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The pararotor is a biology-inspired decelerator device based on the autorotation of a rotary wing whose main 
purpose is to guide a load descent into a certain atmosphere. This paper focuses on a practical approach to the general 
dynamic stability of a pararotor whose center of mass is displaced from the blade plane. The analytical study departs 
from the motion equations of pararotor flight, considering the center of mass displacement from the blade plane, 
studied over a number of simplifying hypotheses that allows determining the most important influences to flight 
behavior near equilibrium. Two practical indexes are developed to characterize the stability of a pararotor in terms of 
geometry, inertia, and the aerodynamic characteristics of the device. Based on these two parameters, a stability 
diagram can be defined upon which stability regions can be identified. It was concluded that the ability to reach 
stability conditions depends mainly on a limited number of parameters associated with the pararotor configuration: 
the relationship between moments of inertia, the position of the blades, the planform shape (associated with the blade 
aerodynamic coefficients and blade area), and the vertical distance between the center of mass and the blade plane. 
These parameters can be evaluated by computing practical indexes to determine stability behavior. 
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Nomenclature 
drag coefficient for the blade 
center of mass 
component of moment coefficient in the £ direction 
slope of the curve lift versus angle of attack for 
the blade 
component of drag of the £ blade in the j direction, N 
pararotor thrust 
pSr^, constant factor, kg • m 
principal moments of inertia (where £ is 1, 2, 3), 
kg • m 
Uas/(co^r 11), dimensionless vertical velocity 
to blade velocity 
r\il r\\y dimensionless ratio of coordinate of the 
center of pressure of blade 1 in axis 2 direction 
^13/^H, dimensionless ratio of coordinate of the 
center of pressure of blade 1 in axis 3 direction 
component of lift of the £ blade in the j direction, N 
component of the moment acting on the body 
(where £ is 1, 2, 3), N • m 
stability number 
ambient barometric pressure 
component j of the vector position center of pressure 
of blade £ (where j is 1, 2, 3, and i ii s1 2), m 
area of one blade, m 
dry bulb ambient temperature, K 
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time, s 
combined uncertainty associated with uff i, m • s 
/ • n t n ^ i n a / 1 n n ^ a r f n i n h r n e p n ^ i o + a i l H7i+ti ^1 vnA o _ 1 

comuinea uncertainty associated witn OJ^ , rad • s 
descent velocity, m • s 
relative flow velocity to blade £, m • s_ 
induced velocity, m • s_ 
OJI/OJQ, dimensionless angular velocity 
0J2/0JQ, dimensionless angular velocity 
dimensionless angular velocities at equilibrium 
point 
angle of attack, rad 
(fii + / y / / 2 , mean angle of incidence, rad 
angle of incidence of blades 1 and 2 (respectively), 
rad 
Pi — /?2, pitch difference between the blades, rad 
nutation angle, rad 
air density, kg • m 
spin angle, rad 
precession angle, rad 
angular velocity, rad • s 
angular velocity components, rad • s 

I. Introduction 
The pararotor is a biology-inspired rotary decelerator whose main 

objective for practical use is to aerodynamically guide a load 
descending into a certain atmosphere or to perform measurements 
during descent. The possible applications of such a probe could be, 
for instance, the measurement of the atmospheric conditions around 
airports for aviation operations support or the exploration of 
planetary atmospheres. 

Presently, there are many devices that perform tasks such as 
measuring winds, emissions, and atmospheric parameters for 
aviation support. Each of them has its own advantages and 
drawbacks. The pararotor could contribute to this set of systems with 
its own capabilities. The pararotor flies in the so-called autorotation 
regime, where aerodynamic forces are generated, taking energy out 
from the fluid flow. These forces produce a fast rotation motion, 
which induces a large amount of lift on the rotating blades, seen as a 
net aerodynamic drag acting on the body. The "autorotation" name is 
used here in the sense that the net torque is zero. 



Although the autorotation regime is widely known for applications 
in helicopters, the problem studied here is different due to the small 
aspect ratio of the pararotor blades, while in helicopter rotors, the 
aspect ratio is very large. In pararotors, the aspect ratio is about 1, and 
so the aerodynamic approach developed for helicopters cannot be 
applied. The small blade aspect ratio allows them to be folded over 
the pararotor body, in case that could be a design requirement. 

Pararotors can be defined as falling bodies with control capabilities 
for descent a load. Among the studies performed concerning the 
deceleration and control of falling bodies, there are those carried out 
by Shpund and Levin [1-4] in the area of rotating parachutes, while 
Karlsen et al. [5] worked on winged bodies for submunition 
applications. The latter reported the following advantages of the 
pararotor over the parachute: lower sensitivity to lateral winds, no 
parachute deployment problems, lower precession movements, and 
higher falling velocity. 

The flight of samara wings has similarities with that of pararotors. 
Rosen and Seter [6,7] have studied numerically the influence of 
different parameters on samara wing flight stability. Crirni [8] has 
studied a rotating body with only one wing for submunition 
applications, searching for a body that performed periodic 
movements. However, in these papers, there is no information about 
the behavior of a body with rotating wings like that presented here, 
and to the authors' knowledge, there is no other closely related 
information in the literature. 

Previous work has been done to model the stability of a pararotor, 
mainly by Nadal Mora, Sanz, and Piechocki [9-16]. They conducted 
investigations that present the stability behavior of pararotors whose 
blades were aligned with the center of mass of the whole device. They 
developed an analytical model that predicts the dynamic behavior 
under different device configurations. 

Pararotor decelerator systems were compared with other methods 
of entry probe atmospheric deceleration by different authors [17,-20] 
and were determined to show significant potential for application to 
mission concepts requiring controlled descent, low-velocity landing, 
and atmospheric research capability on planet exploration. 

The main objective of the current work is to help depict the stability 
behavior of a pararotor, considering different design parameters. 
Better understanding the behavior of the pararotor could make it 
possible to know how to manage the system parameters to attain a 
desired functional mission. This study contributes to the development 
of tools to design and control pararotors. 

