
Alternating regimes of motion in cell motility models1

Nara Guisoni,1, ∗ Karina I. Mazzitello,2, † and Luis Diambra3, ‡2
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Cellular movement is a complex dynamic process, resulting from the interaction of multiple ele-8

ments at the intra and extra-cellular levels. This epiphenomenon presents a variety of behaviors,9

which can include normal and anomalous diffusion or collective migration. In some cases cells can get10

neighborhood information through chemical or mechanical cues. A unified understanding about how11

such information can influence the dynamics of cell movement is still lacking. In order to improve12

our comprehension of cell migration we consider a cellular Potts model where cells move actively in13

the direction of a driving field. The intensity of this driving field is constant, while its orientation can14

evolves according to two alternative dynamics based on the Ornstein-Uhlenbeck process. In the first15

case, the next orientation of the driving field depends on the previous direction of the field. In the16

second case, the direction update considers the mean orientation performed by the cell in previous17

steps. Thus, the latter update rule mimics the ability of cells to perceive the environment, avoiding18

obstacles and thus increasing the cellular displacement. Our results indicate that both dynamics19

introduce temporal and spatial correlations in cell velocity in a friction coefficient and cell density20

dependent manner. Furthermore, we observe alternating regimes in the mean square displacement,21

with normal and anomalous diffusion. The crossovers between superdiffusive and diffusive regimes,22

are strongly affected by both the driving field dynamics and cell-cell interactions. In this sense,23

when cell polarization update grants information about the previous cellular displacement decreases24

the duration of the diffusive regime, in particular for high density cultures.25

I. INTRODUCTION26

Cell motion plays a key role in many physiological27

processes including tissue morphogenesis, wound healing,28

immune and inflammatory response. It is known that the29

movement of cells is strongly influenced by cell-cell inter-30

actions, which grants a wide spectrum of behaviors. Cell31

motion can be categorized in terms of its external en-32

vironment, which can present directional asymmetry in33

response to a chemical stimulus, or be isotropic, without34

a preferred direction. In this sense, the single cell track-35

ing technique provides substantial evidence that in the36

absence of chemotactic cues, cells perform a persistent37

random walk, which has been modeled by the Ornstein-38

Uhlenbeck (OU) process [1]. In the case of directional39

asymmetry of the environment the cell is said to perform40

taxis and cell movement has been widely modeled using41

the Keller-Segel diffusion equation [2]. In addition to this42

categorization, cell motion can refer to the movement of43

individual cells with or without neighbors [3, 4], or to a44

cell population acting as an aggregate [5–7].45

Experimental results focused on individual movements46

share characteristics of Brownian particles [8, 9]: ex-47

ponential decay of the velocity autocorrelation function48

(ACF) and linear growth with time of the mean square49

displacement (MSD), at large time scales [10]. These fea-50
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tures can be explained by the OU process, or equivalently,51

the conventional Klein-Kramers description [1, 11]. How-52

ever, there exist cell motions without chemotaxis that do53

not follow the OU process, for example, movements of54

epithelial cells and aggregates of Hydra cells, reported as55

anomalous diffusion processes [5]. Also human fibroblasts56

and keratinocytes move in a manner that contradict the57

OU process [5]. Similarly, Takagi et al. have reported58

different cell movement behaviors with anomalous dif-59

fusion for Dictyostelium cells in different physiological60

conditions [12]. These experiments fit well with a gen-61

eralized Langevin model that includes a memory kernel62

for cell velocity [13]. Furthermore, long-term analysis63

of MDCK cells has revealed a superdiffusive behavior,64

in absence of external cues [4, 14]. These findings show65

that cell movement contains a more complex dynamics66

than the persistent random walk, which can be explained67

by the fractional Klein-Kramers equation [4]. The latter68

can be considered as a phenomenological approach, able69

to describe anomalous diffusion in terms of very general70

physical mechanisms. However, it has limitations to in-71

dicate which biological ingredients lead to an anomalous72

behavior. Thus, alternative modeling that allows to get73

biological insight by testing different hypotheses becomes74

really interesting.75

Recently, we have introduced a reorientation model76

based on the cellular Potts framework [15]. In this77

model, cell movement due to a driving field, which di-78

rection changes following a discrete version of the OU79

process, was considered. In contrast, previous models80

have applied the OU process on the velocity vector, lead-81

ing to white-noise fluctuations on the direction angle82
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[8, 9, 16, 17]. It is known that when the orientation83

