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Abstract

The auditory region of pinnipeds has seldom been described. Here we describe and analyze the ontogenetic

trajectory of the tympanic bulla of the southern elephant seal, Mirounga leonina (Phocidae, Mammalia). This

species is extremely sexually dimorphic and highly polygynous (organized in harems). We examined 118

specimens, arranged in three age classes (CI, CII, and CIII), ranging from newborn to adults (males and females).

To analyze the overall size and shape of the tympanic bulla we performed a geometric morphometric analysis

including 87 skulls. Females reach definitive shape and size of the bulla at earlier ontogenetic stages than

males, in agreement with their earlier involvement in reproductive activities. The internal anatomy of the

tympanic region (e.g. form and extension of the paries) does not show remarkable differences between sexes

or age classes. The greatest differences between age classes are related to bone thickness, resulting from the

apposition of new annual layers. An examination of possible sex-related external differences among age classes

shows significant shape differences between males and females in CIII. The morphology observed in neonates is

conserved across all individuals from CI, which included specimens up to 1 year old. Clear morphological

differences were observed between CI individuals, on one hand, and CII individuals plus CIII females on the

other. During cranial development of both male and females, the glenoid cavity expands and compresses the

bulla; this condition reaches its maximum expression in CIII males. CIII males showed the greatest

morphological differences, with respect to both CI and CII individuals, and CIII females.
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Introduction

Studies of the morphology of the otic region of pinniped

carnivorans offer the opportunity to investigate the corre-

lates of an aquatic habitat and phylogenetic transforma-

tions, but this region of the anatomy has not been analyzed

in depth for most species of this group. The auditory region

of the Carnivora in general has been widely studied by many

authors (e.g. Van Kampen, 1905; Pocock, 1921, 1929; Van

der Klaauw, 1931; Thenius, 1949; Hough, 1952; Ginsburg,

1966; Beaumont, 1968; Hunt, 1974; Arnaudo et al. 2014). It

is noteworthy that the analysis of auditory features, such as

the presence or absence of the septum bullae (Hough, 1948;

Ivanoff, 2000), has supported the classification of the

members of Carnivora into three large groups: Arctoidea,

Aeluroidea, and Cynoidea (Flower, 1869), currently recog-

nized as different clades (Eisenberg, 1989; Wozencraft, 1989,

2005;Wyss & Flynn, 1993; Ivanoff, 2001).

Within the pinnipeds (Otariidae, Phocidae and Odobeni-

dae) the auditory region has been briefly described for sev-

eral Northern Hemisphere species (e.g. Thenius, 1949; King,

1964; Odend’hal & Poulter, 1966; Graham, 1967; Solntseva,

1972, 1973a,b, 1975; Hunt, 1974; Marsh, 2001; Berta et al.

2006) and a few Southern Hemisphere ones (e.g. Wyss,

1987, 1988), and other contributions on which the ears of

pinnipeds are treated together with those of other groups

of mammals (e.g. Repenning, 1972; Fleischer, 1978; Num-

mela, 1995, and references therein). In addition, studies

using a physiological approach, i.e. hearing (Mohl, 1967,
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1968) and audiometric (Kastak & Schusterman, 1999)

analyses, have been performed on several Holarctic species

such as Mirounga angustirostris (Phocidae, Carnivora). Spe-

cies of this genus offer a rich subject of investigation given

the chance to integrate the anatomical studies with biologi-

cal information on the species.

The southern elephant seal (Mirounga leonina) (Phoci-

dae) is an extremely sexually dimorphic and highly polygy-

nous species. Adult males are much larger and almost three

times heavier than females; they possess an enlarged pro-

boscis and large canines (King, 1983; Laws, 1993, 1994). The

main reproductive events of this species take place during

the spring of the Southern Hemisphere, along a wide latitu-

dinal range (Carrick et al. 1962; Condy, 1979; Bester, 1980;

Bester & Lenglart, 1982; Baldi, 1992; Campagna & Lewis,

1992; Campagna et al. 1993; Lewis et al. 1998; Galimberti &

Boitani, 1999) that extends from Vald�es Peninsula (42°S,

64°W) in the Argentinean Patagonia to Isla 25 de Mayo/

King George Island (62°S, 58°W) in Antarctica (Laws, 1994;

McMahon et al. 2005; Carlini et al. 2006; Mennucci et al.

2012). Many aspects of the biology of this species, such as

demography and distribution (Carrick et al. 1962; Condy,

1979; Bester, 1980; Bester & Lenglart, 1982; Baldi, 1992;

Campagna et al. 1993; Lewis et al. 1998; Galimberti & Boi-

tani, 1999; McMahon et al. 2005) and even behavior (McC-

ann, 1981; Modig, 1996; Negrete et al. 2011) have been

extensively studied. Furthermore, anatomical studies

regarding its skull allometry and ontogeny have recently

been published (Tarnawsky et al. 2013).

Materials and methods

The tympanic region was studied using the complete skulls of 100

specimens, as well as 18 isolated auditory regions (see Appendix 1),

and some comparisons were made with specimens of M. angusti-

rostris (n = 3), Hydrurga leptonyx (n = 52), Phoca sp. (n = 90), Lep-

tonychotes weddellii (n = 74), Lobodon carcinophagus (n = 49),

and Ommatophoca rossii (n = 8). We are focusing on the morphol-

ogy of the tympanic bone (endotympanic and ectotympanic) either

on its external and internal views, and on the change of shape and

size along its postnatal ontogeny. In addition some aspects of the

morphological and topographically related basicranial region were

considered. The specimens are deposited in the following collec-

tions:

FMM: Fundaci�on Mundo Marino (San Clemente del Tuyu,

Argentina)

IAA: Instituto Ant�artico Argentino Departamento Biolog�ıa

Predadores Tope (Buenos Aires, Argentina)

LAMAMA, (CENPAT): Laboratorio de Mam�ıferos Marinos del

Centro Nacional Patag�onico, CONICET (Puerto Madryn,

Argentina)

MACN: Museo de Ciencias Naturales Bernardino Rivadavia

(Buenos Aires, Argentina)

MHNM: Museo de Historia Natural de Montevideo Uruguay

(Montevideo, Uruguay)

MLP: Museo de La Plata (La Plata, Argentina)

MNHN: Mus�eum National d’Historie Naturelle, Collection de

Anatomie Compare�e (Paris, France)

MVZ: University of California Museum of Vertebrate Zoology

(Berkeley, CA, USA)

NMB: Naturhistorisches Museum Basel (Basel, Switzerland)

USNM: United States National Museum of Natural History,

Smithsonian Institution (Washington DC, USA)

ZM-UZH: Zoologisches Museum der Universit€at Zurich, Verte-

brate Collection (Zurich, Switzerland)

Among the specimens with whole skulls, seven M. leonina indi-

viduals of both sexes of known ages were selected to be analyzed

using high resolution computed axial tomography (CAT), to observe

the internal morphology on 3D reconstructions. CAT scans were

performed at the Centro de Im�agenes M�edicas (CIMED, in La Plata,

Buenos Aires) using a Scan Philips Brilliance 64 with 0.56-mm resolu-

tion between slices. For comparative analyses, an additional CAT

scan of an M. angustirostris female was obtained with permission

from the Digimorph.org website and Tim Rowe’s Digital Libraries

Grant from NSF. The 3D reconstructions were made using the soft-

ware programs MIMICS 10.01, and IMAGEJ 1.49f.