An analytical approach will be used to study the dynamic behavior, 
which will account for the main effect of parameters design, 
particularly the distance between the blade plane and the center of 
mass of the pararotor. This model will take into account the flight 
regimes near the equilibrium point. 

The main conclusion is that a number of parameters that affect the 
equilibrium attitude and dynamics of pararotors can be analyzed by 
expanding the aerodynamic torque involved in the Euler equations of 
the system for flight conditions close to the equilibrium. 

When considering the different configurations and physical 
parameters of the pararotor, the aspect most relevant to dynamic 
stability and attitude is the relationship between the device principal 
moments of inertia. In practical terms, only some configurations 
appear to be stable. The vertical distance between the blade plane and 
the center of mass affects the equilibrium position and the stability of 
the system, making it closer to or further from its dynamic stability 
limits. 

The work performed and reported in this paper is structured as 
follows. In Sec. II, the motion equations for a cylindrical body with 
two identical blades are developed, and the stability analysis is 
presented. In Sec. Ill, some experimental results are included to 
support the assumptions considered. In Sec. IV, the results of the 
work are outlined. In Sec. V, a discussion is presented. And in Sec. VI, 
conclusions are drawn. 

II. Materials and Methods 
The approach chosen to study the dynamic behavior of pararotors 

was to establish an analytical model of this device based on the Euler 

equations and to identify the most important terms. Althought linear 
accelerations can be relevant in part of the flight envelope of pararotor 
(namely the starting phase), once the steady motion is stablished, the 
descent speed remains constant. We consider that the descent speed is 
not significantly perturbed by the small deviations of pararotor 
attitude, as it was observed in the experiments performed. Therefore, 
Newton equations of forces are decoupled from the rotational 
dynamics and not considered because the problem analysis is focused 
on an equilibrium solution where a rotation limit speed is held 
relatively constant, and translational accelerations are zero. To this 
aim, certain simplifying assumptions were introduced. The motion 
equations were linearized and uncoupled to obtain the constant 
matrixes of a linear system, dependent on the parameters of the 
pararotor configuration. The design parameters, because the control 
is fixed, determine the trim state previous to disturbances and 
therefore the stability matrix. A classical eigenvalue study was 
performed to analyze the stability behavior, and equilibrium points 
were also determined. 

A schematic representation of the geometry of a pararotor is shown 
in Fig. 1, introducing the center of mass position and center of 
pressure for each blade, expressed in the body axis; rtj is then defined 
as the coordinate of the center of pressure for the blade / along the j 
body axis. 

The effect of the parameter that describes the position of the blade 
plane relative to the center of mass, the dimensionless ratio 
k3l = rl3/rn, was analyzed together with stability indices that 
describe the device behavior. 

The aim of the approach developed is to analyze the effect of the 
parameter &31 on flight stability. With the objective of comparing the 
case where k3i is different from zero with the case where k3i is zero, 
the same aerodynamic model used in previous work [16] was 
adopted. The fact of considering the parameter &31 implies the 
introduction of a great complexity because the number of terms of 
system of equations became extremely large. 

The advantage of an analytical model like the one developed here 
is that stability limits can be found using an approximated approach, 
useful for the determination of the type of evolution and the influence 
of the main parameters. 

A. Mathematical Model 
The system analyzed is a pararotor flying in the autorotation 

regime. It is modeled as a cylindrical body with two identical blades 
that rotates at angular velocity co and falls vertically at uniform 
speed U^. 

In pararotors with small-aspect-ratio wings, when the falling speed 
is very large, the trajectory is vertical, and it is not affected by the 
small changes in pararotor orientation, as was observed in steady 
flight of a pararotor with small-aspect-ratio wings in a vertical tunel 
studied previously [21]. Therefore, the rigid-body rotational 
dynamics can be decoupled from the center of mass dynamics. 

The induced velocity vt was not directly included in the model, 
following similar assumptions of former studies [16]. Other studies 
[22] indicated that a real low-aspect-ratio rotary wing shows an 
induced power correction factor K of about 2 or greater. This fact 

Fig. 1 System geometry scheme: :cntee ro mass CM Mosision, and center 
of pressure CPl of blade 11 



indicates that the relationships of descent rate and axial hovering 
velocity v^ is greater than 2, indicating a windmill brake state axial 
descend [23]. The current model focuses on the assumption of small 
induced velocity in the windmill brake state. Large induced power 
correction factors associated with low-aspect-ratio wings are 
consistent with this hypothesis. Vertical tunnel tests performed [21] 
using different small-aspect-ratio wings pararotors showed induced 
velocities of 15% of the descent velocity on average, evidence that 
the simplifying hypothesis is associated with a representative 
flight range. 

The flow model for axial descent in a windmill brake state [23] 
indicates that the sensibility of induced velocity Vi to descent rate 
decreases with U^/v^. This means that vertical velocity disturbances 
influence on induced velocity depends on the vjv^ magnitude and 
thus on K. 

However, the effect of induced velocity is included in the values of 
lift, lift slope, and drag coefficients, CL, CLa, and CD, which are 
determined from experiments [15]. This experimental work was 
performed in operational conditions of a pararotor model, and so the 
effect of Vf will result on an increment of the magnitudes of lift and 
drag if the freestream velocity over the blades is considered. As a 
consequence, the model will be developed associated with these 
experimental data that will define an operating range of validity, over 
which the lift slope can be approximated as linear. This range is 
defined in the incompressible regime. The model geometry is defined 
in Fig. 2. The body-fixed reference system [1-3] has its origin at the 
center of mass CM and directions e\, e2, e3- The axes [1-3] are the 
principal axes of the body, right-hand defined. The inertial reference 
system is [X, Y, Z], right-hand defined; its axes have the directions i, 
j , k. The blades are located on an axis parallel to axis 1 that intersects 
axis 3 in the point named "B". Each blade Pj and P^ has a pitch angle 
Pi and/?2, respectively. 