angle fluctuates without correlations (i.e., in the absence84

of the friction term) the system exhibits Brownian mo-85

tion [16, 18]. However, when the friction term is present,86

we found that high density cultures exhibited a double-87

exponential for the velocity ACF, in contrast to an expo-88

nential characterizing the Brownian motion of low den-89

sity cultures. For both densities the MSD behaves as a90

persistent random walk model for the time scale studied91

[15]. These results suggest that the complex behavior of92

cell motion can be consequence of the intrinsic feature of93

the movement, but also of cell-cell interactions.94

In this paper, we are particularly interested in under-95

standing the interplay between the neighborhood infor-96

mation gathered by the cell in previous displacement and97

cell motility over large time scales. To address this ques-98

tion, the cellular Potts model (CPM) introduced in [15]99

with two types of dynamics for the orientation angle of100

cell displacements are compared. Firstly, we consider101

a “naive” implementation where the new orientation is102

related to the field direction operating in the previous103

step, regardless the cellular direction of displacement. In104

the second case, the update direction depends on the105

mean orientation performed by the cell in the previous106

steps. This implementation of the field direction update107

grants a sort of feedback mechanism, because at each108

time step the angle of the driving field is influenced by109

the recent cell history, taking into account interactions110

between cells blocking and deviating from their original111

orientations. We compare both actualization models an-112

alyzing the MSD, the temporal and spatial correlations113

of cell velocity and the average distance traveled by a cell114

during the time interval that the driving field is operat-115

ing, at low and high density cultures.116

II. THE MODEL117

The CPM is a modified Potts model which includes118

different terms of energy that become it able to repro-119

duce some biophysical properties of cells, such as defor-120

mations of cell membrane, adhesion and motility in an121

excluded volume manner. In the model, at each site of122

the lattice a spin σi = 1, ..., Q is assigned, and cells are123

represented by domains with the same spin, thereby if124

σi = M , with 1 ≤ M ≤ Q, it belongs to the cell labeled125

as M . The dynamics of the model are governed by the126

Hamiltonian, or energy function, which guides the cell127

behavior by distinguishing the low energy configurations128

(or favorable) from the high energy ones. The Hamilto-129

nian is constituted by a term corresponding to the sum130

of all surface energies, responsible for cell-cell adhesion131

properties. However, to keep the cells without that they132

be broken or disappear, additional terms in the Hamil-133

tonian are needed. Thus, the energy function considered134

here is given by135

H0 =
∑

i,j neighbors

Jσiσj

(

1− δσiσj

)

+

+

Q
∑

M=1

κ (VM − V0)
2
+

Q
∑

M=1

Γ (LM − L0)
2
, (1)

where δσiσj
is the Kronecker delta and the first sum is136

over all neighboring site pairs, representing the bound-137

ary energy of the interacting cells. The second and third138

terms in Eq. (1) correspond to the energy costs for cells139

to deviate from the preferred volume V0 and perimeter140

L0, respectively. The presence of a medium, which inter-141

acts with the cells, is also considered. In this way, the142

medium has spin variable σi = 0, with no target area143

or perimeter. The adhesion constant between different144

cells is denoted by Jcell−cell whereas between cells and145

medium is Jcell−medium. Further, to consider cell motil-146

ity preferentially along the direction of a driving field
−→
F ,147

an additional term should be added to the Hamiltonian148

Eq. (1) [15, 19], as we will see below.149

The system evolves using Monte Carlo dynamics. In150

order to obtain a new configuration a lattice site is ran-151

domly chosen and if it belongs to the boundary of the152

cell, this site copies the spin value of one of its neighbor-153

ing cells as a trial. The variation of energy in a proposed154

trial configuration is given by155

∆H = ∆H0 +

Q
∑

M=1

−→
F M ·∆−→r M , (2)