Different methods have been proposed to establish age classes

for this species, consequently, different categories exist, which are

in many cases not completely equivalent. For instance, external and

behavioral characters are used for living individuals (see Laws,

1994), whereas in the case of skeletal materials, age is established

on the basis of suture lines (see Morejohn & Brigs, 1973), growth

lines observed in tooth sections (see Laws, 1953; Carrick et al. 1962;

Loza et al. 2011) or sequence of tooth eruption, condyle-basal

length and degree of extraoccipital bone fusion (see Tarnawsky

et al. 2013). To be able to count the number of growth lines in

tooth sections, we removed organic matter using H2O2 (100 vol. 1/

10), then we cut thin sections mechanically after the sections were

decalcified with 20% formic acid, and finally stained the sections

with graphite; lines were counted under a binocular microscope

(Fig. 1).

Prior to deciding which system for age-class separation would

best fit the goals of this work and the characteristics of the morpho-

logical structures to be analyzed, we divided all the specimens in

our sample into groups following the age-class criteria proposed by

other authors (e.g. Tarnawsky et al. 2013). Thus, we were able to

verify that the separation of postnatal specimens (from newborns

to adults), and even full-term unborn individuals, into more catego-

ries than the ones used here, did not reflect the differences

observed in a statistically significant manner. Therefore, in this

work, and because only cranio-dental materials were available, age

Fig. 1 Transverse section of an upper canine of a Mirounga leonina

male, showing the annual growth lines in dentin and cementum. Scale

bar: 5 mm.
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classes (and consequently, assignation of specimen to them) were

determined using the following criteria:

• Absolute age obtained by us (see Loza et al. 2011) from the

count of growth lines in tooth sections (only for specimens

deposited in the collections IAA, MACN, and MLP) (see Fig. 1).

• Sequence of tooth eruption of the permanent dentition.

• Condyle-basal length and degree of suture fusion (taken in

part from Tarnawsky et al. 2013).

On the basis of these indicators, the following age classes were

established:

Class I (CI). Specimens younger than 1 year old, with erupted

incisors and postcanines, canines partially erupted in females

and not erupted in males. Condyle-basal length < 234 mm;

undoubtedly sexually immature (Ling & Bryden, 1981, and

bibliography therein).

Class II (CII). Specimens 1–4 years old (females), and 1–7 years

old (males); tooth series completely erupted, with condyle-

basal length > 260 mm. As Ling & Bryden (1981, and bibliog-

raphy therein) pointed out, most specimens (males and

females) included in those time periods are not sexually

mature or, if so, are not actively reproducing (Ling & Bryden,

1981, p. 302). For instance, sexual maturity in males of this

species may be reached at ca. 4 years of age (Laws, 1956)

but physically immature juveniles of this age are prevented

from participating in breeding activities until they are

7–9 years old (Carrick et al. 1962), with very few and fortu-

itous exceptions (Negrete et al. 2012); a 1- to 3-year-old

female was observed breeding on one occasion in Potter

Peninsula (J. Negrete, personal observation).

Class III (CIII). Specimens both sexually and physically mature.

Females: over 4 years old, condyle-basal length > 276 mm;

males: over 7 years old, condyle-basal length > 400 mm.

The cranial regions studied here were measured in each specimen

using digital calipers (accuracy 0.1 mm); angles were measured

using a goniometer (accuracy 1°), and skulls were photographed in

traditionally used views.

Nomenclature for foramina, ducts and canals follows the Nomina

Anatomica Veterinaria (2012).

Measurements and morphometric landmarks

The auditory regions were measured with the goal of identifying

variables that could be correlated with the previously defined age

classes (Fig. 2). The following measurements were taken:

BGW (biglenoid width) – distance between lateral margins

of articular surfaces of both glenoid fossae.

A

B

C

Fig. 2 A and B: Ventral view of the skull of Mirounga leonina show-

ing measurements and angles used in this work; C: detail of left bulla

showing the angles). Anterior base angle (AA), biglenoid width

(BGW), maximum length of the bulla (BL), bimastoid width (BMW),

maximum width of bulla (BW), length of ectotympanic bone (EcL), ec-

totympanic width (EcW), maximum length of endotympanic bone

(EnL), endotympanic width (EnW), latero-posterior base angle (LPA),

medial base angle (MA), width between tubers (WT).

Fig. 3 Ventral view of the skull of a CIII female of Mirounga leonina,

showing the used morphometric points; red dots (1, 2, 3, 7, 18), land-

marks; blue dots, semilandmarks.
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BL (maximum length of bulla) – antero-posterior distance

between most anterior point of bulla (behind the glenoid

fossa, not considering apophyses or processes that may or

may not be present anteriorly to the posterior limit of this

fossa), and most posterior point (which coincides with the

triple suture between ectotympanic, mastoid, and basioccipi-

tal).

BMW (bimastoid width) – distance between most lateral

extremes of mastoid apophyses.

BW (maximum width of bulla) – distance between medial

margin of endotympanic and most exterior point of meatus

acusticus externus.

CBL (condylo-basal length) – distance between the condylar

plane and the distal tip of the palate.

EcL (length of ectotympanic bone) – distance between most

anterior point of ectotympanic and posterior margin of the

foramen stylomastoideum (FSM, see below).

EcW (ectotympanic width) – distance between endo-/ecto-

tympanic suture and most lateral margin of ectotympanic

tuber.

EnL (maximum length of endotympanic bone) – distance

between most anterior point of endotympanic and FCP.

EnW (endotympanic width) – distance between medial mar-

gin of endotympanic and endo-/ectotympanic suture.