The normal vectors associated to each blade are ri\ = 
[0, sin pi, cos fii], «2 — [0, - s m &!•>cos fill. 

The rotation vector co = \co\5 co2-, co^\ *s expressed in the body 
reference system. The gravity vector points —k. 

Moments defined in body axes are M = [Mi,M2, M^\ . 
Euler equations in axes e^ with moments taken respect to the 

center of mass, are 

• 7 2 - 7 3 ! w 
CO\ COnCO-i = —Mi 

h h 

(02 H CO\CO^ = — M 2 

co Jl~Jl>o co =1M 

(la) 

(lb) 

(lc) 

Fig. 2 System geometry: inertial reference system (X,Y,Z), body-fixed 
reference system (1,2,3), precession angle ys, nutation angle 6, spin angle 
q), and angular velocity co. 

The descent rate is expressed in axes e^ as U^ = 
f/'ooIsin 6 sin cp, sin 6 cos cp, cco s]T. We ecnsider rtat t th eararotor 
is flying near an equilibrium point defined by small nutation angles, 
which was observed in previous experimental work [21]. This 
equilibrium flight state can be described as a vertical descent with 
axis £3 mostly aligned with the gravity vector. The expression of the 
descent rate can be approximated by U^ « U^ [# sin cp, cos cp, 1]T. 

The Newton equations that would complete the six-degree-of-
freedom rigid-body system dynamic is decoupled from Eq. (1), 
considering the case of a flight near an equilibrium point that is 
characterized by the small cross influence of translations and 
rotations, observed in vertical tunnel tests. As a consequence, this 
model is limited by this simplifying hypothesis. 

The distance from the center of presure of blade / (/ = 1, 2) to the 
center of mass in axes e^ is Ri = [r^, ri2, ^BY• For simplicity, both 
blades are considered geometrically identical, which means that 
^11 — ~^i\-> r\2 — ~^22? n n d r^3 = ^ 3 . 

The relative velocity of the fluid to blade / (/ = 1,2), considering a 
vertical descent rate 01 the body, LI^ = U^k is defined as 

Vri = ~W x Ri + UQQ 

The lift and drag forces can be expresed, for each blade, as 

Li = ^pSCLaai\Vri\2eLi 

D; ^Di 

(2) 

(3) 

(4) 

where eLi is the unit vector aligned to lift force, eDi is the unit vector 
aligned to drag force, a? is the angle of attack of each blade, S is the 
blade area, p is the air density, CLa is the slope of the blade curve lift 
(with respect to a), and CD is the blade drag coefficient. 

The unit vector eLi, can be defined, for each blade, as 

"Li ( 1/ 
*i x yri 

|el X Vri\ 

This expression can be approximated, considering that Vri is 
perpendicular to e\, which is consistent with Eq. (2) and the flight 
conditions defined as a hypothesis: 

€L\ = ( 1) 
i e\ X Vr\ 

I *rl I 

The unit vector eDi, can be defined, for each blade, as 

- -XiL 
m ~ |V r i | 

The angle of attack for each blade can be defined as 

nt • Vri 
sm c%i — 

\Vri\ 

(5) 

(6) 

(7) 

If we consider the previous expressions, we can determine the 
aerodynamic forces acting on each blade. These expressions can be 
approximated taking into account the following assumptions and 
neglecting second- and higher-order terms (when a term contains a 
multiplication of more than two small factors, it is neglected). 

1) Both wings have identical pitch angle. 
2) The angles of attack and the angles of incidence are all small, say 

less than 0.25 rad. 
3) The component along axis 1 of the relative velocity to the blade 

has a neglectable aerodynamic influence. 
4) The distance from the aerodynamic center of the blades to the 

center of mass in the direction perpendicular to the blade span 
is small. 

/ 



5) The angular velocity along axes 1 and 2, u)j and a>2, are emall 
compared with 0)3. 

For simplicity, the dimensionless vertical velocity to blade 
velocity, £ = { ^ / ( u ^ r j j ) , is introduced. Also, achangeof variables 
is defined by xj = u)j /a>^ and x2 = a>2/a>^ . The eerodynamic forces 
that act over the blades P\ and P2 can be written [9] expressed in 
reference frame [1-3] as 

in the proximity of the equilibrium flight. Then, Eq. (lc) can be 
uncoupled from the rest of Euler's equations, as an approximation to 
the problem. 

The column vector of state variables is defined as x(t) = 
[xi(Y), X2<X)] , taking into account the decoupling simplifications. 
The simplified equations of the system dynamics are a nonlinear 
system that can be written in dimensionless variables as 

Lj ^ —pSCLar^co^(—p^ + x2 + k) I (x2 4 k) (8a) 
dx 
dT 

F(x, T) 
Mi ll2 - h \ M2 _ (l\ - h \ 

Lai 
(h ~ h \ M2 (l\ -

(15) 

L2 s ^.pSCijar^o)i(—p2 + x2 + k)I (x2 — k) ) (8b) 
2 V 1 / 

1 
D1 ^ -pSCDrna>3 ( x2k31 - 1 

x2 — k2i +k 

D2 = — pSCj)r\^oi\ I x2k^\ + 1 
—x2 + k2\ +k 

(9a) 

(9b) 

The aerodynamic moments acting on the body itself were neglected, 
considering that the nutation angles are small, and that the center of 
pressure of the body is close to the center of mass of the pararotor. The 
moment of the aerodynamic forces of the blades, taking into account 
Eqs. (8) and (9) is 

M = 2_\Rix C^i + ^i)] 

The moments along the j axis can be expressed as 

Mj = ^.pSr^a^CMj 

(10) 

(11) 

where the moment coefficients named C^i derived from Eq. (10) are 

CM\ = CLakil[{fll + P2)x2 + 0?i — P2)k — 4x2k] 

+ CLak2i[-f)i + P2 + 2x2] + C£)&3i[—4xi&3i] (12) 

The initial conditions of the problem are defined as: x(0) = 
XQ = [0,0] r. 