where ∆H0 is the change of energy related to Eq. (1),156

−→r M denotes the displacement of the center of cell M157

and
−→
F M is the driving field acting on cell M . The ac-158

ceptance, or not, of a new configuration is given by the159

Metropolis prescription: the trial is accepted with prob-160

ability 1 if it decreases the value of energy, ∆H ≤ 0, or161

with the Boltzmann factor e(−∆H/kBT ) if it increases the162

energy (∆H > 0), where kBT parameterizes the intrin-163

sic membrane motility. The unit of time, a Monte Carlo164

step (MCS), is defined as N trials of movement, being N165

the number of spins in the lattice.166

The driving field is characterized by a direction, de-167

noted by Θ, and an intensity F . We consider that the168

intensity F is constant over time and the same for all169

cells. However, the direction of the driving field operating170

over cell M , ΘM , is actualized according to OU process,171

dΘM (t) = −λΘM (t)dt+ σdW (t), where λ is the friction172

coefficient (0 ≤ λ < 1), σ determines the magnitude of173

the fluctuations and dW (t) denotes the Wiener process.174

For our Monte Carlo simulations, it is necessary to use175

a discrete version of this stochastic differential equation,176

which can be identified with a first-order autoregressive177

process, as follow:178

ΘM (n) = (1− λ)ΘM (n− 1) + σǫ (n) , n = 1, 2, . . .(3)
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where ǫ (n) is a white noise with zero mean and unit179

variance (σ2
ǫ = 1) and n is the discrete time. λ and σ180

were defined previously.181

Note that it is not mandatory that the cell displace-182

ment has the same direction of the associated driving183

field, due to both cell-cell interactions and stochastic fluc-184

tuations. Thus, the angle of the driving field ΘM is not185

necessarily equal to the direction of the cell movement,186

which will be denoted by αM . If the previous direction187

of the cell displacement is considered in the actualiza-188

tion of the driving angle we have a positive feedback,189

which mimics the situation in which the cell produces its190

own chemotactic signal. This aspect was taken into ac-191

count previously by other authors in Potts like models192

[6, 20, 21]. In that way, Kabla considers that the motile193

force is oriented along the mean velocity of the cell over194

its past time steps, without friction nor noise [21]. For195

Szabó et al. [6] the change in cell polarization is pro-196

portional to a spontaneous decay respect to its previous197

value and a reinforcement from cell displacement direc-198

tion during the time step considered. In order to take199

into account this feedback loop, an alternative way to200

update the angle of the driving field ΘM is:201

ΘM (n) = (1− λ)αM (n− 1) + σǫ (n) , (4)

