
Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

- ORIGINAL ARTICLE -

Evidence-based Lean Conceptual Data Modelling
Languages

Lenguajes Austeros de Modelado Conceptual de Datos Basados en Evidencias

Pablo Rubén Fillottrani1,2 and C. María Keet3

1 Departamento de Ciencias e Ingeniería de la Computación, Universidad Nacional del Sur, Bahía Blanca, Argentina
prf@cs.uns.edu.ar

-Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
^Department of Computer Science, University of Cape Town, South Africa

mkeet@cs.uct.ac.za

Abstract

Multiple logic-based reconstructions of UML class di
agram, Entity Relationship diagrams, and Obect-Role
Model diagrams exists. They mainly cover various
fragments of these Conceptual Data Modelling Lan
guages and none are formalised such that the logic
applies simultaneously for the three language families
as a unifying mechanism. This hampers interchange
ability, interoperability, and tooling support. In addi
tion, due to the lack of a systematic design process of
the logic used for the formalisation, hidden choices
permeate the formalisations that have rendered them
incompatible. We aim to address these problems, first,
by structuring the logic design process in a method
ological way. We generalise and extend the DSL de
sign process to logic language design. In particular,
a new phase of ontological analysis of language fea
tures is included, to apply to logic language design
more generally and, in particular, by incorporating
an ontological analysis of language features in the
process. Second, we specify minimal logic profiles
availing of this extended process, including the onto
logical commitments embedded in the languages, of
evidence gathered of language feature usage, and of
computational complexity insights from Description
Logics (DL). The profiles characterise the essential
logic structure needed to handle the semantics of con
ceptual models, therewith enabling the development of
interoperability tools. No known DL language matches
exactly the features of those profiles and the common
core is in the tractable DL ACJfl. Although hardly
any inconsistencies can be derived with the profiles,
it is promising for scalable runtime use of conceptual
data models.

Keywords: Conceptual modelling, language profiles,
modelling languages, modelling language use

Resumen

Existen varias reconstrucciones basadas en lógica de

lenguajes de modelado conceptual como EER, diagra
mas de clases UML y ORM. Principalmente cubren
fragmentos de estos lenguajes, y sus formalizaciones
no están hechas para que se apliquen simultáneamente
a estas tres familias de lenguajes como un mecanismo
de unificación. Este hecho atenta contra el intercam
bio y la interoperabilidad de los modelos y el desar
rollo de herramientas de soporte. Además, dada la
falta de un proceso sistemático de diseño, ciertas deci
siones ocultas en la representación lógica hacen que las
formalizaciones sean incompatibles. En este trabajo
nos proponemos atacar este problema, proponiendo
primero un proceso de diseño lógico que puede ser
aplicado en forma metodológica. Se generaliza y ex
tiende el proceso DSL para que se pueda aplicar al
diseño de lenguajes lógicos en general, incorporando
análisis ontológico de las características del lenguaje.
Segundo, se especifican perfiles lógicos minimales que
sacan provecho de este proceso extendido, incluyendo
los compromisos ontológicos asumidos, de evidencia
de uso de las características del lenguaje, y de los
propiedades computacionales de las Lógicas Descrip
tivas (DL, description logics). Estos perfiles caracteri
zan la estructura lógica esencial que se necesita para
manejar la semántica de los modelos conceptuales, ha
bilitando el desarrollo de herramientas automáticas de
interoperabilidad. No existe correspondencia exacta
directa entre estos perfiles y fragmentos conocidos de
lenguajes DL, y el núcleo común es pequeño (la lógica
tratable ACNT). Aunque es muy poca la posibilidad
de derivar inconsistencias dentro de estos perfiles, es
prometedor su uso en modelos conceptuales dado su
complejidad en tiempo escalable.

