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Assuming that V (x) ≈ (1 − µ) G1(x) + µL1(x) is a very good approximation of the Voigt function, in this
work we analytically �nd µ from mathematical properties of V (x). G1(x) and L1(x) represent a Gaussian and
a Lorentzian function, respectively, with the same height and HWHM as V (x), the Voigt function, x being the
distance from the function center. In this paper we extend the analysis that we have done in a previous paper,
where µ is only a function of a; a being the ratio of the Lorentz width to the Gaussian width. Using one of the
di�erential equation that V (x) satis�es, in the present paper we obtain µ as a function, not only of a, but also
of x. Kielkopf �rst proposed µ(a, x) based on numerical arguments. We �nd that the Voigt function calculated
with the expression µ(a, x) we have obtained in this paper, deviates from the exact value less than µ(a) does,
specially for high |x| values.

PACS: 32.70.−n, 32.70.Jz

1. Introduction

Let Va(x) be the Voigt pro�le obtained by convolution
of G(x) with L(x).
Approximating the Voigt pro�le as

Va(x) ≈ (1− µ)G1(x) + µL1(x), (1)

in a previous paper [1] (PI hereafter), we analytically
found µ as a function only on a, using the property of
the normalized area.
In PI we did some general considerations showing that,

using the expression (1) to represent the Voigt pro�le, we
would rigorously calculate µ for each x value, to obtain
µ as a function, not only on a, but also on x, as follows:

µ(a, x) =
Va(x)−G1(x)

L1(x)−G1(x)
. (2)

Even though the deviations of Va(x) calculated with
µ(a) from its exact values are smaller than 0.5% relative
to the peak value, as it was found in PI, it is useful, theo-
retically and practically, to calculate µ(a, x) from Eq. (2).
It is important to emphasize that, although Eq. (2)

can be calculated for each x value for every pro�le Va(x),
there is not a simple analytical expression for the right

∗ corresponding author; e-mail: hdirocco@exa.unicen.edu.ar

hand side of this expression. Indeed, if we expand in se-
ries, we see that the coe�cients of Va(x) depend compli-
catedly on a, involving Kummer functions (or con�uent
hypergeometric functions), as was shown in [2].
The dependence on x was already introduced by

Kielkopf [3] based on numerical arguments. In the
present paper we �nd an analytical expression for µ(a, x)
from one of the di�erential equation that V (x) satis�es,
which allow a better �t of Va(x) than µ(a) does, specially
for high |x| values.
We emphasize that, beyond the usefulness, this

semitheoretical approach produces, in our opinion, a cer-
tain aesthetic satisfaction.

2. Analytical deduction of µ(a, x) using one of

the di�erential equations satis�ed by Va(x)

Va(x) satis�es several di�erential equations, that can
be found in [4] and [5]. Of direct usefulness in our case
is the following:

V ′′(x) +
4xV ′(x)

w2
G

+

(
4a2 + 2

w2
G

+
4x2

w4
G

)
V (x) =

4a

πw3
G

.

(3)

If µ = µ(a, x) is assumed in Eq. (1), Eq. (3) re-
sults very complicated to our purposes, with terms like
∂µ/∂x and ∂2µ/∂x2, and other such as G′

1(x), G
′′
1(x),

(670)
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L′
1(x) and L′′

1(x). But, if the derivatives like ∂µ/∂x and
∂2µ/∂x2 are negligible with respect to the derivatives
G′

1(x), G
′′
1(x), L

′
1(x) and L′′

1(x), Eq. (3) becomes simple
enough to obtain a function µ(a, x) that permits a bet-
ter �t as compared with which has been obtained in PI,
specially for high |x| values.
Taking into account that the derivatives G′

1(x) and
G′′

1(x) are proportional to G1(x) and that L′
1(x) and

L′′
1(x) are proportional to L1(x), from Eq. (3) we ob-

tain

−2 ln 2(1− µ)G1(x)