where αM (n− 1) is the mean displacement angle over202

the last τ MCS, and the other parameters are the same203

as in Eq. (3). Thus, according to Eq. (4) the angle of the204

driving force depends on the earlier displacements of the205

cell. Differently from previous formulations [6, 20, 21],206

our proposal for the feedback loop takes into account207

fluctuations. Besides, an advantage of Eq. (4) is the208

possibility of a direct comparison with Eq. (3): the only209

difference between them is the dependence on the mean210

cell polarity αM instead of on the previous direction of211

the driving field θM .212

For both actualization procedures, the initial direction213

of the cellM , ΘM (0), is chosen randomly between [0, 2π].214

ΘM evolves independently of the field operating in other215

cells. The updating time in Eqs. 3 and 4, n, is different216

from the time of actualization of cell configurations. In217

particular, at each time step the direction of the driving218

field for each cell M changes with probability 1/τ accord-219

ing to Eqs. 3 and 4. Thus, the change in the directions220

ΘM and αM occurs at a mean time τ independently of221

the direction of other cells.222

III. RESULTS223

For all simulations in this paper, we used the following224

fixed parameter values Jcell−cell = 0.1, Jcell−medium =225

0.01, Γ = 0.2, κ = 1, σ = π/3, F = 10, T = 2 and226

τ = 10. The density ρ is defined as the ratio between227

the area occupied by the cells and the medium. In this228

way, we calculate the number of spins with σi 6= 0 re-229

lated to the total number of spins, since the medium is230

identified by σi = 0. Low and high density simulations231

correspond to ρ = 0.2 and ρ = 0.9, respectively. Also,232

we considered along the paper three different values of233

friction coefficient λ = 0.01, 0.05 and 0.10. We used pe-234

riodic boundary conditions and a square lattice of size235

1024 × 1024 sites. More details about initial conditions236

and thermalization can be found in [15].237

In order to characterize the movement of a cell popula-238

tion we calculate the mean-squared displacement (MSD)239

as MSD(t) =
〈

(−→r M (t)−−→r M (0))
2
〉

, where the average240

is taken over all cells of the simulation between a common241

starting point at t = 0 and the actual positions at time242

t. According to Fig. 1, the MSD presents two or three243

regimes in the time scale considered, depending on the244

value of λ and on the updating rule used. For λ = 0.01245

and the OU actualization (Eq. 3), we can see that at246

short times the MSD is almost ballistic and after that247

it resembles a random walk, regardless the density. For248

the other situations, the MSD has three regimes: it is249

almost ballistic at short times, diffusive at intermediate250

time scale and superdiffusive at long times. When the251

direction of the driving field is actualized by using OU252

with feedback (Eq. 4), the crossover between the ran-253

dom walk behavior and the superdiffusive regime at long254

times occurs previously for λ = 0.10 than for 0.01. On255

the other hand, when the OU actualization is used, this256

crossover is present for λ = 0.10 but not for 0.01. Con-257

sequently, the duration of the diffusive period is shorter258

when the friction coefficient is higher (same actualization259

model and different values of λ) and when the feedback260

is present (same value of λ and different actualization261

models). In order to understand these results, let us dis-262

cuss the meaning of the different regimes observed for263

the MSD along the different time scales. For all cases,264

the almost ballistic short-time behavior is related to the265

persistence time of the driving force, τ . In fact, in a266

previous paper [15] we shown that the temporal behav-267

ior of the MSD scales with τ , for the OU actualization.268

The diffusive behavior of the MSD, also present for all269

cases shown in Fig. 1, is the result of the fluctuations in270

the direction of the driving field, since Eqs. 3 and 4 are271

stochastic equations. However, the actualization of Θ is272

not completely random since the friction coefficient λ in-273

troduces correlations in the successive directions of the274

cells displacements, whose influence is observed at long275

times. This effect is particularly evident when using Eq.276

4, since the presence of feedback rises the correlations,277

and therefore favors the anomalous diffusive behavior.278

Also, from Fig. 1, the MSD obtained from the angle279

updating rule with feedback is greater or equal than that280

found with the OU actualization. This result suggests281

that feedback helps cells avoid collisions with another282

cells, making the movement more effective. Finally, we283

discuss the effect of density on the MSD, starting with the284

model of OU actualization. Low density configurations285

have higher or equal MSD than the obtained for high286

density, for both values of λ (see black lines in Fig. 1). In287

fact, a lower MSD for high density cultures is expected,288

since crowded cell cultures usually disturb the movement289

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 30, 2019. ; https://doi.org/10.1101/2019.12.30.891093doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.30.891093
http://creativecommons.org/licenses/by-nc-nd/4.0/


4

FIG. 1. Log-log plot of the mean-squared displacement, msd, vs. time, t. Direction of the driving field actualized according to
Ornstein-Uhlenbeck (OU naive) and Ornstein-Uhlenbeck with feedback (OU + feedback), λ = 0.01 (A) and λ = 0.10 (B), and
ρ = 0.2, 0.9 (dashed and continuous line, respectively). Lines with slope equal 2 (Ballistic) and 1 (Random walk) are shown for
the sake of comparison.