Palabras claves: Lenguajes de modelado conceptual,
modelos conceptuales, perfiles de lenguajes, uso de
lenguajes de modelado

1 Introduction

Conceptual data models were proposed in the 1970s
as a vehicle to describe what has to be stored or pro

93-

mailto:prf@cs.uns.edu.ar
mailto:mkeet@cs.uct.ac.za

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

cessed in a prospective information system, aiming
at separating those ‘what' aspects from the ‘how' to
achieve them. Many conceptual data modelling lan
guages (CDMLs) have been proposed over the past 40
years by several research communities, notably orig
inating from relational databases and object-oriented
software. A number of variants emerged with motiva
tions that include aiming for simplicity and leanness
vs. expressiveness, modelling aspect of an application
domain (e.g., spatial entities in geographic information
systems), and ontology-driven modelling language pro
posals. Such proposals focus typically on graphical
syntax of the languages with, at best, a partial formal
isation for a proposed extension; afterward, other re
searchers aim to specify a formal semantics for a larger
fragment of the language to facilitate computational
support. Both leave loose ends either as “semantic
variation point” [1] or as ‘unsupported' by that partic
ular logic-based reconstruction, which in turn spurs
research into those contentious aspects. Meanwhile,
it hampers interoperability even at the syntax level;
e.g., a GenMyModel1 serialisation of a UML Class
Diagram is different from that of draw.io2 and other
modelling tools, and they are not mutually readable
by the respective tools. This stands in stark contrast
to related artefacts such as ontologies, which are typ
ically serialised in the same RDF/XML format that
can be used across editors and where each element
of the model has the same semantics everywhere, as
specified in a standard like [2].

1https://www.genmymodel.com/
2https://app.diagrams.net/

3Note: The diagram is introduced with the sole purpose of il
lustrating supported elements and constraints. Whether this is a
good model is a separate matter and not the topic of this paper. For
instance, one may want to model the roles persons play in a differ
ent way or make the Affiliation's Address a class rather than an
attribute; see [20] for sample patterns to assist redesign.

The number of CDML modelling features has in
creased over time toward higher precision; e.g., Uni
fied Modelling Language (UML) has identifiers since
v2.4.1 [3], Object Role Modelling (ORM) version 2
has more ring constraints than the original ORM (com
pare [4] and [5]), and Extended Entity-Relationship
(EER) also supports entity type subsumption and dis
jointness compared to Entity-Relationship (ER) [6, 7].
Opinions vary about this feature richness and its rela
tion to model quality [8] and fidelity of capturing all
the constraints specified by the customer. Asking mod
ellers and domain experts which features they think
they use, actually use, and need showed discrepancies
between them [9]. It has been shown that advanced
features are being used somewhere by someone, albeit
infrequently [10, 11].

With such insight into feature usage, it is possible
to define an appropriate logic as underlying founda
tion of a CDML so as to not only clarify semantics
but also use it for computational tasks. Logic-based
reconstructions can be used for, among others, auto
mated reasoning over a model to improve its quality
(e.g., [12, 13]) and other runtime usage, such as con
ceptual and visual query formulation [14, 15, 16] and
optimisation of query compilation [17].

Logic-based reconstructions proposed over the

years (and discussed below) can be grouped into either
the Description Logics (DL)-based approach or the
as-expressive-as-needed approach. While the former
proposes logics from the computational complexity
point of view, the latter prioritises the needs and us
ages of modellers, such as in the case of full first-order
predicate logic. None of them have taken a method
ological approach to language design and brush over
several thorny details of CDMLs, such as which core
types of elements to formalise with their own seman
tics (aggregation, association ends), whether to include
n-aries (when n > 2, not n = 2), and various advanced
constraints. This has resulted into an embarrassment
of the riches of logic-based reconstructions, which
hampers the actual use of logic-based conceptual data
models in information systems and therewith risk slid
ing into disuse. These problems with the multitude of
incompatible ad hoc formalisations raise the questions
of:

i. How should one design a logic methodologically?
ii. What would be a compatible set of logics for

CDMLs that do take into account model feature
usage and ontological commitments?

