

On the other hand, one important condition for the use of the infiltration method in 

AAO templates by wetting method is that the polymeric material must be infiltrated above its 

Tg and therefore needs to be thermally stable. In order to evaluate this characteristic of our 

materials, DSC and TGA measurements were carried out.  

DSC measurements for PFVH-CH with and without borax showed a glass transition 

temperature (Tg) of 64.8 ºC and 62.15 ºC, respectively. Moreover, these values are higher 

than those previously found for PFVH (Tg = 60.5 ºC) 
12

. The increase on Tg of PFVH-CH-

cross linked by borax could be attributed to the restriction on the catenary movements caused 
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by the crosslinking between both polymers with borax. A similar behavior was previously 

observed for other systems 
21

. 

The thermal stability of materials was assessed by TGA under nitrogen atmosphere; 

Table 3 shows the results obtained. PFVH-CH and PFVH-CH-B materials seemed to 

thermally decompose in three steps and showed high initial decomposition temperatures 

(IDT), although highest for non-cross-linked material. The two first decomposition events 

(T1 and T2) could be attributed to the copolymer degradation, as it was previously observed 

for other fumaric copolymers 
22

. The last thermal event, at T3, shows the complete 

degradation of the macromolecular structure. As it can be observed in Table 3, cross-linked 

material (PFVH-CH-B) exhibited a higher T3 with lesser total mass loss compared to PFVH-

CH. These results demonstrate the higher thermal stability of the cross-linked material 

compared to non-cross-linked one. Similar results were observed for other system based on 

cross-linked polysaccharides 
23

 
24

. Thus, these results indicate that our material could be 

satisfactorily nanostructured using AAO templates at 140 °C without degradation thereof. 

  

3.3. Infiltration of PFVH-CH-B and characterization of the nanofibers 

PFVH-CH-B nanofiber-structured scaffolds have been prepared as described in 

experimental section and they have been cut into small pieces to perform macro and 

microscopic morphological studies. The macroscopic appearance of the membrane is 

presented in Figure 2A. In this image it can be observed that the nanostructured scaffolds 

(NS170 and NS300) were more transparent than CS and NS30L membranes. This difference 

it is probably caused by the higher mass presented on CS and NSL30. The morphological 

studies through scanning electronic microscopy (SEM) allow us to examine the copolymer 

nanofibers (after demolding) to evaluate its length, diameter and distribution obtained 
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(Figure 2B-E). In a lateral view illustrating the length of the fibers, we found that the short 

nanofibers (NS170 and NS300) presented a homogeneous distribution in length and in the 

spaces between them (Figure 2B). While NS30L nanofibers give rise to a disordered scaffold 

where the fibrous structure are collapsed and nanorods showed a bunche-like condensed 

structure (Figure 2C). In figures 2D and 2E it can be observed the top view of the extracted 

PFVH-CH-B copolymers from AAO templates of 750 nm of length with 170 nm and 300 nm 

of diameter, respectively. From these figures it can be seen that nanofibers diameters were 

very homogeneous and coincident with those of the template, showing that the copolymer 

completely filled the nanocavities.  

We also evaluated the presence of copolymers along the length of nanocavity by 

Raman spectroscopy. First we evaluated Raman spectra of chitosan, PFVH and PFVH-CH-B 

(Figure 3A). Chitosan showed bands at 2 880 cm
-1

 that corresponds to the ν(C-H) stretching 

vibration of the pyranoid ring, and others at 1 376, 1 260 and 896 cm
-1 

which could be 

assigned to δ(CH3,CH2) bending vibrations, ν(C-O) stretching vibration and ν(C-C) pyranoid 

ring stretching-vibration, respectively 
25

. PFVH presented characteristic bands at 1 732 and 

829 cm
-1 

that corresponds to the ν(C=O) and ν(C-CH3) stretching vibration, respectively. The 

PFVH-CH-B Raman spectra exhibited the characteristic bands of both components. 

Figure 3B shows the Raman spectra depth of PFVH-CH-B with pinhole taken at 

different intervals. Despite the noise due to the fluorescence of the alumina, it was possible to 

observe all the characteristic bands previously indicated in the Raman spectra depth up to 25 

µm, which demonstrate that no changes in chemical composition by degradation or other 

chemical or physical process are observed. As it has been reported, the decrease in the 

intensity of the bands with the depth of the cavity can be only attributed to the decrease in the 

transparency of the sample with the profundity 
26

. 
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Some results have indicated that certain cell lines are strongly affected by artificially 

fabricated micro or nano-structured solid surfaces, and implied that is possible to control the 

cell behaviors in vitro by using surface topologies instead of chemical or biological reagents 

27
. So, WCA measurements (related to the polarity of the material) have been undertaken in 

order to investigate and understand, if any, the effect of nanostructuring the material on cell 

adhesion/proliferation. 