WT (width between tubers) – distance between lateral ecto-

tympanic tubers.

Angles

AA (anterior base angle) – between anterior face of bulla

and the sagittal plane (Fig. 2c).

LPA (posterior base angle) – between a line passing through

most lateral point of external auditory meatus and jugular

foramen (FY) and extended on posterior wall of the bulla,

and the sagittal plane.

MA (medial base angle) – between medial face of bulla and

the sagittal plane.

Specimen information

The geometric morphometric analysis included the 87 M. leonina

skulls with available sex data on their labels obtained from seven

collections (see Appendix 1). Digital images in palatal view were

obtained using a Nikon Coolpix L120 digital camera mounted on

a stand. Each photograph included a scale in order to account for

size in the analyses, and all skulls were placed in the same posi-

tion. Both sexes were nearly equally represented (42 females, 45

males).

Morphometric analysis

We used landmark-based geometric morphometric methods to ana-

lyze overall size and shape of the tympanic bulla in M. leonina

(Rohlf & Marcus, 1993; Adams et al. 2004, 2013; Zelditch et al.

2004). These methods quantify the shape of anatomical objects

from the coordinates of homologous locations, after the effects of

non-shape variation (i.e. orientation, position, and scale) are held

mathematically constant (Adams et al. 2013; Kelly et al. 2013).

Two-dimensional coordinates of five homologous landmarks were

digitized. Additionally, 24 equidistant semilandmarks (Gunz & Mit-

teroecker, 2013) were placed along the boundary between the

endo- and ectotympanic bones to capture the shape and curvature

of this structure (Fig. 3).

The landmarks and semilandmarks were subjected to a general-

ized Procrustes analysis (GPA) (Rohlf & Slice, 1990). This procedure

translates all specimens to the origin, scales them to unit centroid

A

B

C

Fig. 4 Ventral views of the skull of Mirounga leonina, showing

foramina and apophyses discussed in the text. (A) Ventral view, (B)

latero-posterior view, (C) antero-ventral view. ‘A’F; ‘A’ foramen; AL,

alisphenoid; BO, basioccipital; BS, basisphenoid; CCPF, posterior fora-

men of canalis caroticus; CG, glenoid fossa; Co, occipital condyle; EA,

Eustachian apophysis; Ec/EnS, ectotympanic/endotympanic suture; EcT,

ectotympanic bone; EcTT, ectotympanic tubercle; EnT, endotympanic

bone; FCV, Fossa condylaris ventralis; FHp, foramen hypoglossis; FJ,

foramen jugulare; FM, foramen magnum; FPG, foramen postglenoide-

um; FSM, foramen stylomastoideum; JA, jugular apophysis; JAa, jugu-

lar apophysis; anterior crista; MAE, meatus acusticus externus; PGA,

postglenoid apophysis; PM, processus mastoideus; PPo, processus

paraoccipitalis; PR, processus retroarticularis; PS, parasphenoid; SMA,

stylomastoideum apophysis; STA, sulcus tubae auditivae.
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size, and optimally rotates them to minimize the total sums-of-

squares deviations of the landmark coordinates from all specimens

to the average configuration (Berns & Adams, 2013). During this

procedure, semilandmarks are allowed to slide along their tangent

directions (Bookstein, 1997; Bookstein et al. 1999) so as to minimize

Procrustes distance between specimens (P�erez et al. 2006; Gunz &

Mitteroecker, 2013). After superimposition, the aligned Procrustes

shape coordinates are projected orthogonally into a linear tangent

space yielding Kendall’s tangent space coordinates (Dryden & Mar-

dia, 1998; Rohlf, 1999; Claude, 2008; Berns & Adams, 2013), which

are then treated as a set of shape variables to be used in the explo-

ration of shape variation. Centroid size was also retained for further

analyses.

The digitizing process was performed using TPSDIG2 (Rohlf, 2009)

and morphometric analyses were performed in R 3.0.2 (R Develop-

ment Core Team, 2013) using routines in the package ‘geomorph’

(Adams & Ot�arola-Castillo, 2013).

Analysis of size and shape

The main focus of this work is the examination of possible sexual

shape dimorphism and ontogenetic allometry of the tympanic

bulla in M. leonina. Two sets of analyses were performed to

assess patterns of sexual dimorphism. Initially, a principal compo-

nents analysis (PCA) of the tangent space coordinates was per-

formed to visualize patterns of shape variation in the shape

space. Secondly, a Procrustes ANOVA with permutation was used

statistically to assess possible shape differences between males

and females. Allometric patterns were visualized through a series

of plots that describe the multivariate relationship between size

and shape derived from landmark data. The abscissa of the plot is

log (centroid size) and the ordinate represents shape, calculated

as the common allometric component of the shape data, which is

in turn an estimate of the average allometric trend within groups

(Mitteroecker et al. 2004). In addition, a stylized graphic of the al-

lometric trend was obtained for better visualization following

Adams & Nistri (2010).

Results

External morphology of the tympanic region

Remarkably, the neonate specimens (IAA 01-14, LAMAMA

ML024, LAMAMA ML026), defined as individuals ranging

from newborn to 3 weeks old, did not show morphological

differences with respect to CI individuals, and were there-

fore considered as part of the latter age class for these

analyses (Figs 4 and 5).

The tympanic bulla of M. leonina presents the morphol-

ogy characteristics of Phocidae (King, 1983; Wyss, 1988;

Berta et al. 2006): it is primarily globose and triangular in

outline, with a smooth surface and no markedly developed

apophyses or processes (Figs 6 and 7). In contrast to the con-

dition observed in Otariidae, the endotympanic bone is lar-

ger than the ectotympanic; the suture between these two

bones is squamous and not always apparent, especially in

the case of CIII individuals, in which it is completely obliter-

ated and is represented only by a row of vascular foramina

that indicate its approximate location. The mastoid region

develops a rather evident pachyostosis (Berta et al. 2006),

which grows in thickness concurrently with annual growth

(and thus allows straightforward estimation of specimen

age), hiding the sutures between the bulla, petrosal, mas-

toid, and squamosal. Only in some CI specimens is it possible

with certainty to identify these boundaries in a CAT recon-

struction (see Fig. 6).