We aim to address these problems and answer these
questions in this paper, specifically for the structural
fragment of the most widely used CDMLs, because
this features most prominently as a core interoperabil
ity issue in system integration and needs to be resolved
before harmonising any ‘dynamic' components such
as methods.

First, we adapt ontology-driven language design
principles for ontologies languages [18] to the CDML
setting, which is informed by Frank's [19] domain
specific language (DSL) design methodology regard
ing process as well. Second, we apply this to the
design of logics for several conceptual data modelling
languages that is informed by the language feature
usage reported in [11]. These logic ‘profiles' formal
izes a subset of features covering about 99% of those
appearing in conceptual data models.The outcome is
a so-called ‘positionalist' and a ‘standard view' core
profile, and three language family profiles formalised
in a DL, most of which have a remarkable low compu
tational complexity.

An example of a model in UML Class Diagram
notation that can be fully reconstructed into the stan
dard view core profile (more precisely: DC s) is in
cluded in Fig. 13 It has a logical underpinning thanks
to the knowledge base construction rules and three al
gorithms we propose in this paper, and therewith also
has grounded equivalents in EER and ORM notation.

The main contributions presented here are: i) a
methodological language design process; ii) a new

- 94 -

https://www.genmymodel.com/
https://app.diagrams.net/

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

Figure 1: Sample UML Class Diagram containing
all possible constraints of the Standard Core Profile,
DC s, which emanated from the evidence-based profile
specifications.

positionalist core profile; and iii) the profiles have
been defined with a formal syntax and semantics.
They are built upon a line of research reported in
[21, 22, 23, 24, 11], which provided preliminary in
sights, such as the quantitative assessment of concep
tual models on their features that inform the profile
specification. The remainder of the paper is structured
as follows. The state of the art and related works are
discussed in Section 2. Section 3 presents our first con
tribution, which is a first inventarisation and discussion
of ontological issues that affect language design. Our
second main contribution is the logic-based profiles,
which are described in Section 4. We close with a
discussion in Section 5 and conclusions in Section 6.

2 Related work

Many conceptual data modelling languages have been
proposed over the past 40 years; e.g., UML [3], EER
[25, 6, 7] and its flavours such as Barker ER and IE no
tation, ORM [4, 5] and its flavours such as CogNIAM
and FCO-IM, and others, such as MADS [26] and Te-
los [27]. Some of those are minor variants in notation,
whereas others have a different number of features.
Some ‘families' of languages still run along the lines of
the subfield from which they originally emerged: ER
and EER originate from the relational database com
munity, UML Class Diagrams from object-oriented
programming, and ORM bears similarities with se
mantic networks, can be used for both relational and
object-oriented and, more recently, also business rules.
Each ‘family' has their own set of preferred tools and
community of users.

Besides these three main groups, some CDMLs
have been developed specifically for additional fea
tures (e.g., temporal extensions) or somewhat revised
graphical notations of the elements, such as different
colours and a ‘craw's feet' icon vs ..n or ..* for ‘many'
multiplicity or cardinality. We will not address this

here, but instead will focus on the underlying language
features from a logic-based perspective to which the
best graphical elements could be attached as ‘syntac
tic sugar' (see, e.g., [28, 29] for this approach), and
language design. The following sections highlight
key aspects and are not to be assumed an exhaustive
literature review.

2.1 Logic-based reconstructions of CDMLs

The two principal reasons for formalising conceptual
models are: 1) to be more precise to improve a model's
quality and 2) runtime usage of conceptual models.
Most works are within the scope of the first motiva
tion. Notably, various DLs have been used for giving
the graphical elements a formal semantics and for au
tomated reasoning over them [30, 12], although also
other logics are being used, including OCL [13], CLIF
[31], Alloy [32], and Z [33].