The measure of the WCA showed that the PFVH-CH-B nanostructured scaffolds 

present lower values than that observed for casted scaffold (CS), indicating the increasing of 

hydrophilicity by nanostructuring (Table 4). In addition, we found a lower value of contact 

angle for the matrix with smallest diameter fibers (NS170). 

Based on the WCA measurement, it has been explained the behavior of wetting of 

solids with porous or textured architecture by different models 
28-29

. These models consider 

the effect of the roughness factor (r) and the area fraction of the solid surface (φs) in contact 

with the water drop. It has been demonstrated that the contact angle will increase with 

increased roughness of a hydrophobic surface, whereas the contact angle will decrease with 

increased roughness of a hydrophilic surface. The results of our scaffolds exhibited a 

behavior more close to hydrophilic surface, although the WCA of CS is 103°> 90°, while 

both NS surfaces showed lower values of WCA than the casted scaffold (CS). On the other 

hand, the lower value for NS170 in comparison to NS300 could be correlated with the 

increase of the smooth zone  between the nano-pillars which promotes a higher wet surface 

(evaluated as the distance between pillars, d, Table 4) and therefore a decrease in the 

apparent contact angle (greater hydrophilicity), according to the Wenzel model. Similar 

behavior caused by nanostructuration has been previously reported 
30

. Based on these results, 
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we proposed that the nanostructured scaffolds would promote cellular growth and 

development. 

 

3.4. Biocompatibility assays 

For biocompatibility studies, we select two nanostructured scaffolds (NS170 and 

NS300) in order to evaluate possible differences on biological response caused by the 

diameter of the nanorods. Previous experiments demonstrated that the scaffolds with ordered 

structures promote osteoblastic differentiation compared with non-ordered structures, as is 

the case for NS30L 
5, 10-11

. Therefore the biocompatibility studies were carried out for the 

shorter length nanostructures, NS170 and NS300.  

In a first set of experiments, we evaluated the adhesion of bone marrow progenitor 

cells on the nanostructured scaffolds compared to tissue culture surfaces after 2 h of plating 

by the MTT assay. We found that BMPC adhered better to the tissue culture dishes surface 

(plastic) than to the scaffolds (Figure 4A, white bars). However, growth rate was equivalent 

on the plastic and the nanostructured surfaces (Figure 4A). We have previously demonstrated 

that BMPC growth was equivalent on tissue culture surfaces or PFVH-CH-B scaffold 
12

, 

suggesting that in the present study the differences in adhesion and proliferation may be 

influenced by surface characteristics rather than by the chemical nature of the scaffold. In 

agreement with these results, we and other groups have demonstrated that the topography of 

the substratum may influence cell attachment, proliferation and commitment 
5, 18, 31-33

. 

Moreover, surface characteristic influences also cell spreading and cytoskeleton 

rearrangement which in turn could influence the differentiation potential of BMPC 
31, 33-34

.  

In addition, we observed the BMPC growing on the surfaces of nanostructured 

scaffolds (SN300) by SEM (Figure 4B). In this figure it can be observed that BMPC were 
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able to attach and spread onto the nanostructured surfaces. The analysis of the SEM images 

also demonstrated that BMPC developed lamellipodia that interact tightly with the nanorods 

(Fig 4B, arrowheads).  In this sense, previous reports have been associated the right 

cytoskeleton protein assembly with proper matrix-cell interactions, which in turn activates 

the intracellular pathways needed for osteoblastic cell growth and differentiation 
33-37

. On the 

contrary, it has been proposed that round cell morphology caused by impairing cell adhesion 

complexes could modulate cell commitment against osteoblastic phenotype 
34

. 

Then, we evaluated osteoblastic differentiation markers, namely: alkaline phosphatase 

activity (ALP), mineral nodules and type I collagen production. The evaluation of these 

differentiation markers was performed without osteogenic media (0 days of differentiation), 

this condition allowed us the evaluation of the direct influence of nanostructuration on 

osteoblastic commitment. BMPC were also incubated in the presence of osteogenic media 

during 15 and 21 days of culture. We found no differences on the osteoblastic markers 

evaluated in BMPC cultured without osteogenic media (0 days) either on plastic or scaffolds 

(NS170 and NS300, Figure 4C-E). However, ALP showed a significant increase after 15 

days of osteoblastic differentiation (p<0.01), while decreases after 21 days (Figure 4C). On 

the contrary, mineral nodules and collagen production continued steadily increasing its levels 

during all the period of time studied (Figure 4D and E). Similar results were previously 

reported about the behavior of stem cell under osteogenic differentiation 
38

. These authors 

associated this sequence of marker expression toward the progress of differentiation. 