The following foramina, ducts, and passages (which are

characteristic of most members of Arctoidea) were recog-

nized (Figs 4 and 5):

Meatus acusticus externus (MAE) (Fig. 4B) is the larg-

est opening, located laterally; it is smaller relative to

A B

C D

Fig. 5 Isolated tympanic bulla of Mirounga

leonina; generated by 3D reconstruction of

the CAT of a CI specimen showing its internal

and external anatomy. (A) Reconstructed

ventral view, (B) reconstructed dorsal view,

(C) reconstructed medial view, (D)

reconstructed lateral view. CCAF, anterior

foramen of canalis caroticus; CCLE, lateral

extension of canalis caroticus; CCPF, posterior

foramen of canalis caroticus; ET, Eustachian

tube; MAE, meatus acusticus externus; STA,

sulcus tubae auditivae. a, anterior; d, dorsal;

l, lateral; m, medial; p; posterior.
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skull length in males than in females; its size is similar

to that of Lobodon, Phoca, and Leptonychotes, but

smaller than in Ommatophoca, and larger than in Hy-

drurga; its contour is mostly circular in males and oval

in females (Table 1).

Sulcus tubae auditivae (STA), or (external foramen of

the Eustachian tube) sensu Pocock 1916), is the ante-

rior bony opening of the middle ear cavity continu-

ous with the Eustachian tube (Fig. 4C). It is an

obvious opening and generally oval in outline: rela-

tive to skull length, the foramen of males is the

smallest of the family, whereas in females, its size is

similar to those of Lobodon, Leptonychotes, and

Phoca, and smaller that in Ommatophoca (Fig. 7). In

other carnivorans, e.g. procyonids, hyaenids, and urs-

ids, it is known as the ‘anterior opening of auditory

tube’ (see Ivanoff, 2001) (Table 1).

Anterior foramen of the canalis caroticus (CCAF), or

foramen lacerum, is located posterior to the alisphe-

noid and represents the opening for a branch of the

internal carotid artery (Fig. 5B,C). In this species, the

CCAF does not open on the basicranial surface and is

therefore not visible in the ventral view of the skull,

as in most species except L. weddellii. In some groups

(e.g. Primates) it is known as the ‘middle lacerate

foramen’ (MacPhee, 1981; Wible, 1991).

Posterior foramen of the canalis caroticus (CCPF) is

the posterior opening of the endotympanic traversed

by the carotid (Figs 4A and 5A,C). Frequently, this

foramen is not identified as such because in some

other mammals it opens into a common vestibule

with the foramen jugulare, and is therefore included

as part of the latter (e.g. Wible, 1991, 2010). How-

ever, this foramen is always separate in both Phoci-

dae and Otariidae, and quite conspicuous especially

in the former. In M. leonina it has a circular outline

and is the largest foramen (Fig. 7; Table 1).

Foramen jugulare (FJ) is located between the bulla

tympanica and the occipital bone; this opening is tra-

versed by the glossopharyngeal (IX), vagus (X), and

accessory (XI) nerves and the internal jugular vein: in

this species the greater axis of this foramen is perpen-

dicular to the sagittal plane. In relation to skull

length, this foramen is always larger in females than

in males of M. leonina, and it is the smallest in Hydr-

urga. It is mentioned in some texts as the ‘posterior

lacerate foramen’ (e.g. canids, ursids, procyonids)

(Figs 4A,B and 7; Table 1).

Foramen stylomastoideum (FSM) is located postero-la-

tero-dorsal to the bulla and posterior to the meatus

acusticus externus, between the tympanic bulla and

the mastoid process; it is traversed by the facial nerve

(VII) and the stylomastoid vein (which goes through

the inner ear) (Fig. 4B); it is always evident in both

sexes and diverse age classes, but as in the case of

A

B

C

D

Fig. 6 External morphology of tympanic bulla of Mirounga leonina

showing differences in development of the ectotympanic (red) and

endotympanic (blue) bones in different age classes: (A) Class I, (B)

Class II, (C) Class III female, (D) Class III male. Scale bar: 5 cm.
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the FJ, it is larger in females, and smallest in Phoca

and Hydrurga.

Foramen post-glenoideum (FPG) is located immediately

posterior to the postero-medial angle of the glenoid

fossa, anterior to the tympanic bulla; it is the opening

for the external jugular vein. This foramen tends to be

small in the Phocidae, and in the case of M. leonina it is

frequently absent in all age classes (Figs 4A and 7).

Foramen ‘A’ is located latero-posterior to the fora-

men stylomastoideum; it is not present in all speci-

mens; when present, it may be well defined and

separated from FSM, or joined to the latter, or

appear as a blind depression (Fig. 4B).

Lastly, the foramina in the cranial base are:

Foramen hypoglossus (FHp): for the passage of the

hypoglossal nerve (XII); due to its location close to

the occipital condyles, it is also known as ‘condylar

foramen’ (Figs 4A,B and 7). This foramen is relatively

larger in females than in males (Table 1).

Foramen ovale (FOv) is located on the alisphenoid,

for the passage of the mandibular branch of the tri-

geminal nerve (V3).

The foramina and openings with the most consistent

presence in this region are: meatus acusticus externus, fora-

men for the canalis caroticus posterior, jugulare, hypoglossis

(reduced compared with the condition in Otariidae), stylo-

mastoideum and postglenoideum (reduced or absent), and

the ‘A’ foramen of uncertain homology.

The bulla tympanica presents a small anterior crista (JAa)

(Fig. 4A) on the ectotympanic that extends along the ante-

rior third of the latter, and a posterior crista (CP) that

extends parallel to the ecto-/endotympanic suture. These

two structures probably correspond to the ‘jugular apophy-

sis’ of Otariidae; under this assumption, they may be

described as two cristae (portions) of the ‘jugular apophysis’

(JA), one anterior (JAa) and the other posterior (JAp).

The tympanic bone also has a postglenoid apophysis

(PGA), or tympanic process, smaller than that of Lobodon

and Leptonychotes, that surrounds the FPG posteriorly and

extends perpendicularly to the sagittal plane (Fig. 7). This

apophysis should not be confused with the processus ret-

roarticularis (PR) of the glenoid fossa; the latter surrounds

the fossa whereas the PGA corresponds to the ectotympanic

(Fig. 4A). Another apophysis is located adjacent to the ante-

rior opening of the Eustachian tube (Fig. 4C). The ectotym-

panic bone develops a lateral tuberosity (EcTT) whose tip is

more pointed in adult males than females.

Furthermore, both the mastoid region with its processus

mastoideus (PM) and the paraoccipital region with its

processus paraoccipitalis (PPo) (Fig. 4A) are well developed

in CIII males and females and in some CII males.

Table 1 Relative sizes of CCPF, FJ, Fhp, MAE, and FSM with respect to LBC, AMA, and AMB on six species of phocids.