of cells. The same behavior related with density can be290

observed at short and intermediate times when the feed-291

back updating rule is used. However, at long times, the292

high density culture presents higher MSD than the low293

density one, for λ = 0.10 and feedback update. This in-294

version in the MSD suggests that the feedback gives rise295

to a spatially coordinated movement of the cells in high296

density simulations.297

The temporal behavior of MSD scales with time as298

MSD(t) ∼ tβ(t), where the exponent β characterizes the299

different regimes observed. In that way, a ballistic be-300

haviour is associated with β = 2, whereas normal diffu-301

sion presents β = 1. The logarithmic derivative of the302

MSD allows the calculation of β as β(t) = d lnMSD(t)
d ln(t) .303

Similar measurements were used to study cell migration304

[4] and intracellular transport [22] from both experiments305

and models, and for a simple model that mimics the dif-306

fusion of a particle in an anisotropic amorphous material307

[23]. Fig. 2 shows the behavior of β as obtained from the308

two angle updating rules, for low (dashed lines) and high309

(solid lines) densities and different values of λ. β was310

computed using a time-sliding window, the size of which311

depends on t. At the short-time scale the exponent β312

corresponds to anomalous diffusion. At this scale, we313

can note that for the OU actualization, low density cul-314

tures present higher β than high density. This aspect is315

less evident when the feedback mechanism is considered,316

since β for low and high density cultures presents almost317

the same value in the range [30, 100] MCS. Besides, at318

short-time scale it can be seen a slight increase in β for319

the update with feedback. These results indicate that320

the feedback makes cell movement more efficient, partic-321

ularly for high density cultures, as discussed before. At322

intermediate time scale, β decreases and the MSD tends323

to exhibit a diffusive behavior. Particularly, for the OU324

actualization and low λ-values, the diffusive behavior is325

observed at intermediate and long-time scales. For the326

other conditions of Fig. 2, the transition between short-327

time and long-time superdiffusive regimes is so tight that328

the exponent β = 1 is almost not reached, but will be329

referred to as a diffusive regime. The duration of this330

diffusive regime decreases with λ (for the same angle up-331

dating rule) and with the feedback (for the same value of332

λ), as pointed out with Fig. 1. Also, for the OU actual-333

ization and low λ-values, β is independent of the density334

at intermediate and long-time scale. For the other con-335

ditions in the same time scales, the high density cultures336

present higher β than low density ones. Besides, from337

the behavior of β at long-time scale when the feedback338

is considered (Fig. 2-B), we can suppose that for a larger339

time scale (that is for t ≥ 105 MCS) β will continue to340

grow until it reaches β = 2. In fact, we can expect the341

same behavior for Fig. 2-A, since for both actualization342

rules there is correlation in the Θ update. As we have343

discussed previously, the correlation comes from the fric-344

tion term being reinforced by the feedback. Cell-cell in-345

teractions also increase correlations at intermediate and346

long-time scales.347

The velocity ACF is another important tool to charac-348

terize cell movement. It is defined as C(t) = Z(t)/Z(0)349

where Z(t) = 〈−→v M (t0 + t) · −→v M (t0)〉 [24], and 〈. . .〉 in-350

dicates the average over all cells and over t0. The cell351

velocities are defined as −→v M (t) = ∆−→r M (t)/∆t, where352

∆−→r M (t) = (−→r M (t+∆t)−−→r M (t)), and ∆t = 1 MCS.353

Fig. 3 shows that the velocity ACF obtained for the an-354

gle updating rule with feedback (Eq. 4) is always higher355

than the one obtained for the naive angle update (Eq. 3),356

regardless the values of λ or ρ. In fact, if cells are more357

successful in avoiding collisions with another cells we ex-358

pect a higher ACF. In Fig. 3, for the OU actualization,359

high density cultures have smaller ACF than low den-360
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FIG. 2. Logarithmic derivative of the MSD, β(t), as defined in the text, calculated from data shown in Fig. 1 and additional
data. Direction of the driving field actualized according to OU naive (A) and OU with feedback (B) and different values
of λ = 0.01, 0.05, 0.10 (dark, red and blue, respectively) and ρ = 0.2, 0.9 (dashed and continuous line, respectively). We
used a time-sliding window, the size of which depends on time. The interval between successive measurements is equal to
[1.775k, 1.775(k+4)] and k = 1, 1.2, 1.4, . . . , 16, since the MSD data was considered until t = 105 MCS.