The trim problem is defined as F(xe) = 0, where xe = \xe\,xe2y 
is the equilibrium value of the state vector. 

The essence of linearization is the assumption that the motion can 
be considered as a perturbation about a trim or equilibrium condition; 
provided that the perturbations are small, the function F can usually 
be expanded in terms of the motion and control variables and the 
response written in the fornix = xe + Ax, where Ax is the disturbed 
estate vector. 

The system of equations [Eq. (15)] can be linearized by expansion 
in the neighborhood of the equilibrium point as follows: 

dx d(xe + Ax) 
d7 dt 

• F(xe) 
fdFMJ=1-2 2 
I I Ax + 0( Ax ) (16) 

where the linear problem is defined as 

dAx idF;\l,J= ' 
dt 

(dFA'J 
Ax = [A]Ax 

where A is the characteristic matrix of the system of equations. 
The constant matrix consequence of the linearization can be 

expressed as 

A „ A12 
A21 A22 

-j—[ (-^C,k3l) —j H——̂  [^Laki\(,\ +P2—*k)+2(~-Lakll\ 
7 i~73 PSrn( Ci _C\ 

/ j V v-'La v-'DI 
2 '2 

(17) 

CM2 — ~CLa{—pi + p2 + 2x2] - 2CDx2 

For k^ = 0 , matrix A is coincident with the one developed 
(13) in [15,16]. 

C"M3 — CLa\—(Pi — P2)x2 - (Pi + P2)k + 2(x2) + 2k ] 

+ 2CD[xi&3i] (14) 

For rJ3 = 0 (the blades plane is aligned with the center of mass), and 
neglecting the higher-order terms, theequations developed in [10,15] 
are recovered. 

C. Equilibrium Points 
Neglecting the higher-order terms, the equilibrium points are 

attained are 

2KiCLa8p(—k^]k + k2\) 

2K\C'La(knPo • 2k^\k + k2{) + 2, 3 
(18) 

B. Linearization 
To study the dynamic behavior of the pararotor around an 

equilibrium point, the system given by Eqs. (1) and (11) is linearized. 
As analyzed in [15,16], it is considered that 0)3 remains constant 

when the system is perturbed around an equilibrium point. In a small-
aspect-ratio blade pararotor, the induced power correction factor K is 
considerably larger than in large-aspect-ratio rotary-wing deceler-
ators. This fact derives in a windmill brake state, where U^ is large 
compared with v^, and 0)3 is of a large magnitude, which is confirmed 
by experimental observation. As a first approximation, the sensitivity 
of <»3 to Uco variations can be taken as a second-order effect. As a 
consequence of these considerations, u)3 and U^ are taken constant 

2K2[CLaS a — (CD + CLa)xe2\ 

where 

^ 
(19) 

1 pSr3
n Kj = 

2 Ij 

with i = 1, 2. 
If we consider the terms K{ CLU , that appear in Eqs .(18) and (19), it 

can be observed that it is similar to the Lock number [24]. As a 
consequence, these terms can be interpreted as a nondimensional 

0 

0 



Table 1 Signs of equilibrium points in terms of 
principal moments of inertia and /.,, 

hi 
Equilibrium points 

Moment of inertia hi xel xe2 

73 > I2, /j >0 <0 >0 if k31k > k2i 
h > h, h =0 <0 <0 
h > h, h <0 <0 <0 
h < h, h >0 >0 <0 if k31k <k2i 
h < h, h =0 >0 >0 
h < h, h >0 >0 >0 
h<h< h =0 <0 >0 
h<h< h >0 or <0 >0 or <0 >0 or <0 
h<h< h =0 >0 <0 
h<h< h >0 or <0 >0 or <0 >0 or <0 

scaling coefficient, giving the ratio of aerodynamic to inertia forces 
acting on a rotor blade, associated with the response sensitivity of the 
system. Table 1 shows the effects of £3j for different moments of 
inertia ratios on the sign of equilibrium points (xeX, xe2). 

D. Stability Analysis 
The eigenvalues of matrix A, 

asymptotic stability under the 
eigenvalues are given by 

X\ and d2, dictate the system 
assumed hypothesis. These 

A1>2 = i ( r r ± V / A ) 

= (An + ^22) ± V(An +^22) + 4(A12A21 - A11A22) 
2 

(20) 

where A = t \ — 4Det, ana dr ana det ara tht trace ana tht 
determinant of matrix A, respectively. 

A linear system is asymptotically stable if and only if the real part 
of the eigenvalues of matrix A is negative [25]. The eigenvalues also 
define the evolution of the trajectories of the system: either stable or 
unstable. The eigenvectors define the type of evolution (node, spiral, 
focus). In the case of a two-variable systems, the following stable 
cases appear [10,15]. 

1) A stable node X\ < 0 and X2 < 0> ^1,2 we- r e a l and different, 
Tr < 0, A > 0. 

2) A stable spiral X\t2 = p ± qi, p < 0; q ^ 0, i is the unit 
imaginary number, TT < 0, A < 0. 

3) A stable focus X\ = X2 < 0; Tr < 0, A = 0. 
The stability limits are defined by the conditions 1 r = 0 

and A = 0. 
The eigenvectors associated with eigenvalues from Eq. (20), t>j 2 , 

define the system traj ectories in a phase-plane analysis of the second-
order system. 

/. Stable Node 
To attain this condition, the Routh-Hurwitz criteria must be 

satisfied: 

TT = 2K2(CLa + CD) + 2KiCDk\x > 0 

—Det = / Ai(C iaK3i(/<i + f>2 —4k) 

\ 1 — 

(21) 

2CLak2\) I I — c > 0 (22) 

where c = 2KiK2CDkl1(CLa + CD), which is neglected because it 
is a higher-order term in the Eq. (22). 