CBL/CCPF CBL/FJ CBL/FHp CBL/MAE CBL/FSM CBL/STA

Mirounga leonina (male) 42–47 22–18 65–63 28–30 64–84 87

Mirounga leonina (female) 34–37 12 42 26 44–64 38–28

Leptonychotes weddellii 33 15 56 22 49 31

Lobodon carcinophagus 46 22 58 24 45 31

Ommatophoca rossii 31 23 41 14 59 24

Hydrurga leptonyx 43 30 78 43 389 59

Phoca sp. 42 13 71 25 102 40

BMW/CCPF BMW/FJ BMW/FHp BMW/MAE BMW/FSM BMW/STA

Mirounga leonina (male) 26–34 14–13 46–41 18–21 41–38 52

Mirounga leonina (female) 26 9 30–35 18–13 32–46 20–24

Leptonychotes weddellii 22 10 38 15 33 20

Lobodon carcinophagus 26 13 33 15 26 216

Ommatophoca rossii 23 17 30 10 44 18

Hydrurga leptonyx 24 17 43 24 218 35

Phoca sp. 22 7 39 13 54 21

BW/CCFP BW/FJ BW/FHp BW/MAE BW/FSM BW/STA

Mirounga leonina (male) 9–13 4 17 6–8 23–13 17

Mirounga leonina (female) 8–9 3 12 4–7 11–17 7–9

Leptonychotes weddellii 7 3 12 4 10 6

Lobodon carcinophagus 8 4 10 4 7 6

Ommatophoca rossii 8 6 11 4 16 7

Hydrurga leptonyx 7 5 13 7 66 10

Phoca sp. 7 2 13 4 18 2
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External morphology and age classes

In external view, specimens of CI and CII do not possess well

developed apophyses in the tympanic region; instead, they

present markedly rugose areas. In CIII individuals the

apophysis EA and the anterior process of JA are already visi-

ble (growth of the latter is already observable in CII).

Remarkably, only JA shows a morphological trajectory that

differs between males and females (see below and Fig. 6).

The EcTT was not observed in CI; this structure is well

developed in CII and CIII, and its enlargement is accompa-

nied by progressive elongation of the MAE.

In the course of ontogeny, the glenoid fossa reaches

an apparently more posterior position so that it extends

further onto the anterior wall of the tympanic bulla

(Fig. 6). This seems to be brought about by the greater

development of the retroarticular process from CII; this

process becomes more vertical, thus providing stronger

A B

C D

E F

Fig. 7 Ventral views of the skull of: (A) Mirounga angustirostris, (B) Ommatophoca rossii, (C) Hydrurga leptonyx, (D) Lobodon carcinophagus, (E)

Leptonychotes weddellii, and (F) Phoca vitulina. CCPF, posterior foramen of canalis caroticus; FHp, foramen hypoglossis; FJ, foramen jugulare; FPG,

foramen postglenoideum; PGA, postglenoid apophysis.
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support for the mandibular condyle, mainly in CIII males

(Fig. 6D).

External morphology in males and females

In CI specimens, external morphology of males and

females is similar, even though males are slightly larger;

sexual dimorphism begins to be evident from CII

onwards.

Given that this is a clearly dimorphic species, by CIII mor-

phological differences are evident, and the size difference

is quite marked. In females the surface of the endotym-

panic bone is evidently globose, whereas it is flatter in

males (Fig. 6C,D); and the ectotympanic of males bears evi-

dent rugosities that become more marked in older speci-

mens.

The outline of the tympanic bulla maintains a rather con-

stant shape in females of the three age classes; in contrast,

its characteristic angular outline changes from CI through

CIII, and in CIII, the apex of EcTT is angular in males and

rounded in females.

Angularity (referring to change in the angle formed by

the anterior base of the bulla and the sagittal plane of the

skull) decreases in males, so that the AJ reaches a position

almost perpendicular to the sagittal plane, whereas in

females this angle remains at values greater than 90° (close

to the values for juveniles).

Internal morphology of the bulla

From an anatomical and functional viewpoint, the middle

ear can be divided into three well differentiated parts: the

annexae mastoidae, the cavum tympani and the Eustachian

tube, or Tuba pharyngotympanica (Thomassin et al. 2008)

(Figs 8–11). The middle ear is formed by a pars petrosa, a

pars tympanica, and a pars escamosa; these three parts are

also involved in the conformation of the external and inner

ear (Fig. 8A).

Following the work of Gray (1858), below we describe

the six walls that delimit the tympanic bulla and its cavum

tympani.

1 Paries tegmentalis (tectum) (Fig. 8B) – formed by the

ventral wall of the petrosal, the tegmen tympani in

which the recessus epitympanicus is excavated; the lat-

ter is a conspicuous hemispheric cavity that contains

the large incus.

In addition, this roof is also formed medially by a thin

bone layer that extends from the lateral margin of the ca-

nalis caroticus and covers the petrosal ventrally, and the

ventro-lateral surface of the petrosal; this conformation is

visible in the most cranial portion of the bulla (Figs 8 and

9). Both parts separate the cavum tympani from the base of

the skull. The thin bone plate of the canalis caroticus (a well

developed channel that pierces the endotympanic bone in

an antero-dorsal to postero-ventral direction) is antero-pos-

teriorly extended in the middle zone, forming the first third

of the roof in the cranial medial half; due to the triangular

outline of the bulla (which forms a wedge toward the rear),

this bone plate forms all of the roof in the posterior or cau-

dal half, with no participation of the petrosal (Fig. 9).

2 Paries jugularis (floor) (Figs 10B and 11A) –extends

below the level of the lower wall of the MAE; its ante-

rior region bears the recessus hypotympanicus (Fig.

10A) just below the recessus epitympanicus, the rest of

its surface is slightly concave and smooth.

3 Paries labyrinthica (inner wall) (Fig. 11C) –includes the

following structures: fenestra ovalis, fenestra rotunda,

and promontorium. Gray (1858) also described a

Fallopian aqueduct that we did not observe in

M. leonina. Due to the enormous relative size of the

petrosal, and to its oblique position (antero-medial

and postero-lateral) with respect to the skull base, the

paries labyrinthica is part of the dorsomedial and dor-

solateral boundaries of the cavum tympani (at its

anterior and posterior parts, respectively). This paries

is completed medial by the lateral wall of the canalis

caroticus (Fig. 12).