Zooming in on DLs, the ALUN I language has
been used for a partial unification of CDMLs [28],
whereas other DLs are used for particular modelling
language formalisations, such as DL-Lite and DLRifd
for ER [30] and UML [12], and OWL for ORM and
UML [34]. These logic-based reconstructions are
typically incomplete with respect to the CDML fea
tures they cover, such as omitting ER's identifiers
(‘keys') [28] or n-aries [30, 34], among many vari
ants. Also, multiple formalisations in multiple logics
for one conceptual modelling language have been pub
lished. ORM formalisations can be found in, among
others, [35, 4, 36, 37, 34], noting that full ORM and
ORM2 (henceforth referred to inclusively as ORM2)
is undecidable due to arbitrary projections over n-aries
and the acyclic role constraints (and probably antisym
metry). Even for the more widely-used ER and EER
(henceforth referred to inclusively as EER), multiple
logic-based reconstructions exist from the modeller's
viewpoints [25, 6, 7] and from the logician's vantage
points with the DLR family [38, 39] and DL-Lit e fam
ily [40] of languages.

The second principal reason for formal foundations
of CDMLs, runtime usage, comprises a separate track
of works, which looks as very lean fragments. The
driver for language design here is computational com
plexity and scalability, and the model is relegated to so-
called ‘background knowledge' of the system, rather
than the prime starting point for software development.
Some of the typical runtime usages are: scalable test
data generation for verification and validation [41, 10]
and ontology-mediated query answering that involves,
among others, user-oriented design and execution of
queries [42, 14, 15, 16], querying databases during
the stage of query compilation [17], and recent spatio
temporal stream queries that avail of ontology-based
data access with conceptual models [43].

In sum, many logics are used for many fragments of
the common CDMLs, where the fragments have been
chosen for complexity or availability reasons rather

- 95 -

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

1a. Determine scope, benefits
1b. Long-term perspective
1c. Economics, feasibility
2/3a. Consult requirements catalogue
2/3b. Use scenarios
2/3c. Assign priorities
234.Ontological analysis of

language features
4a. Specify syntax and semantics
4b. Define glossary
4c. Define metamodel

5a. Create sample diagrams
5b. Evaluate notation

7a. Test cases
7b. Analyse against requirements
7c. Analyse effect of use against

current practice

Figure 2: CDML language design process, adapted
from [19, 18], where the focus of this paper is high
lighted in bold and shaded (blue).

than for which features a modeller uses.

2.2 Language design

The design of a modelling or knowledge representation
language is an engineering task, involving several steps
and decision points among alternatives. A requirement
might include n-ary relationships, no attributes, and a
graphical syntax. Systematic approaches to language
design have been developed, notably Frank's pipeline
[19], as well as specifics for one step in the pipeline
(e.g., requirements engineering [44]) or for one class of
modelling languages (e.g., domain-specific languages
[45]). In [18], we adapted Frank's waterfall model
for domains-specific modelling languages (DSLs) [19]
to the design of languages for ontologies, which we
adapt here for CDLM design. Fig. 2 shows the adapted
model with the steps we address in this paper high
lighted. We will step through describing only these
modified steps and with respect to applicability and
related works on CDML design.

In order to identify requirements for Steps 2 and 3,
there is no requirements catalogue for CDMLs (step
2/3a), but there is one for ontology languages [18] and
there are several use cases (step 2/3b) (e.g., [46, 15]).
Assigning priorities (step 2/3c) has been done for sev
eral languages, but mostly implicitly; e.g., prioritising
scalability in the presence of large amounts of data,
like with OWL 2 QL [47]. Assessment of sets of con
flicting requirements are available, such as the pros
and cons of several logics for formalising conceptual
models [21]. It has yet to be decided how to assign
priorities. One could survey industry [48], but it has
been shown in at least one survey that modellers do not
know the features well enough to be a reliable source
[9]. Thus, existing works fall short on providing an
swers to steps 2 and 3.