FIG. 3. Semi-log plot of the velocity ACF function, C(t), vs. time, t. Direction of the driving field actualized according to
OU naive and OU with feedback, for different densities, ρ = 0.2, 0.9 (dashed and continuous line, respectively), and friction
coefficients, λ = 0.01, (A) and λ = 0.05 (B). C(t) was averaged over all cells in the simulations for 6x104 MCS and over 1
(ρ = 0.9) and 3 samples (ρ = 0.2).

sity cultures, for both λ = 0.01 and 0.05. This result361

can be understood by the fact that a crowded neighbor-362

hood usually disrupts the movement of the cell. How-363

ever, when the feedback update is considered, this rela-364

tion is inverted: high density cultures have a higher ACF365

than low density cultures, independent of the value of366

λ. Therefore, we can conclude that the feedback makes367

cell movement more efficient mostly for high density cul-368

tures. Actually, when the update with feedback is used369

in high density cultures there is a competence between370

two effects: on the one hand a crowded environment hin-371

ders cell movement, and on the other hand, the feedback372

promotes it. But the OU update has only the first ef-373

fect. Because of that, the difference in the velocity ACF374

between the two update rules is more evident for high375

density cultures.376

Also, Fig. 3 shows that the ACF is greater for λ = 0.05377

than for λ = 0.01, regardless the density or the update378

model. This result indicates that the friction coefficient379

enhances the correlation in cell movement, as discussed380

before. Finally, for the OU with feedback update and381

λ = 0.05 the ACF presents a very slow decrease at long382

times, consistent with an algebraic decay, independent383

of the density. For the other parameters considered in384

Fig. 3 the ACF goes to zero before t = 250 MCS.385

The spatial correlations of the cell velocities are also386
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FIG. 4. Spatial correlation function of the velocities, C(r), as a function of the distance r between cell pairs. Direction of
the driving field actualized according to OU naive and OU with feedback, for different densities, ρ = 0.2, 0.9 (dashed and
continuous line, respectively), and friction coefficients, λ = 0.01, (A) and λ = 0.10 (B). Data were obtained by averaging over
105 MCS.

used to study cell movement. It is defined as C(r) =387

〈−→v M · −→v M ′/ (|−→v M | |−→v M ′ |)〉, with r = |−→r M −−→r M ′ | the388

distance between mass center of cells M and M ′. When389

comparing the two angle-update rules, we can see from390

Fig. 4 that C(r) is always higher when the update rule391

with feedback is used, as also observed for the ACF392

(Fig. 3). As discussed in a previous work [15], the peak393

close to the typical diameter of the cell (∼ 16 pixels) is394

related to anti-correlated velocities of cells that travel395

in opposite directions. At intermediate and long dis-396

tances (r & cell size) cells in high density configura-397

tions are more correlated, for both actualization rules398

and λ−values. Besides, C(r) in high density simulations399

approaches zero very slowly, as r increases, in particular400

for λ = 0.10 and when using the feedback update rule401

(Fig. 4-B). These results indicate that cell-cell contact402

induces long-range spatial-correlation of cell velocity and403

that this effect is enhanced by both the feedback and the404

friction coefficient. Also, the difference in C(r) for low405

and high density cultures is much higher in the case of up-406

date with feedback. Therefore, the effect of the feedback407

raising spatial correlations is greater for the crowded cul-408

tures, as observed for the temporal correlations in Fig. 3.409

These results could indicate a coordinated movement of410

cells in high density cultures as a consequence of the feed-411

back mechanism.412

In order to get insight about the effect of the feedback413

introduced by the rule Eq. 4 on the cell movement, we414

define the average distance D traveled by a cell during415

the time interval that the driving field is operating in a416

given direction. Mathematically, it is defined as417

D =
1

Q

Q
∑

M=1

〈|∆−→r M (tf − ti) |〉It , (5)