4 Paries mastoidea (posterior wall) (Fig. 11A,B) – con-

tacts with the annexae mastoidae which are poorly

developed in CI but are evident in CIII individuals,

especially males; this may be due to the fact that the

formation of the annexae mastoidae begins during

fetal life, but takes place mostly after birth (e.g.

Homo, see Tran Ba Huy & Teissier, 2011).

5 Paries carotica (anterior wall) (Fig. 11A,B) – circum-

scribes the posterior bony opening of the Eustachian

tube, or tuba pharyngotympanica, in both adults and

juveniles.

6 Paries membranaceus (external wall) (Fig. 11B,C)

– defines the meatus acusticus externus (part of the

external ear), which becomes proportionally narrower

and longer during ontogeny. The meatus acusticus

externus runs postero-ventrally from the cavum tym-

pani to the exterior.

Morphometrics

The first two principal components explained 73% of the

total shape variation, and showed several distinct clusters of

specimens (Fig. 13). In general, males and females were at

opposite extremes of the plot, with some degree of over-

lapping, implying that shape differences between sexes

exist. A statistical evaluation was performed using Procrus-

tes ANOVA with permutation, revealing significant shape dif-

ferences both between sexes and between age stages, but

the interaction term was marginally non-significant

(Table 2).

Significant allometry was detected by means of a

multivariate regression of shape on size (centroid size)
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(P-value < 0.01). Males and females have approximately

parallel trajectories, showing a common allometric pattern

(Berge & Penin, 2004; Mitteroecker et al. 2004) (Fig. 14).

However, when different age stages were taken into

account, the patterns of allometric trajectories differed (Fig.

15). The allometric patterns as reported for stage CI were

clearly different compared with those of stages CII and CIII

(Fig. 15).

Discussion

The study of a large sample of M. leonina made possible

the characterization of the ear anatomy of this specialized

carnivoran and the exploration of ontogenetic and sex dif-

ferences. Very few changes were detected after birth on

the internal anatomy of the auditory region, between both

sexes and age classes. However, significant differences

between age classes were found in bone thickness, result-

ing from the apposition of new annual layers. Furthermore,

there are possible sex-related external morphology differ-

ences among age classes that show significant shape differ-

ences in CIII. The external morphology observed in

neonates is conserved across all individuals from CI (includ-

ing specimens up to 1 year old); however, morphological

differences were observed between them, on one hand,

and CII individuals plus CIII females on the other, and the

CIII males showed the greatest morphological change, with

respect to all the individuals regardless of age class or sex.

A

B

Fig. 8 Transversal section (TS) from CAT of the skull of Mirounga leonina at the auditory region level. (A) Posterior TS showing the paries laby-

rinthica, pars petrosa (pink), pars squamosa (green), and pars tympanica (brown). (B) More anterior TS showing the endotympanic/ectotympanic

suture and the relationship of CCLE (lateral extension of canalis caroticus), as part of the paries tegmentalis or roof of the tympanic cavity. Skulls

in lateral view show the precise line of each TS.
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Most foramina of the tympanic-basicranial region of

M. leonina are relatively smaller in adult males than in

adult females in relation to skull length. In turn, the foram-

ina of females are similar in relative size to those of Lep-

tonychotes and Lobodon, but generally larger in relative

size than in Hydrurga and generally smaller compared with

Ommatophoca. The relative size of these foramina in Phoca

is heterogeneous (Table 1).

The MAE is clearly evident in all age classes and both

sexes. Although its outline may vary in shape between CIII

males and females, this may be related to sex differences in

growth patterns.

The STA is a large foramen in all classes and both sexes,

probably in relation to the need to compensate for differ-

ential pressures at great depths, as this foramen is continu-

ous with the Eustachian tube.

The CCAF and CCPF in all specimens examined are large

and associated to the carotid ramus that brings blood to

the encephalon and inner ear; their size could be related to

the physiology of diving and the need for large volumes of

blood to be transported to avoid collapse of the circulatory

system.

The FPG is absent or very reduced (probably due to the

expansion of the post-glenoid process onto the tympanic

bulla) and this has led to the assumption that the cephalic

jugular drainage must follow a different path to ensure

efficient venous return.

The large size of the foramina can be observed from early

ages (CI); this could be associated to the short duration of

nursing and parental dependence prior to their first inde-

pendent feeding season. The foramina are also large in CII

males and females and in CIII females. In contrast, in males

the foramina are relatively smaller after sexual maturation

(CIII males).

All preceding observations about the relative size of

foramina were made with respect to skull length; the results

are slightly different if the bimastoid width or tympanic

width are used as reference. Nevertheless, in this case, again

the foramina of M. leonina males (CIII) are relatively smaller

than those of females (CIII), in accordance with the change

A

B

C

Fig. 9 Three consecutive TS views from CAT

of Mirounga leonina, in posterio-anteror

sequence, from a CAT, showing variation in

extension of the paries tegmentalis along the

bulla and gradual reduction of the tympanic

cavity. (A) Caudal TS, showing the petrosal

excluded from the tympanic bullar roof,

which is completely formed by the CCLE, and

tympanic cavity restricted to a small space. (B)

Middle TS, showing a bigger tympanic cavity,

with a visible tegmen tympani (TT), and

lateral extension of the canalis caroticus

(CCLE). (C) Anterior TS, showing a large

cavity, recessus epitympanicus that contains

the malleus and incus (both large), and

tegmen tympani (TT), associated to the lateral

extension of the canalis caroticus (CCLE).

Skulls in lateral view show the precise line of

each TS.
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in male morphology associated to sexual maturity in a con-

spicuously dimorphic species. Also, the relative sizes of

foramina in M. leonina females are similar to those of

Ommatophoca, Leptonychotes, Phoca, and Lobodon, but

Hydrurga consistently has the smallest foramina (Fig. 7;

Table 1).

Finally, the homology of the FA is uncertain; it could

either correspond to the vagal foramen or alternatively it

could represent a deviation of the FSM, given that the FA is

associated to the latter in all observed cases.

The large size of the apophyses and processes (e.g. PPO

and PM together with the lambdoidal ridge of the skull) in

CIII individuals is likely associated to the attachment of neck

and mandibular muscles. The angle of JA changes as a con-

sequence of the direction of growth of the ectotympanic,

which becomes increasingly more perpendicular with

respect to the sagittal axis (Fig. 6).

As stated above, the internal anatomy of the auditory

region does not show great differences between sexes or

age classes; however, bullar volume appears to decrease

and some ducts increase in length and diameter (e.g. MAE,

STA), surely as a consequence of the skull growth pattern of

this species. The greatest differences between age classes

are related to bone thickness resulting from the apposition

of new layers year after year.