It can be seen that the sole condition of k31 being different from 0 
contributes to increase the stability as given by Eq. (21). In the 
stability limit Tr = 0, the trajectory is a center, and that occurs when 

&31 = 0 , and CLa = 0 and CD = 0. This situation coincides with the 
classical problem of a rotating body in a vacuum. 

If the expression given by Eq. (22) is rearranged, it can be 
expressed as 

(h ~ li)(h ~ 1i)(l — N'e)> 0 

where the stability number is defined as 

£31 (/?o — 2£)+ k2\ 
N'e = laCha 

and 

/„ = pSr\x 

(23) 

(24) 

(25) 

FromEq. (21), two conditions can be defined: if I2 < I^,I\ o r / 3 < I2, 
11, then N'e must be less than 0, and if I2 < 1$ < I\ or I\ < 73 < I2, 
fhenA^ mustbegreaterthanO.Consideringthata > fi0 by geometric 
definition, the effect over the condition Eq. (22) is as follows. 

1) When I2 < I3, values of k31 greater than 0 contribute to make 
Det greater than 0. 

2)When/3 < 2̂> thenvaluesof &31 less than 0 contributes to make 
Det greater than 0. 
From Eq. (23), it can be seen that, when I2 < I3 < lt, the value of N'e 

must be greater than 1 to fulfill the condition, and then values of k3\ 
greater than 0 contribute to the criteria. 

For this case, the phase portrait would show trajectories moving 
directly toward and converge to the equilibrium solution (node). The 
eigenvectors indicate trajectories directions; when near the 
equilibrium point will be approximately in the same direction as 
the eigenvector associated with the eigenvalue with the smaller 
absolute value, farmer away the equilibrium point, they would bend 
toward the direction of the eigenvector of the eigenvalue with the 
larger absolute value. 

2. Stable Spiral 
This case occurs when A < 0. This condition can be written as 

(A„ + A22)2 - 4(A„A22 - Ai2A2i) < 0 (26) 

When spiral trajectory is given, the stability of the system is 
guaranteed if TT > 0, and so the sole condition that &31 be different 
from 0 fulfills that condition, as far as CLa, CD, are generally positive. 

If £3i is equal to zero, then Eq. (26) can be written as [15] 

—TT—1— \N? — ke(\— N'e)\ < 0 
^21^2 

where the dimensionless parameter ke is defined as 

(27) 

4kl -±-^ 
* 1 * 3 *2 

(28) 

For this case, the phase portrait would show spirals trajectories 
moving toward and converge to the equilibrium solution 
(spiral point). 

3. Stable Focus 
This type of trajectory will arise when the condition is defined as 

" 4Det 0 

that is 

(A„ + A22)2 - 4(A„A 2 2 - Ai2A2i) = 0 (29) 



When stable focus is given, the stability of the system is guaranteed if 
Tr > 0, and so the sole condition that £31 be different from 0 fulfills 
that condition. 

The eigenvalues become 

h '• -An + A22 (30) 

For this case, the phase portrait would show logaritmic spiral 
trajectories moving toward and converge to the equilibrium solution 
(focus point). 

E. Stability Regions 
Because the signs of the differences between moments of inertia 

have an influence in the stability limits, their relative values should be 
taken into account. The parameters N'e, ke can account for the effects 
of principal moments of inertia ratios and are able to define stability 
regions of the system analyzed. These parameters represent a more 
general case of the parameters presented in [15,16]. 

The six possible configurations can be reduced to four cases, as 
discussed in the following paragraphs. 

/. Case 1: Spinning Motion Close to the Major Axis of Inertia, Inertial 
Stability 

Two configurations are included in this case, I\ < 72 < I3 and 
li < 11 < 1%, thus, according to Eq. (23), the stability region is 
defined by the condition N'e < 1. 

Because both 72 < 3̂ and 1\ < / j , ke are biggerthan 0, and because 
N'e can take either positive or negative values in a general case, only 
the first and second quadrants of the plane (N'e,ke) are 
allowed (Fig. 3. 

The limit for the region of spirals (focuses) is given by A = 0. If 
&3J = 0, then A is given by Ng —ke(\ — N'e) = 0 [15]. Then, 
ke = Nt' / ( l — N'e), and the region of spirals is attained 
when ke > N^/(l — N'e). 

When N'e > 1, with large aerodynamic effects compared to 3̂ — 72 

[see Eq. (24)], the system is unstable. This situation does not happen 
when there are no aerodynamic forces over the body, that is, in the 
classical problem of a solid body rotating in a vacuum, whose motion 
is always stable under the condition I ] , i 2 < I3. 

2. Case 2: Spinning Motion Close to the Axis of Lower Inertia, Inertial 
Stability 

Two configurations are included in this case, 73 < / j < 72 and 
^3 < 1% < 11, and therefore ke > 0. Thus, the first and second 
quadrants of the plane (N'e, ke) are allowed. This situation is shown 
in Fig. 4. 

When N'e = 0, the system follows a center-type evolution. This 
situation corresponds to the case where C^a = 0 and is stable, as 
expected [10]. 

It can be seen that, when N'e < 1, the system is stable. 
FromEq. (27), it can be seen that N'e increases when &31 increases. 

Therefore, while £31 increases, the system approaches the 
stability limit. 

3. Case 3: Spinning Motion Close to the Axis of Intermediate Inertia 

In this case (12 < I3 < I-i), according to Eq. (24), the condition 
N'e > 1 must hold for a stable system. Furthermore, by definition, 
ke < 0; therefore, only the third and fourth quadrants of the plane 
{N'e,ke) are allowed. 

Considering Eq. (23), it is possible to reach the stable region if the 
following condition is given: 

A — 12 , 
21 > -7 ~ ~ hiifio ~ 2k) 

* a^La 
(31) 

This means that the value of k^ 1 is determinant for the stability of the 
system. Therefore, under specific conditions, the system can be stable 
when it is spinning around an axis close to the intermediate inertia 
axis. This is due to the stabilization effect of the gravity applied at the 
center of mass, as it can be seen by the effect introduced by &31 

onEq. (31). 