where ∆−→r M (tf − ti) is the cell displacement from the418

time the driving field starts operating, ti, until the time419

of the next direction change, tf (with tf − ti ∼ τ), 〈. . .〉It420

indicates the average over all time intervals It = [ti, tf ],421

and the sum runs over all cells on the substrate. This422

magnitude gives information about the cell movement423

only in the short-time scale (∼ τ , i.e., during the first424

almost ballistic regime), for that reason it is nearly inde-425

pendent on λ-values, as we can see in Fig. 5. Further, it426

is expected that cells can move much more in low den-427

sity cultures than in a crowded media, which is also evi-428

dent in Fig. 4, where D is much higher for ρ = 0.2 than429

for ρ = 0.9. Fig. 5 also establishes a comparison of the430

magnitude D for the two angles-updating rules specified431

by Eqs. 3 and 4. In all cases, the average distance D432

reached by the cells when the OU with feedback is act-433

ing is greater than when the OU update is applied. In434

particular, we observe that in the case of a crowded me-435

dia there is a remarkable increment (of about 20%) of D436

when the update with feedback is applied respect to the437

OU actualization. For the low-density case the increase438

is only about 3%. These results suggest that the OU with439

feedback update promotes or increases cell displacement440

and that this effect is more noticeable in crowded envi-441

ronments.442

IV. DISCUSSIONS AND CONCLUSION443

Much of the work about cell motility is based on the444

study of the time behavior of the second moment, the445

MSD. Thus, a system is considered to exhibit Brownian446

motion when the MSD increases linearly in time, oth-447

erwise it is considered to present anomalous diffusion.448

However, we usually want to know more about the cell449

trajectories than simply the second moment [3, 4]. Other450

features of interest are the distribution and correlations451

of cell velocity. So, if normal diffusion occurs, the veloc-452
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 ρ = 0.2  ρ = 0.9

0.5

1

1.5

2

D

λ = 0.01 - OU naive

λ = 0.10 - OU naive

λ = 0.01 - OU + feedback

λ = 0.10 - OU + feedback

FIG. 5. Average distance travelled by a cell during the time interval that the driving field is operating, D, for densities ρ = 0.2
and ρ = 0.9. Direction of the driving field actualized according to OU naive and OU with feedback (black and red, respectively)
and friction coefficient λ = 0.01, and λ = 0.10. D was averaged over all cells in the simulations until 105 MCS (the first 500
MCS were disregarded). Error bars are smaller than the thickness of the line.