The results of the Procrustes ANOVA show significant shape

differences between sexes and age classes. Although the

interaction term (sex : classes) is marginally non-statistically

significant (P-value ~0.08), an examination of possible sex

differences within age classes shows that there are signifi-

cant shape differences between males and females in CIII.

This is partly consistent with Mitteroecker et al.’s (2004)

findings, in which individuals were rather similar in early

ontogeny and subsequently diverged in adult morphology.

The shape observed in neonates was the same as that of

individuals in CI, a result that is quite striking because these

two classes differ markedly in size and because newborn

pups suckle milk, whereas CI individuals have already spent

a season feeding independently from their mothers. No

statistically significant differences in tympanic-basicranial

structure were found in CI; all individuals were character-

ized by a markedly globose bulla without well developed

apophyses or processes; the endo-/ectotympanic suture was

visible in some specimens; bones presented a spongy or por-

ous structure, and the bullar wall was thin because its thick-

ness increases due to consecutive deposition of annual

A

B

Fig. 10 Two consecutive TS views from CAT

of auditory region of Mirounga leonina

showing the paries that limit the tympanic

cavity. (A) View of posterior TS. (B) View of

more anterior TS. Skulls in lateral view show

the precise line of each TS.
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layers (Fig. 16). The specimens that were subjected to CAT

showed agreement as to their age as determined from

bullar growth lines and the absolute age determined a pri-

ori from tooth sections.

CII specimens showed relatively less development of the

ectotympanic and more compact bone structure than CI

specimens. CII specimens of both sexes did not differ greatly

from CIII females regarding bullar morphology. Further-

more, CII individuals already presented most of the charac-

teristics observed in CIII specimens. Thus, there are clear

morphological differences between CI individuals on one

hand, and CII individuals plus CIII females on the other.

Some of the most noticeable differences are the smaller size

of the ectotympanic relative to the endotympanic, the for-

mation (and growth) of rugosities on the ectotympanic sur-

face, clear development of a more triangular outline, and

distal growth of the retroarticular process (PR) of the gle-

noid cavity (CG), which becomes more posterior and verti-

cal. Likewise, as a result of the mesio-distal growth of the

CG, the latter ends up resting on the anterior surface of the

bulla, partially compressing it; this condition reaches its

maximum expression in CIII males.

Females attain the definitive shape and size of the bulla

at earlier stages of ontogeny compared with males, in

agreement with their earlier involvement in reproductive

activities. Thus, the bullar morphology of females is similar

in all age classes; this could be related to the depths

reached when diving in search of food (Boyd & Arnbom,

1991; Campagna & Lewis, 1992; Hindell & Bryden, 1992;

McConnell et al. 1992, 2002; Campagna et al. 1993, 1995,

1998, 1999, 2000, 2007; Jonker & Bester, 1998; Hindell et al.

1999; Lewis et al. 2006; Field et al. 2007; Eder et al. 2010;

McIntyre et al. 2010a,b). CIII males showed the greatest

morphological differences, with respect to both CI and CII

individuals and CIII females. CIII males dive to the greatest

depths recorded so far for the species, more than 2000 m

deep, whereas females and CII males have not been

recorded below 1500 m depth, and CI individuals (males

and females) make short shallow dives, reaching ca. 100 m

depth (McIntyre et al. 2010a).

A

B

C

Fig. 11 Three views from CAT of auditory

region of Mirounga leonina showing the

paries that limit the tympanic cavity. (A) View

of a lateral, parasagittal section. (B) View of

section through a ventral horizontal plane. (C)

View of section through ventral horizontal

plane comparing two specimens of different

age classes CI (to the left) and CIII (to the

right), showing the difference in relative

development of the meatus acusticus

externus and the Eustachian tube, as well as

different internal morphology of the bulla.

Skulls in dorsal and lateral view show the

precise line of each section.
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The morphological differences between the bullae of

males and females could be related to the different behav-

ior of the sexes during the breeding season, too. Whereas

females must be able to recognize the call of their pup in

the harem (at short range), males participate in agonistic

interactions, for which the recognition of vocalizations

emitted by other males at greater distances is essential. In

addition, males engage in intraspecific combats, during

which the posterolateral region of the skull is hit quite

often.

Mirounga leonina did not show remarkable differences

compared with specimens of its sister species from the

Northern Hemisphere, M. angustirostris (USNM 260867 and

USNM- A21890), and compared with a CAT from the Digi-

morph.org website (MVZ 184140), in either its internal or

external morphology and proportions, despite the larger

size of M. leonina. Moreover, if the values for the

M. angustirostris female are included in the morphometric

analysis and PCA, the specimen falls within the CI–CII range.
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Fig. 12 3D reconstruction of a skull of a dorsal view of Mir-

ounga leonina with left auditory region, and detail of right auditory

region, showing the tympanic bulla (pink) and the petrosal fused to

the squamosal (yellow). CCAF, foramen of the canalis caroticus ante-

rior; CCLE, lateral extension of the canalis caroticus; FS, fossa subarcu-

ata; MAI, meatus acusticus internus; PM, promontorium; PT, petrosal;

SQ, squamosal; T, tympanic.

Fig. 13 Principal components analysis of

shape variables in tangent space showing

shape variation. Deformation grids display the

shape of specimens of Mirounga leonina at

the ends of the range of variability along

PC1. Black, CI. Red, CII. Green, CIII. Circles

correspond to males and triangles to females.
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Table 2 Table listing results of statistical analyses on the Mirounga leonina specimens. For further details, see Materials and methods.

Factor df SS.obs MS F P-value R2

Sex 1 0.208 0.208 38.530 0.0001 0.1746

Stage 2 0.495 0.247 45.672 0.0001 0.4140

Sex : Stage 2 0.052 0.026 4.878 0.0891 0.0442

df, degrees of freedom; F, F ratio; MS, mean squares; SS, sum of square. P-value in bold.

Fig. 14 Allometric trends of males and

females of Mirounga leonina showing the

multivariate relationship between size and

shape. (A) The common allometric

component (CAC) vs. size (log centroid size).

(B) Stylized trend following Adams & Nistri

(2010). Black, CI. Red, CII. Green, CIII. Circles

correspond to males and triangles to females.

Fig. 15 Allometric trends of different age

stages of Mirounga leonina showing the

multivariate relationship between size and

shape. (A) The common allometric

component (CAC) vs. size (log centroid size).