γ2
V

+
4(ln 2)

2
(1− µ)x2G1(x)

γ4
V

+
8µx2L1(x)

(x2 + γ2
V)

2 − 2µL1(x)

x2 + γ2
V

+4x

[
−2 ln 2(1− µ)xG1(x)

w2
Gγ

2
V

− 2µxL1(x)

w2
G(x

2 + γ2
V)

]
+P (x)[(1− µ)G1(x) + µL1(x)] = Q (4)

with P (x) = (4a2 + 2)/w2
G + 4x2/w4

G, Q = 4a/(πw3
G)

and µ = µ(a, x). Developing the former expression and
collecting terms, we obtain

µ(a, x) =
fG(x)G1(x) + fQ(x)Q

fL(x)L1(x) + fG(x)G1(x)
, (5)

where

fQ(x) = γ8
Vw

2
G + 2γ6

Vw
2
Gx

2 + γ4
Vw

2
Gx

4, (6)

fG(x) = −8(ln 2)
2
γ2
Vw

2
Gx

4 − 4(ln 2)
2
γ4
Vw

2
Gx

2

+2(ln 2)γ6
Vw

2
G − 2P (x)γ6

Vw
2
Gx

2 − P (x)γ4
Vw

2
Gx

4

− 4(ln 2)
2
w2

Gx
6 + 8(ln 2)γ6

Vx
2 + 16(ln 2)γ4

Vx
4

+8(ln 2)γ2
Vx

6 − P (x)γ8
Vw

2
G + 4(ln 2)γ4

Vw
2
Gx

2

+2(ln 2)γ2
Vw

2
Gx

4 (7)
and

fL(x) = 6γ4
Vw

2
Gx

2 − 2γ6
Vw

2
G + 2P (x)γ6

Vw
2
Gx

6

+P (x)γ4
Vw

2
Gx

4 + P (x)γ8
Vw

2
G − 8γ6

Vx
2 − 8γ4

Vx
4. (8)

In spite of neglecting the derivatives ∂µ/∂x and
∂2µ/∂x2, the µ(a, x) values we obtain from Eq. (5) de-
part very little from those we obtain from Eq. (2).

2.1. Limit cases

In order to achieve the �nal analytic expression we are
searching, we need to know the behavior of µ(a, x) near
x = 0 and for x → ∞.
Taking into account that µ(a, x) is an even function

of x, we analyse those limit cases in the following sections.

2.1.1. µ(a, x) value at x = 0
Evaluating fG(x), fL(x) and fQ(x) at x = 0, Eq. (5)

can be written as

µ(a, 0) = −2.258891354 +
6.517782707a2γ2

V

w2
G

+
3.258891354γ2

V

w2
G

− 2.888117265× 4a× γ3
V

πw3
G

. (9)

Taking into account that γV/wG = b1/2(a), as we see
in PI, we �nally obtain

µ(a, 0) = −2.258891354 + 6.517782707a2b21/2(a)

+ 3.258891354b21/2(a)

−
2.888117265× 4a× b31/2(a)

π
. (10)

Comparing µ(a, 0) given by the former expression with
µ(a) obtained in PI and given by

µ(a) =
b1/2(a)e

a2

Φc(a)−
√

ln(2)

b1/2(a)ea
2Φc(a)

(
1−

√
π ln(2)

) , (11)

we conclude that µ(a, 0) < µ(a) for every a value.

2.1.2. µ(a, x) value near x = 0
It is known that a even function can be expanded as an

even power series about zero as f(x) ≃ A0 + A1x
2 + . . .

But, since µ(a, x) is expressed as a quotient (Eq. (5)), we
expand numerator and denominator to obtain µ(a, x) as
a quotient of power series about zero.
Then, at x ≃ 0 it is veri�ed

µ(a, x → 0) =
µapp(a, 0) +Ax2

(
+Bx4 + . . .