ity correlation decreases to zero exponentially, or more453

quickly, while anomalous diffusion could be associated454

with an algebraic decay of the velocity ACF. The MSD455

and the correlations can be theoretically derived only456

from simplified models [13, 16, 17, 22, 25]. This modeling457

feature is particularly interesting to get insight about the458

asymptotic behavior of the MSD. On the other hand, for459

models which include biological ingredients like cell vol-460

ume and cell-cell interactions, as the CPM-based ones, it461

is difficult to get analytical expressions. However, these462

models can add valuable information about cell motion463

[6, 15, 21, 26]. For example, they are able to test feedback464

mechanisms from the neighbourhood at different spatial465

scale in an excluded volume schema [21, 26]. In addition,466

Kabla studies different cell dynamics for the collective467

movement resulting from the balance between adhesion468

and cell motile forces [21]. Here we study cell movement469

at long-time scales addressing the effect of cell-cell inter-470

actions and neighborhood information gathered by the471

cell within the framework of a CPM-based model. We472

consider that cells move actively according to a driving473

field that has a constant intensity and whose orientation474

is governed by two alternative OU updating rules. The475

proposed dynamics for the driving field provide both a476

persistent random walk feature, which include a sort of477

angle memory, as well as, a feedback mechanism able to478

mimics cell behavior with environment perception at lo-479

cal range.480

We observed alternating superdiffusive-Brownian481

regimes for the MSD in the temporal scale considered.482

The almost ballistic behavior at short time is related with483

the persistence time τ of the driving field [15]. At inter-484

mediate time intervals the MSD becomes diffusive due to485

the random actualization of cell direction. A crossover486

from a quadratic to a linear regime in the MSD has been487

previously reported in a model of self-propelled particles,488

when the diffusive behavior arising from particle reorien-489

tation dominates the persistence process [17]. Besides,490

when the OU dynamics is applied to update particle ve-491

locities vector (instead to update the angle direction as492

was done here) the same crossover is observed in the MSD493

and the resulting asymptotic regime is Brownian [1, 16].494

In addition to this initial crossing of regimes, we found495

a second crossover between the diffusive behavior and a496

ballistic regime at large time scales. The second crossover497

occurs previously for large λ-values, since the stronger498

the friction term in the OU process, the higher the corre-499

lations. Furthermore, we show that this crossover also500

depends on the angle-update rule used, being favored501

when Eq. 4 is operating. This result is in agreement502

with the fact that temporal and spatial correlations are503

higher when the update rule with feedback is used. Also,504

our results suggest that the feedback update rule helps505

cells avoid collisions with another cells, making the move-506

ment more effective, and therefore contributing to sup-507

perdifusion. Finally, the transition to the long-term bal-508

listic regime depends on cell-cell interactions and occurs509

previously in crowded cultures. Our findings can be re-510

lated to previous results from a directed random walk511

model [27]. In this paper, the time of appearance of the512

asymptotic ballistic regime depends on an anisotropy pa-513

rameter, which fixes the correlations in the displacement514

direction: at higher values of this parameter (or stronger515

anisotropy), there is more correlation and the ballistic516

regime appears early [27]. In the present work, we show517

that the appearance of the long time ballistic regime is518

favored by the friction term λ, by cell-cell interactions519

and also by the feedback updating rule. All these fac-520

tors introduce correlations in cell movement, leading to521

a ballistic motion at long time scales. We also expect522

the crossover time between the diffusive and the ballis-523

tic regime be affected by σ, since greater values of σ are524

related to a more stochastic cell movement and should525

correspond to a longer diffusive period.526
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In conclusion, the two angle-updating rules used in527

this paper allow disentangling the effect of two sources528

of anomalies. Firstly, we observe that cellular motion529

governed by angle-updating rules with a no-null friction530

term, presents anomalous diffusion for long times, and531

more specifically a crossover from Brownian to ballistic532

regimes. On the other hand, the temporal scale of the533

diffusive regime is shortened when the direction update534

rule includes a feedback mechanism. The characteristic535

scale where the crossover between these regimes is ev-536

ident depends on the velocity correlations, which itself537

depends on the friction term, the feedback and cell-cell538

interactions.539
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ased diffusion in anisotropic disordered systems. Physical623

Review E, 62:7664–7669, 2000.624

[24] J P Rieu, A Upadhyaya, J Glazier, N B Ouchi, and625

Y Sawada. Diffusion and deformations of single hy-626

dra cells in cellular aggregates. Biophysical Journal,627

79(4):1903–14, 2000.628

[25] MA Despsito, C Pallavicini, V Levi, and L Bruno. Active629

transport in complex media: Relationship between per-630

sistence and superdiffusion. Physica A, 390:1026–1032,631

2011.632

[26] Carine P. Beatrici and Leonardo G. Brunnet. Cell sort-633

ing based on motility differences. Physical Review E,634

84(3):031927, 2011.635

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 30, 2019. ; https://doi.org/10.1101/2019.12.30.891093doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.30.891093
http://creativecommons.org/licenses/by-nc-nd/4.0/


9

[27] Sheng-You Huang, Xian-Wu Zou, and Zhun-Zhi Jin. Di-636

rected random walks in continuous space. Physical Re-637

view E, 65:052105, 2002.638

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 30, 2019. ; https://doi.org/10.1101/2019.12.30.891093doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.30.891093
http://creativecommons.org/licenses/by-nc-nd/4.0/