(b) Stylized trend following Adams & Nistri

(2010). Black, CI. Red, CII. Green, CIII. Circles

correspond to males and triangles to females.

A B C D

Fig. 16 Four views from CAT of auditory region of Mirounga leonina showing the bone thickness resulting from the apposition of new layers year

after year. (A) CI with no lines of growing, (B) CII with one line, (C) CII with three lines, (D) CIII with at least five lines.
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scientific research in Antarctica, and was one of the fundamental

pillars for the development of this and many other projects.
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Appendix 1
Specimens of Mirounga leonina examined in
this study

Collection number Sex Age class BL

1 MACN 20608* M CIII 89.88

2 MACN 24.91* M CIII 104.53

3 MACN 13.26* M CIII 107.76

4 MACN 24.93* M CIII 88.33

5 MACN 24.49 M CIII 92.48

6 MACN 24.92* M CIII 90.65

7 MACN 22611* F CIII 63.57

8 MACN 26222* M CII 63.18

9 MACN 22614* F CIII 70.45

10 MACN 22612* F CIII 73.48

11 MACN 22613* F CIII 69.32

12 MACN 49.52* F CI 60.31

13 MACN 22615* F CI 48.66

14 MLP 947* M CIII 109.63

15 MLP 26.IV.00.13* M CII 109.81

16 MLP 1504* M CIII 95.59

17 MLP 14.IV.48.13 M CI 57.15

18 MLP 1966* F CI 51.4

19 MLP 1971* F CI 49.49

20 FMM 107 M CIII 99.77

21 FMM 109* M CIII 80.01

22 IAA AA-A* F CIII 70.46

23 IAA AA-B* M CI 58.86

24 IAA AA-C* M CI 59.49

25 IAA AA-7* F CI 55.97

26 IAA AA-6* M CI 58.21

27 IAA AA-8* F CI 50.88

28 IAA AA-2* M CI 52.89

29 IAA AA-11* F CI 57.5

30 IAA AA-10* F CI 52.53

31 IAA AA-9* F CI 56.5

33 IAA 02.14* M CI 58.09

34 IAA 02.19* M CI 61.6

35 IAA 02.25* F CI 50.23

36 IAA 02.18 M CI 59.38

37 IAA 02.30* M CI 57.44

38 IAA 02.28* F CI 59.03

39 IAA 02.22* M CI 59.98

40 IAA 02.29* F CI 55.11

41 IAA 02.20* F CI 59.34

42 IAA 02.26* M CI 58.16

43 IAA 02.23* F CI 55.21

44 IAA 02.24* F CI 58.68

45 IAA 02.17* F CI 51.54

46 IAA 02.21* M CI 62.61
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Appendix 1. (continued)

Collection number Sex Age class BL

47 IAA 02.12* M CIII 78.92

48 IAA 99.5* M CIII 108.8

49 IAA 00.8* M CIII 112.43

50 IAA 03.5* F CIII 73.91

51 IAA 03.4* F CIII 73.55

52 IAA 96.1* F CIII 70.92

53 IAA 00.9* F CIII 70.34

54 IAA 01.14* F CI 44.64

55 IAA 02.16* M CII 63.85

56 IAA 02.27 M CI 53.52

57 LAMAMA ML-25* F CII 79.46

58 LAMAMA CNP-105* M CIII 108.33

59 LAMAMA CNP-035* M CIII 106.17

60 LAMAMA ML-059* M CIII 105.13

61 LAMAMA CNP-102* M CIII 97.91

62 LAMAMA CNP-104* M CIII 103.31

63 LAMAMA CNP-111* F CIII 73.21

64 LAMAMA CNP-109 M CII 64.56

65 LAMAMA 103* M CIII 100.12

66 LAMAMA CNP-101* M CII 65.06

67 LAMAMA CNP-037* F CI 61.98

68 LAMAMA CNP-100 F CII 64.54

69 LAMAMA ML-32* M CIII 107.43

70 LAMAMA ML-34* M CIII 96.92

71 LAMAMA ML-28* M CIII 100.55

72 LAMAMA ML-35* F CIII 75.94

73 LAMAMA ML-36* F CI 53.45

74 LAMAMA ML-29 M CII 71.04

75 LAMAMA ML-30 M CII 72.8

76 LAMAMA ML-33 F CI 42.85

77 LAMAMA ML-23 M CI 49.52

78 LAMAMA ML-24* F CI 47.43

79 LAMAMA ML-26* F CI 59.9

80 LAMAMA ML-31* F CIII 73.61

81 LAMAMA ML-1* F CI 53.77

82 LAMAMA ML-4* F CI 50.51

83 LAMAMA ML-3* M CII 71.39

84 LAMAMA ML-9 F CIII 74.82

85 MHNM 5767* M CIII 111.7

Appendix 1. (continued)

Collection number Sex Age class BL

86 MHNM 5766* M CIII 105.89

87 MHNM 1277* M CIII 104.2

88 MHNM 5768* M CIII 99.5

89 MHNM S/N* F CI 54.32

90 MNHN 1972-647* M CIII 107.72

91 MNHN 1971-113* M CIII 103.34

92 MNHN 2012-983* M CIII 112.9

93 MNHN 1972-652* M CII 82.21

94 MNHN 2012-986* M CIII 120.17

95 MNHN 1978-347* F CIII 73.85

96 MNHN 2012-985* F CIII 70.18

97 MNHN 1972-651* F CIII 75.46

98 MNHN 1939-449* M CIII 109.33

99 MNHN 1972-142* F CII 66.09

100 MNHN 1977-20* M CIII 110.8

101 IAA AA-14 a M CII n/a

102 IAA AA-14 b M CII n/a

103 IAA AA-14 c M CII n/a

104 IAA AA-14 d M CII n/a

105 IAA AA-14 e indet CI n/a

106 IAA AA-14 f indet CI n/a

107 IAA AA-14 g indet CI n/a

108 IAA AA-14 h indet CI n/a

109 IAA AA-14 i indet CI n/a

110 IAA AA-14 j indet CI n/a

111 MLP 777-C indet CI n/a

112 MLP 781-C indet CI n/a

113 MLP 775-C indet CI n/a

114 MLP 782-C M CIII n/a

115 MLP 779-C indet CI n/a

116 MLP 783-C F CIII n/a

117 MLP 784-C indet CI n/a

118 MLP 785-C indet CI n/a

F, females; M, males; n/a, not available data because of isolated, or

partially broken, otic regions.

For museum abbreviations, see Materials and methods.

* Specimens used in the morphometric analyses.
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