Many papers describe a language specification (step
4), notably in a DL. Most of them do not have a meta
model, however. Regarding existing metamodels one
may be able to reuse for the language specification: ex
tant proposals in the conceptual modelling community

span theoretical accounts, academic proof-of-concept
implementations, and industry-level applications, such
as in the Eclipse Modeling Framework4. The UML
diagrams in the OWL and UML standards [2, 3] are
essentially metamodels as well. To enable a compari
son between CDMLs, a recent unified metamodel is
required that covers all the language features, which
reduces the choice to [46]. It covers all the static struc
tural components in unifying UML Class Diagrams,
ER and EER, and ORM and ORM2 at the metamodel
layer and has both a glossary of elements and the con
straints among them.

4https://www.eclipse.org/modeling/emf/

While the 7-step waterfall process for domain
specific languages is generally applicable for logic
based CDML design as well, some ontological analy
sis during steps 2-4 should improve the outcome. The
case for, and benefits of, using insights from ontology
to advance the modelling has been well-documented
[49, 50], with ample detail about improvements on
precision of representing the information; e.g., deploy
ing the UFO foundational ontology to improve the
UML 2.0 metamodel [51] and examining the nature
of relationships [52, 53], and more general philosophi
cal assessments about conceptual models, such as 3D
versus 4D conceptual models [54]. The latter choice
is primarily a metaphysical one, which is practically
relevant in the data analysis stage. For instance, the
Philips corporation evolved over its past 130 years of
existence, acquiring companies into its conglomerate
and spinning off others. If it is relevant for the domain
of discourse to keep track of these changes, then a 4D
perspective assists in the analysis.

Thus, current resources fall short especially on a
clear requirements specification and priority-setting
for CDMLs and on ontology-driven language design.
We will contribute to filling these gaps in the following
two sections.

2.3 Quantitative assessments on language
feature usage

To the best of our knowledge, there are only two quan
titative studies on CDML feature usage. In the first
study, industry-grade ORM diagrams were examined
[10] and in the second study, publicly available con
ceptual models in EER, UML, and ORM [11] were
examined, whose results for ORM are similar to those
reported in the former study. The diagrams of [11]
were analysed using aforementioned unified meta
model [46], which facilitated cross-language compar
isons and categorisation of entities in those languages
into the harmonised terminology; a relevant selection
of the terminology is included in Table 1. This meta
model's top-type is Entity that has four immediate
subclasses: Relationship with 11 subclasses, Role, En

tity type with 9 subclasses, and Constraint that has 49
subclasses (i.e., across the three CDML families, there

- 96 -

https://www.eclipse.org/modeling/emf/

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

Table 1: Terminology of the languages considered
(relevant selection).

Metamodel
term

UML Class
Diagram

EER ORM/FBM

Relationship Association Relationship Fact type
Role Association/

member end
Component
of a relation
ship

Role

Entity type Classifier - Object type
Object type Class Entity type Nonlexical

object type/
Entity type

Attribute Attribute Attribute -
Value type Lexical

object type/
Value type

Data type Literal Spec
ification -

Data type

are 49 different types of constraint). In addition to
the hierarchy, the entities have constraints declared
among them to constrain their use; e.g., each relation
ship must have at least two roles and a disjoint object
type constraint is only declared on class subsumptions.

This metamodel was used to classify the entities
of the diagrams in a set of 101 UML, EER, and
ORM2 models that were publicly available from on
line sources, published papers, and textbooks5. The
average size of the diagram (vocabulary+subsumption)
was found to be about 50 entities/diagram, totalling to
8036 entities, of which 5191 (i.e., 64%) were entities
that were classified in an entity (language feature) that
is included in all three language families and 1108
(13.8%) in ones that are unique to a language family
(e.g., UML's aggregation) [11]. The results are de
scribed and discussed in [11], where it is noted that
while most features of each language family is typ
ically used somewhere, their frequency varies; e.g.,
disjoint and covering constraints are used sparingly
throughout the models, as are ring constraints in ORM
and n-aries or association classes in UML. The ob
tained usage frequency for each entity, together with
the design choices described in Section 3, sustain the
logic profiles that will be introduced in Section 4.