)
1 + Cx2(+Dx4 + . . .)

. (12)

2.1.3. µ(a, x) value at x → ∞
Taking into account that G1(x) tends to zero much

faster than Q and L1(x), from Eq. (5) it is obtained

lim
x→∞

µ(a, x) ∼ lim
x→∞

fQ(x)Q

fL(x)L1(x)
,

where

lim
x→∞

fQ(x) ∼ γ4
Vw

2
Gx

4,

lim
x→∞

fL(x) ∼
4γ4

Vx
6

w2
G

,

and

lim
x→∞

L1(x) ∼
b1/2(a) exp

(
a2
)
Φc(a)γV√

πx2
.

It would be worthwhile to point out that, both,
limx→∞(fQ(x)Q) and limx→∞(fL(x)L1(x)) are of fourth
degree on x.
Taking into account that γV = wGb1/2(a), as we see

in PI, we obtain

µ(a,∞) = lim
x→∞

µ(a, x) ∼ a
√
π
[
b1/2(a)

]2
exp(a2)Φc(a)

,

(13)
depending on a, as expected.
Comparing the µ(a) values given by the last expres-

sion with that obtained from Eq. (11), µ(a,∞) < µ(a) is
veri�ed.

3. On the values of the �tting formula
at x = 0 and x = ±γV

Since G1(x), L1(x), and Va(x) take, all of them, by
de�nition, the same value at x = 0 and x = ±γV, it is
clear that numerator and denominator in Eq. (2) are null
at those x values, making it impossible to evaluate µ.
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The denominator of expression (5), fL(x)L1(x) +
fG(x)G1(x), instead, is null at x ≈ ±γL; please note the
symbol ≈. For all those x values for which fL(x)L1(x)+
fG(x)G1(x) is null, µ(a, x) must not be calculated from
Eq. (5).
All the x values for which µ(a, x) cannot be calculated

from Eq. (5), divided by a × γG/
√
ln 2, depend only on

a = wL/wG and are given by the following universal algo-
rithm: we call ρ(a) the function that results after �nding
the roots of

fL(x)L1(x) + fG(x)G1(x

a× γG/
√
ln 2

. (14)

ρ(a) can be numerically �tted, with a correlation coe�-
cient of R2 = 1, by the following universal function on a:

ρ(a) =
a0 + a2a

2 + a4a
4 + a6a

6

1 + β2a2 + β4a4 + β6a6
, (15)

where a0 = 5.9966, a2 = 72.0531, a4 = −37.0930,
a6 = 156.6913, β2 = 102.8163, β4 = −66.6862, and
β6 = 156.4950.
Though a× γG/

√
ln 2 is exactly wL, it is clear that wL

is not an independent parameter entering Eq. (14). wL =

a× wG = a× γG/
√
ln 2 enter Eq. (14) only through a.

Fig. 1. Roots of [fL(x)L1(x)+fG(x)G1(x)] divided by

wL ≡ aγG/
√
ln 2. Points of this plot multiplied by wL

should not be used to calculate µ(a, x) from Eq. (5) (see
text).

ρ(a) is represented in Fig. 1 for 0.25 ≤ a ≤ 4.5. For
lower or higher a values Va(x) depart very little from a
Gaussian and/or a Lorenztian pro�le, if the noise is ≥ 1%
(easily reached in laboratory experiments).

4. Indicators of the �t quality

As it was set in PI, we can test the quality of our �t
by normalizing the deviation of V (µa, x) from the exact
value
a) to the peak value, Va(0)

∆1 =
Va(x)− V (µ(a), x)

Va(0)
or

or b) to the value at x, Va(x)

∆2 =
Va(x)− V (µ(a), x)

Va(x)
.

Criterion (b) is much more sensitive, since, both, the
numerator and the denominator of ∆2 are increasingly
small numbers.
We are going to see in Sect. 6 that the �t obtained

using V [µ(a, x), x] is better than the one obtained in PI
using V [µ(a), x], specially for high |x| values.