Similarly, we could assign our results to the temporal degree of osteoblastic maturation. 

Moreover, in the NS300 scaffold, we found a significant increase on alkaline phosphatase 

activity (p<0.01) and mineral nodules deposition (p<0.01) compared to tissue culture dishes 

surface (plastic) at 15 or 21 days of differentiation, respectively (Figure 4C and D). These 
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results are in agreement with those previously published where we demonstrated that PFVH-

CH-B improved osteoblastic differentiation 
12

. Although this steadily increase on collagen 

production, in the present study we found that collagen deposition was significantly lower on 

all the nanostructured PFVH-CH-B surfaces studied than on control (p<0.001). This result 

could be explained by the fact that the nanostructuration of the surface also influence the 

extracellular matrix deposition. In this sense, we and other researchers have previously 

demonstrated that collagen deposition was diminished when osteoblastic cells are cultured in 

fibrous-nanostructured surfaces although the underlying mechanism it is not clarified 
18, 39-40

. 

Additionally, we also evaluated the production of the extracellular matrix of 

glycosamineglycan (GAG) by chondrocytes. For this purpose, chondrocytes were grown by 

the micromass technique on the nanostructured matrices during 15 days and stained with 

alcian blue. We found a significant increase on GAG production by chondrocytes growing on 

the nanostructured surfaces compared to the tissue culture dishes surface (plastic) (p<0.001), 

, although no differences for both the nanostructured scaffolds were found (Figure 4F). 

Finally, we studied the influence of nanostructuration on the inflammatory response 

of the PFVH-CH-B using RAW264.7 cells, a model of monocyte/macrophages in culture. 

We evaluated nitric oxide (NO) and interleukin-1β (IL1β) production as a function of time of 

culture, and IL1β, tumor necrosis factor α (TNFα) and inducible nitric oxide synthase (iNOS) 

mRNA by PCR as in vitro cytotoxicity markers.  

We found that macrophages growing on the nanostructured scaffolds significantly 

increased NO production (three-folds versus control, p<0.01) after 6 and 48 h of culture, 

while there was no differences on NO production after 72 h (Figure 5A). On the other hand, 

there was no increase on IL1β production on the periods of time evaluated (Figure 5B) or 

mRNA for different markers of inflammation (Figure 5C). Moreover, our results are in 
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agreement with those previously reported that showed no cytotoxic response of the 

biomaterial 
12

. Altogether, our present results demonstrated that the nanostructuration of the 

biomaterial elicit no further cytotoxicity in in vitro studies. These results are very interesting, 

since there are different inflammatory responses toward the tissue engineering biomaterials 

that could cause pro-inflammatory cells recruitment or the encapsulation and posterior 

rejection of the implant 
41

. On the other hand, it has been also proposed that low levels of 

cytokine secretion could improve angiogenesis of the scaffolds 
42

. Thus, to promote tissue 

integration there is a tight balance in cytokine production. While low levels promote 

angiogenesis, high levels elicit inflammatory and immunogenic responses. Additionally, we 

evaluated the cytotoxicity of the components released from the scaffold, if any. To 

demonstrate that we incubated the scaffolds in DMEM during 2 weeks and thereafter we 

exposed these conditioned media to BMPC monolayer. The results of this indirect 

cytotoxicity assay are shown in figure 5D. As it can be seen in this figure, the MTT assay 

demonstrated that cells exposed to these conditioned media grew as well as cells exposed to 

standard culture media (DMEM) even after 72 h of exposition. 

 

4. Conclusions 

In conclusion, we obtained and characterized nanostructured scaffolds of 

diisopropylfumarate-vinyl acetate copolymer crosslinked with chitosan (PFVH-CH-B) by by 

the infiltration in AAO template methodology. Thermogravimetric analysis demonstrated 

that our material was thermally stable displaying an initial decomposition temperature 

suitable for the infiltration process. The obtained nanofibers exhibited a homogeneous 

morphology and showed the uniform filling of the nanocavities as was demonstrated by SEM 

and Raman spectroscopy, respectively. 
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We also demonstrated that this nanostructurated biomaterial allowed BMPC adhesion 

and proliferation. Moreover, cells growing on the nanostructured surface showed an 

elongated morphology with cellular extensions that tightly interacted with the nanorods. On 

the other hand, our scaffolds promoted osteo- and chodro-blastic differentiation as evaluated 

by different specific phenotype markers. In addition, our scaffolds presented no 

inflammatory response in vitro and we observed no influence of the selected nanofibers-

diameter on cell proliferation, differentiation or cytotoxicity.  
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 Figure Legends 

Scheme 1. Structure of synthesized copolymer PFVH. 