5the models, their respective provenance, and raw data analy
sis are available from http://www.meteck.org/swdsont.html,
which is not within the scope of this paper. That experiment design,
results, and discussion are described in [11].

3 Design choices for logic-based profiles

A formalisation based on the quantitative evidence is
not as straight-forward as it may sound. Several design
choices may result in a different logic, possibly be of
a different computational complexity, use different re
construction algorithms, and differ in tool support for
the logic. This brings us to the “4” of the “234. Onto

logical analysis of language features” of Fig. 2. The
“language specification” step concerns affordances and
features of the logic, including the ability to represent
the universe of discourse more or less precisely with
more or less constraints and whether the representa
tion language contributes to support, or even shape,
the conceptualisation and one's data analysis for the
conceptual data model or embeds certain philosoph
ical assumptions and positions. Regarding the latter,
we identified several decision points [18], which we
adjusted to CDMLs, including, but not limited to:

1. Should the CDML be ‘truly conceptual', ignoring
the design and implementation, or also somewhat
computational? That is, whether the language
should be constrained to permit representation
of only the what of the universe of discourse vs.
not only what but also some how in the prospec
tive system. The typical example is whether to
include data types for attributes or not.

2. Are the roles that objects play fundamental com
ponents of relationships, i.e., should roles be ele
ments of the language?

3. Will refinements of the kinds of general
elements—that then have their own representa
tion element—result in a different (better) con
ceptual model? For instance,

(a) to have not just Relationship but also an extra
element for, say, parthood;

(b) to have not just Object type but also refine
ments thereof so as to indicate ontological
distinctions between the kind of entities,
such as between a rigid object type and the
role it plays (e.g., Person vs Student, respec
tively, as being of a different kind);

4. Does one have a 4-dimensionalist view on the
world (space-time worms) and thus a language
catering for that, or are there only 3-dimensional
objects with, perhaps, a temporal extension?

5. What must be named? The act of naming or la
belling something amounts to identifying it and
its relevance; conversely, if it is not named, per
haps it is redundant.

Little is known about what effects the different deci
sions may have, with two notable observations: bina
ries vs. n-aries and plain relationship vs. also aggrega
tion in the language. The latter was observed for UML
vs. EER and ORM2 [11] and the former for UML
[55]. The n-aries in UML class diagrams are hard to
read due to the look-across notation [55] and it uses
a different visual element than a binary association
(diamond vs. line), and therefore used less frequently
compared to EER and ORM2.

The interested reader is referred to [18] for a com
prehensive explanations of the philosophical aspects.

- 97 -

http://www.meteck.org/swdsont.html

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

Here, we distill it into the main salient aspects that
are interesting for comparing logics that are relatively
popular for formalising CDMLs. This comparison is
included in Table 2 and discussed in the remainder of
this section. The first section of the table summarises
the main design decisions discussed in the preceding
paragraphs, whereas the second part takes into consid
eration non-ontological aspects with an eye on prac
ticalities. Such practicalities include among others,
scalability, tooling support, and whether it would be
easily interoperable with other systems. Observe that
the first section in the table suggests DLRifd and FOL
are good candidates for logic-based reconstructions of
conceptual data models; the second section has more
positive evaluations for DL-Lit eA and OWL 2 DL. Put
differently: neither of them is ideal, so one may as
well design one's own language for the best fit.

A key difference across the different formalisations
is whether to honour ‘roles' in the language, which
has been discussed at some length in [21, 52], because
the main issue is that the CDMLs are all positionalist,
yet most logics use predicates with the standard view.
What does that mean? Take, e.g., a relationship teach

that holds between Prof and Course. With the ‘just
predicates' decision, there is no teach relationship, but
at least one predicate, teaches or taught by in which
Professor and Course participate—in that specific order
or in the reverse, respectively. Alternatively, the ‘there
are roles too'-option: Prof plays a role, e.g., [lecturer],
in the relationship teach and Course plays the role [sub

ject]; thus, role is an element in the language. This
distinction between predicates-only and roles-too is
called standard view vs. positionalist, respectively.