4. Case 4: Spinning Motion Close to the Axis of Intermediate Inertia 
(I\ < I3 < I2), Gravity Stabilization 

In this case (/j < 73 < I2), according to Eq. (23), the condition 
N'e > 1 must be fulfilled for stable motion. Furthermore, by 
definition, ke is smaller than 0; therefore, only the third and fourth 
quadrants of the plane (N'e, ke) are allowed (see Fig. 5). 

In this case, if &31 = 0, it is not possible to attain a stable 
configuration, as was established previously [15,16]. 

Considering Eq. (22), it is possible to reach the stable region if the 
following condition is given: 

I3 -I2 

7aCl,„ 
(32) 

This means that a value of k^\ big enough to fulfill Eq. (32) gives a 
stable device. This is due to the stabilizing effect of the aerodynamic 
forces generated by the blades that can be reinforced by the 
stabilization effect of the gravity applied at the center of mass, as can 
be seen by the effect introduced by k^\ on Eq. (32). Without that 
contribution of the aerodynamic forces, the system would be 
unstable, as is the case for rotation in vacuum. 

In terms of practical configurations, pararotors that meet the 
condition given by Eq. (32) are useless or impractical (&31 = 100). In 
general, practical configurations (that may be k^\ = 10 or smaller) 
are unstable when I\ < I3 < 72-

F. Numerical Examples 
Numerical results of the stability analysis are presented in this 

section, according to the cases presented in Sec. II.E. To develop 
them, an aluminium solid body composed of both a cylinder and 
blades with different relative dimensions that produce different 
relations between the principal moments of inertia is considered. 
The main common model parameters used for the example are 
summarized in Table 2. 

K^gion of unstable saddle 

Region of stable saddle 
Region of stable node (A > 0) 

k"x"x*)j Region not allowed 
-1 -0.5 0 0.5 1 1.5 2 2.5 3 

Ne' 
Fig. 3 Types of trajectories for the case It, I2 < I3 in the N'e, ke plane. 
The first and second quadrants are allowed. 

Region of unstable saddle 

Focus (A = 0) 

Region stable spiral 
Region stable node (A > 0) 
Region not allowed 

Fig. 4 Types of trajectories for the case 73 < I2,1$ in the N'e, ke plane. 
The first and second quadrants are allowed. 



Table 2 Common parameters 
of the numerical examples 

Table 4 Numerical examples of effect of A:3i on {Xre\) 

Parameter Value 

P 
Ojf) 

S 

3.4 rad" 
0.07 

1.21 kg/m 
291.4 rad/s 

0.012 m 
rll' r21 
r12> r22 

0.1m 
0.034 m 
0.1 rad 

h 0.17 rad 
8, 0.035 rad 
^ C O 14.1 m/s 

^•31 Case l.a Case l.b Case 2 Case 3 Case 4 

In the examples, the four cases presented in the stability analysis 
were considered to qualitatively describe the stability analysis. In 
Table 2, the common parameters of numerical examples studied are 
presented, taking as a reference measurements done in the context of 
experimental test. 

In Table 3, the principal moments of inertia of the cases taken for 
this analysis are shown. These examples are representative cases of 
those presented previously, chosen by their moments of inertia 
relationship. Case l.b presents an example of the I\ < 12 < /3 case 
where stability is weak due to the proximity of 72 and 73, in contrast 
with case 1 .a, where stability is stronger. Cases 3 and 4 were found to 
be in general unstable, with values of yt31 in the range of —1 to 1. 

In Table 4, the real part of the largest eigenvalue of the 
characteristic matrix of the linearized system is presented to show the 
effect of &31 on the stability. In Fig. 6, these cases are illustrated. In 
Table 4, the effect of k^j on the value of (N'e, ke) is presented. 

III. Experiments 
In this section, some experiments that have been carned out to 

validate the analytical model are presented. 

A. Experimental Setup 
To test the pararotor behavior, an horizontal closed-circuit wind 

tunnel with rectangular closed test section (1.4 m wide to 1.0 m high) 
has been used. 

A schematic description of the tested models and the general wind 
tunnel setup is shown in Fig. 7. The pararotor was placed in the test 
section, fixed to a load cell. A bearing allowed a three-degree-of-
freedom rotation (of limited magnitude) of the model and prevented 
translation. This bearing was placed in such a way that the center of 
mass is kept in the plane of symmetry of the bearing and in its center. 
The axis perpendicular to blade plane of the pararotor was aligned 
with the wind flow to simulate the device descent. A load cell was 
rigidly fixed to the wind tunnel to measure the model drag. 

The tested models consisted of a cylindrical main body with two 
rectangular flat blades attached. The main body was a 90-mm-diam, 
92-mm-high aluminum cylinder. The rectangular aluminum blades 
were 91 mm span, 141 mm chord, and 1 mm thick. The position of the 
plane containing the blades (rotor plane) can be changed 200 mm 
downstream or upstream the center of mass. The blade pitch was set 
before each test. The parameter rjj was estimated to be 0.09 m. 

Table 5 shows the moments of inertia and weights of each model 
configuration. 

1.0 —0.0130 —0.0130 —0.0100 0.5848 0.6663 
0.5 —0.0118 —0.0118 —0.0097 0.5893 0.6530 
0.0 —0.0114 —0.0114 —0.0096 0.5935 0.6385 

-0.5 —0.0118 0.1336 —0.0097 0.5976 0.6229 
-1.0 —0.0130 0.1984 —0.0100 0.6015 0.6061 

B. Meassurents and Instrumentation 
The parameters that were measured in the tests and the instruments 

used are summarized in Table 6. 

C. Experimental Results 
Experiments showed in all of the cases a steady-state flight with e3 

aligned with the wind flow direction. The angular deviation of e3 with 
respect to flow direction was of a negligible magnitude in any case. 