5. The recipe to construct µ(a, x)

In order to calculate µ(a, x), Eqs. (5)-(8) should be
used, with γV obtained from the experimental data. For
a selected value of a, the needed wG value is determined
by considering the relation between γV and wG given by
γV = wGb1/2(a), as it is explained in PI.
The calculation must be done taking into account the

algorithm (14), that considers the problem of annulment
of both, numerator and denominator cited in Sect. 3.
Then, in �rst place, ρ(a) must be obtained from Eq. (15)
for the selected value of a, in order to excluded the values
x ≈ ±ρ(a) × a × γG/

√
ln 2 (≡ ±wL × ρ(a)) from the

calculations.
Although at this point we have all that is necessary to

carry out the calculation of Va(x) ≈ (1−µ(a, x))G1(x)+
µ(a, x)L1(x), it can be interesting to see the behavior of
µ(a, x), which will be presented in the following section.

6. Results and discussions

In Fig. 2 µ(a, x) as a function of a, for two di�erent x
values, is shown. Note the divergences for a ≈ x/wG.

Fig. 2. µ(a, x) as a function on a for two di�erent x
values. µ(a, 1) and µ(a, 2) are displayed as functions on
a for wG = 1. µ(a), as obtained in PI, is also shown for
comparison.

In Fig. 3 µ(a, x) as a function of x is shown, for two
di�erent a values. In this case, divergences are observed
for x ≈ awG ≡ wL.
All the curves in Fig. 2 and Fig. 3 have been obtained

by adopting wG = γG/
√
ln 2 = 1 in the calculations, but

a similar behavior is observed for all wG values. In both
�gures µ(a, x) is displayed including the divergences, in
order to see its real behaviour. In both �gures µ(a), as
obtained in PI, is also shown for comparison.
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Fig. 3. µ(a, x) as a function on x for two di�erent a
values. µ(1, x) and µ(2, x) are displayed as functions on
x for wG = 1. µ(1) and µ(2), as obtained in PI, are also
shown for comparison.

In Fig. 1 all x values for which fL(x)L1(x) +
fG(x)G1(x) is null, and, therefore, for which µ(a, x) can-
not be calculated from Eq. (5), are represented (divided

by a× γG/
√
ln 2) for 0.25 ≤ a ≤ 4.5.

In Figs. 4 and 5 we show ∆1 = [Va(x)− V (µ(a, x), x)]
/Va(0) and ∆2 = [Va(x)−V (µ(a, x), x)]/Va(x) for µ as a
function only on a, as we have obtained in PI, and for µ as
a function on a and x, as we have obtained in the present
paper. It is clear from these �gures that an improved �t
is obtained when µ as a function, not only on a, but also
on x, is considered. A good �t is also obtained for high
|x| values, which is not obtained by us in PI, nor by other
authors in [3] and Liu [6], when µ as a function only on
a is considered.

Fig. 4. ∆1 as a function on |x| using µ(a), as obtained
in PI, and µ(a, x), as obtained at the present paper. The
numerical divergences can be observed.

Fig. 5. As in Fig. 4, but for ∆2.

7. Conclusions
At the present paper we let µ to be a function, not

only on a, but also on x. Using one of the di�erential
equations that V (x) satis�es, and neglecting the deriva-
tives ∂µ/∂x and ∂2µ/∂x2 with respect to the derivatives
G′

1(x), G
′′
1(x), L

′
1(x), and L′′

1(x), we have been able to
obtain: (i) an analytic expression for µ(a, x), (ii) rela-
tive �ts, ∆1 and ∆2, better than those we have obtained
in PI, (iii) a universal table of values, so that, if we mul-

tiply them by wL ≡ a×γG/
√
ln 2, we obtain the x values

for which µ(a, x) cannot be calculated with the expres-
sion we have found.
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