Figure 1: SEM micrographs of surfaces of prepared AAO templates. (A) 3D lateral view 

illustrating AAO170 longitudinal (B) AAO170 and (C) AAO300 top view of AAO 
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Figure 2: Macroscopic aspect of the membranes (A) and SEM of free nanofibers PFVH-CH-

B. B) 3D lateral view NS170; C) NS30L; D) NS170 and E) NS300 top view. CS: scaffold 

obtained by casting methodology. 

Figure 3: Raman spectroscopy. (A) Raman spectra of PFVH-CH-B, PFVH and CH. (B) 

Raman spectra depth of PFVH-CH-B infiltrated in AAO 30 µm of length 

Figure 4: Biocompatibility assays. (A) MTT assay (B) SEM image of a BMPC growing on 

the nanostructured surface. Arrowheads show the cytoplasmic cell projections that strongly 

interact with the biomaterial. Osteoblastic differentiation parameters: alkaline phosphatase 

activity (C), mineral nodules (D) and collagen type I (E). (F) GAG production. • p<0.01vs 2 

h; •• p<0.001 vs. 2 h; *p<0.01 vs. 0 days; **p<0.001 vs. 0 days; # p<0.01 vs. plastic. 

Figure 5: Cytotoxicity assay. (A)  NO production. (B) IL1β (C) mRNA levels for IL1β, 

TNFα and iNOS. (D) Effect of the degradation products on cell viability. *p<0.01 vs. Plastic.  
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Table 1: Primer sequence for citotoxicity markers 

Marker Genbank code Product size (bp)  Sequence 

IL1β NM_008361.3 264 
fw AAGCTCTCCACCTCAATG 

rv CAGACTCAAACTCCACTTT 

TNFα 
NM_013693.3 298 fw CACGCTCTTCTGTCTACTG 

  rv CTTGAAGAGAACCTGGGA 

iNOS 
NM_010927.3 499 fw ACCAGAGGACCCAGAGACAA 

  rv CGATGCACAACTGGGTGA 
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Table 2. AAO Templates 

 Diameter Length 

AAO170 170 nm 750 nm 

AAO300 300 nm 750 nm 

AAO
30L

 170 nm 30 µm 
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Table 3. TGA data of PFVH- CHI and PFVH-CHI-B 

T (°°°°C) PFVH- CHI 
Total mass 

loss (%) 
PFVH-CHI-B 

Total mass 

loss (%) 

IDT 263 - 242 - 

T1 280 25.3 270 16.5 

T2 323 54.1 336 43.6 

T3 457 68.8 541 59.6 

IDT: initial decomposition temperatures. 

 

Page 29 of 36

John Wiley & Sons, Inc.

Journal of Biomedical Materials Research: Part A

This article is protected by copyright. All rights reserved.



Table 4. Water contact angle measurements 

Sample WCA d (nm)* 

CS 103º ± 1 - 

NS170 60º ± 4 270 

NS300 81º ± 2 125 

* d = distance between pillars, evaluated by SEM images 
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Figure 1: SEM micrographs of surfaces of prepared AAO templates. (A) 3D lateral view illustrating AAO170 
longitudinal (B) AAO170 and (C) AAO300 top view of AAO  
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Figure 2: Macroscopic aspect of the membranes (A) and SEM of free nanofibers PFVH-CH-B. B) 3D lateral 
view NS170; C) NS30L; D) NS170 and E) NS300 top view. CS: scaffold obtained by casting methodology.  
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Figure 3: Raman spectroscopy. (A) Raman spectra of PFVH-CH-B, PFVH and CH. (B) Raman spectra depth of 
PFVH-CH-B infiltrated in AAO 30 µm of length  
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Figure 4: Biocompatibility assays. (A) MTT assay (B) SEM image of a BMPC growing on the nanostructured 
surface. Arrowheads show the cytoplasmic cell projections that strongly interact with the biomaterial. 

Osteoblastic differentiation parameters: alkaline phosphatase activity (C), mineral nodules (D) and collagen 

type I (E). (F) GAG production. • p<0.01vs 2 h; •• p<0.001 vs. 2 h; *p<0.01 vs. 0 days; **p<0.001 vs. 0 
days; # p<0.01 vs. plastic.  
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Figure 5: Cytotoxicity assay. (A)  NO production. (B) IL1β (C) mRNA levels for IL1β, TNFα and iNOS. (D) 

Effect of the degradation products on cell viability. *p<0.01 vs. Plastic.  
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Scheme 1. Structure of synthesized copolymer PFVH. 
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