The measured stream velocity U^ and angular velocity 0)3 are 
shown in Table 7. In this table, the parameters N'e and ke were 
calculated in base to the experimental results using Eqs. (24) and (28), 
respectively. 

D. Results Analysis 
The experimental results showed that, in all cases, the equilibrium 

position was maintained, so that they were stable, with a steady-state 
rotation characterized by e3 aligned to the wind flow direction. Thus, 
it could be seen that magnitudes of k^\ (&31 = 0.2) in the test model 
did not affect stability in a significative way. 

The parameters N'e and ke for to the tested models correspond to 
stable behavior, as predicted by the analytical model; Table 7 (N'e, ke) 
values belong to the stable region defined in Fig. 2. 

E. Measurement Uncertainties 
The uncertainties of the measurement parameters were evaluated 

taking into account the reproducibility of tests performed in similar 
conditions and the uncertainties derived of the instruments used. 
The absolute values of the uncertainties that combines both types 
of contributions for U^ and u)3 were UUoo = 0.02 m • • _ 1 y 
(7m3 = 0.01 rad • s_1 , respectively. 

IV. Results 
The developed analytical model indicates, as expected, that 

pararotor stability is primarily defined by the relationship between 
the inertial moments of the body. This relationship can be classified in 
four cases given by I\, I2 < I3', I3 < I\, 1%, l\ < I3 < 1%, and 
li < I3 < I\. Depending on the inertia axis, close to which the body 
spins, different types (nodes, spirals, focuses) of trajectories appear at 
different regions of the stability diagram. 

The model developed is in all terms congruent with the results of 
previous work [15,16]. 

The analytical model presented in this work depicts the main 
characteristics of the dynamic behavior of the pararotor near the 
equilibrium point. Every conclusion is given under the assumptions 
considered and the simplifications made. 

When the distance between the center of mass and the plane that 
contains the blades is small (that is described by £3j), the stability is 
not affected by this parameter. When the distance between the center 
of mass and the plane that contains the blades is about the same as the 
distance from the axis of rotation to the center of the blades, or larger, 
the stability is affected. 

Table 3 Principal moments of inertia of numerical cases adopted 

^•31 Case l.a Case l.a Case 2 Case 3 Case 4 
I\, kg • m 6.31 • 10" 6.31 • 10" 22.1 • 10" 26.3 • 10" 6.31 • 10" 
I2, kg • m 22.1 • 10" 22.1 • 10" 26.3 • 10" 6.31 • 10" 26.3 • 10" 
^3, kg • m 26.3 • 10 22.5 • 10 6.31 • 10 22.1 • 10 22.1 • 10 



Region of stable saddle 
Region of stable node (A > 0) 
Region not allowed 

Fig. 5 Types of trajectories for It < I3 < I2 or I2 < 13 < I\ in the Ng, 
kg plane. The third and fourth quadrants are allowed. 

0.58 

0.48 -I 

0.38 

0.28 -

> 

Fig. 6 Effect of k31 on the value of the real part of the largest eigenvalue 
of the numerical examples for the linearized systems. 

i * 1 . - - - - - - ' " ' " " - - - - - - - - - - - - j 

J Uoo b 
3 

Fig. 7 Description of the test chamber setup. The numbers indicate test 
model body (1), test model blades (2), rotation axis (3), balance (4), 
balance fairing, (5), and pitot tube (6). 

A number of numerical cases have been considered, varying the set 
of parameters of the configuration to drawn some conclusions. Thus, 
taking into account the relationship of inertial moments and 
analyzing the effect of k^i on stability, the following can be seen, 
according to the analytical model developed. 

1) When rotation takes place around or close to the principal axes 
or largest inertia (case 1 or 2) I\,l2 < 13 or 13 < A> -̂2> positive values 
of &31 (that means that the center of mass is under the plain of the 
blades) contribute to the system stability, reinforcing the tendency to 
asymptotic stability. The magnitude of this effect depends on distance 

from stability limits. When the configuration of the pararotor causes 
to be near the stability limits, or near the marginal stability, the 
parameter k^i is determinant to the dynamics of the system, and the 
magnitude of the effect is big. 

2) When 71? / 2 < 73, case 1, and the stability is such that the 
stability limit is in the proximity, negative values of k^i contribute to 
system instability, and positive values contribute to stability. If the 
stability limit is not in the proximity, the effect of &31 is negligible. 

3) When 73 < 1^, 72> negative values of k^\ contribute to stability if 
the stability limit is in the proximity. If the stability limit is not in the 
proximity, the effect of &31 is negligible. 

4) When rotation takes place around the intermediate inertia axis, 
11 < I3 < I2 or / 2 < I3 < 11, case 3 or 4, it is difficult to obtain a 
practical stable configuration. However, if k^i is big enough, it is 
possible to obtain an asymptotically stable configuration. In other 
words, the aerodynamic forces acting on the blades contribute to 
stability when spinning is close to the intermediate inertia axis, and 
the gravity forces contribute when the mass center is below the plane 
of blades. 

The parameters (N'e, ke) can be considered to predict the stability 
behavior of a specific case by analyzing the stability regions 
presented. The characterization of a pararotor in terms of these 
parameters, which includes the main physical characteristics, 

Table 5 Principal moments of inertia and weights for 
tested models 

r31, m Weight, N 71? kg • m2 I2, kg • m2 73, kk g •m 
0.00 3.5 4.61 • 10-4 1.31 • •0 - 3 1148 • •0 - 3 

0.20 4.2 5.30 • 10-4 1.56 • •0 - 3 1.66 • •0 - 3 

-0.20 4.2 5.30 • 10-4 1.56 • •0 - 3 1.66 • •0 - 3 

Table 6 Parameters measured and laboratory instruments used 

Parameter Instrument 
Blade pitch fii,/?2 
Stream velocity U^ 

Angular velocity o)3 
Traction F 
Nutation angle 6 
Dry bulb ambient temperature 
-* amb 
Barometric pressure Pamb 

Goniometer 
Standard pitot tube and 

micromanometer 
Laser tachometer 

Load cell 
Photo camera 

Dry and wet bulb thermometer 

Electronic barometer 

Table 7 Experimental results and stability parameters 
Ng,ke 

Stability 
Experimental results parameters 

^31 Pi,de g /?2, deg C/QQ, m / s ft>33 , a d / s N'e ke 

0.0 4 4 9.5 235.2 0.080 9.724 
0.0 4 4 11.6 271.3 0.080 9.724 
0.0 4 8 10.1 255.9 0.080 9.724 
0.0 4 11.9 287.4 0.080 9.724 
0.0 4 12 9.7 268.4 0.080 9.724 
0.0 4 12 11.8 338.6 0.080 9.724 
0.2 4 4 10.2 228.9 0.070 18.987 
0.2 4 4 12.1 364.8 0.088 18.987 
0.2 4 8 10.1 261.9 0.082 18.987 
0.2 4 8 12.1 307.5 0.081 18.987 
0.2 4 12 10.1 269.3 0.086 18.987 
0.2 4 12 12.1 321.7 0.086 18.987 

-0.2 4 4 10.0 201.0 0.210 18.987 
-0.2 4 4 12.0 240.0 0.211 18.987 
-0.2 4 8 9.9 228.2 0.198 18.987 
-0.2 4 8 12.0 271.6 0.199 18.987 
-0.2 4 12 10.1 246.1 0.192 18.987 
-0.2 4 12 12.1 286.6 0.193 18.987 



configures a model to study the dynamic behavior of pararotor. 
Taking into account the relationship of principal moments of inertia 
and analyzing the effect of &31 on stability, the following can be seen. 

1) When 11,12 < I3 or /3 < I\i 111 the stable region is given by the 
condition Nf

e < 1. The first and second quadrants of the plane 
(N'e, kg) are allowed. Positive values of &3j (that means that the center 
of mass is under the plain of the blades) makes N'e smaller, 
reinforcing the tendency to asymptotic stability. 

2) When /j < 73 < 12 or 12 < 1$ < 13, the stable region is given by 
N'e > 1. The third and fourth quadrants of the plane (N'e, ke) are 
allowed. 

Figure 5 and Table 4 show the behavior of system stability in 
different numerical examples, taking into account the eigenvalues of 
the characteristic matrix of the linearized system dynamics. It can be 
noticed that, near the stability limits, the effect of &31 is determinant 
(Fig. 5, case l.b), whereas for the rest of the cases, it has minor effect, 
even if the module of &31 is on the order of 1. 

In the same way as in [15], it is possible to determine the nutation 
angle 6, the precession angle \ji, and the spin angle tp by decomposing 
the angular velocities given by to over the mobile coordinate system. 
As the equilibrium point found is largely dependent on &31, so are the 
Euler angles. 

The results shows that induced velocity would affect the N'e 

parameter as it should be added to the descent velocity present in the 
parameter k. However, induced velocity does not take effect neither 
on the stability characterization nor in the behavior of the system 
under the effect of the studied parameters change. 

The experimental results validates, in the range defined by the 
tested models, the stability prediction derived from the mathematical 
model respect to the effect of &3j on the stability. 

V. Discussion 
The way pararotors fly, the response to external disturbances, or 

the trajectories around different equilibrium points depend on a 
limited number of parameters whose effects are intrinsically coupled. 
Among them, the main influence comes from the relationships 
between moments of inertia. 

The linear behavior characterization allows the dynamics of 
pararotors to be predicted or a preliminary design to be started by 
establishing functional flight and control requirements. Also, it is 
possible to establish control actions to guide the pararotor. This work, 
together with the existing references, represents the initial step to the 
development of technologically feasible pararotor missions. 

The linear analysis is valid in all of the parameter range (if small 
angle assumption is met), except close to the stability limits, where 
second-order terms become relevant. Therefore, the main limitation 
of the present work is in the prediction accuracy close to the stability 
limits. 

A pure analytical model that comprises the whole nonlinear system 
would be very complex and impractical. A numerical simulation tool 
is being developed with this aim. 

VI. Conclusions 
The influence of parameters in the equilibrium attitude and 

dynamics of a pararotor has been analyzed by using a mathematical 
model based on the Euler equations and an expansion of the 
aerodynamic torque. 

Considering different configurations and physical parameters of a 
pararotor, the most important for the dynamic stability and attitude 
has resulted to be the relationship between the principal moments of 
iner t ia / i , /2> and / 3 . In practical terms,only devices where / j , 72 < ̂ 3 
or 73 <I\, 1% lead to feasible configurations. 

In general, the importance of the effect of distance from the blade 
plane to the center of mass &3j depends on the magnitude of this 
parameter. However, the effect of this parameter depends also on the 
proximity of the system stability to the stability limits, being 
determinant when the system is close to marginal stability. For all 
cases, yt31 affects the equilibrium position of the pararotor, in terms of 
Euler angles. 

The method considered to analyze the pararotor dynamics is based 
on the linearization of a reduced characteristic matrix of the Euler 
equations. The nonlinearities of the system become relevant to 
determine the character of the evolution when the system is 
approaching the stability limit. Thus, except in a region very close to 
the stability limit, the results obtained with the analysis presented are 
considered valid. 

However, to study this region, a numerical integration of the 
complete model (without approximations) should be carned out, thus 
including nonlinear effects. The analytical study including nonlinear 
terms has been tried, but the large number of them that should be 
taken into account spoils the advantages of the analytical methods. A 
numerical model for the integration of the equations of the model is 
being developed by the authors. The analytical model is giving an 
unvaluable support in the validation of the model. 

The parameter k^\ and the pitch angle could be used to control the 
response of the system, as can be determined from the linearization 
process of the dynamic system. Both are technologically feasible and 
affect the stability conditions of the system and the equilibrium 
points. 
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