The notion of role as a component of an n-ary pred
icate is not an element of FOL (it just has predicates,
functions, and constants), i.e., FOL adheres to the
standard view by design, as do most DLs. In con
trast, the DLR family [38] is positionalist, where
the syntax does include a “DL role component” for
the DL roles and it has a corresponding semantics.
For instance, the teaching could then be specified as
teach C [lecturer]Prof x [subject]Course.

To address the impasse between CDMLs on the one
hand and most logics on the other, there are several
options. One could commit to a logic-based recon
struction of the models into a positionalist logic, such
as those in the DLR family of DLs that have been used
already for partial reconstructions of ER [38], UML
class diagrams [12], and ORM [52], or include roles
in the Z formalisation as proposed in [33], or devise a
new logic for it. One also could deny positionalism in
some way and force it into a standard view logic. For
instance, one could change the [lecturer] and [subject]

roles into a teaches and/or a taught by predicate and
declare them as inverses if both are included in the vo
cabulary, or pick one of the two and represent the other
implicitly through taught by- or teaches- , respectively.
Sampling decisions made in related works showed that,

e.g., Pan and Liu [31] use a hybrid of both roles and
predicates for ORM and its reading labels also may
be ‘promoted' to relationships [34], the original ORM
formalisation was without roles in the language [4],
and UML's association ends are sometimes ignored as
well (e.g., [32, 56]), but not always [12].

Exploring the conversion strategies brings one to
the computational complexity of the logic. Mostly,
adding inverses does not change the worst-case com
putational complexity of a language; e.g., ALCQ and
ALCQI are both ExpTime-complete under GCIs[57].
A notable exception is the OWL 2 EL profile that does
not have inverse object properties [47].

4 Logic-based profiles for conceptual
data modelling languages

We now proceed to define logics to characterise the
model-theoretic semantics such that it is minimalist
with respect to the most-used features for each of the
three families of CDMLs. The language design takes
into account the ontological considerations discussed
in the previous section as well as the evidence from
[11] and the requirement to have a coverage of around
99% of the used entities and constraint. Because of
afore-mentioned ontological reasons in favour of roles
as well as that all three CDML families are position-
alist, a Positionalist Core is defined despite its current
lack of implementation support (Section 4.1.1). Af
terward, a standard view Standard Core and language
specific profiles are defined in Sections 4.1.2-4.1.5.

An overview of the definitions and algorithms is
shown in Fig. 3. These profiles constitute a theoretical
backbone for an interoperability tool between concep
tual models expressed in different graphical languages
and with different philosophical assumptions. The
main distinction is the positionalist or the standard
view, resulting in profiles DC p and DCs, which each
formalise the most widely used language features. The
standard view profile is then extended into three dif
ferent profiles, one for each CDML, which serves as
background knowledge to be exchanged between pro
files. In order to interoperate from the positionalist and
the standard view profiles some compromises must be
taken, described mainly in Algorithm 1. Importing
conceptual models into CDML may be carried out
also with this theoretical structure, while exporting
may be done by translating reasoner output into a suit
able textual representation.

4.1 Profiles

Positionalism is the underlying commitment of the re
lational model and a database's physical schema, as
well as of the main CMDLs. It has been employed in
ORM and its precursor NIAM for the past 40 years
[5], UML Class Diagram notation requires association
ends as roles, and ER Models have relationship com
ponents [21]. On the other hand, First Order Logic

- 98 -

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

Table 2: Popular logics for logic-based reconstructions of CDMLs assessed against a set of requirements; “-”:
negative evaluation; “+”: positive; “NL-logic”: natural language interaction with the logic; “OT refinement”:
whether the language permits second order or multi-value logics or can only do refinement of object types through
subsumption; DOL aims to link logical theories represented in the same or different languages.
DL-LiteA DLRifd OWL 2 DL FOL

Language features
- standard view + positionalist - standard view - standard view
- with datatypes - with datatypes - with datatypes + no datatypes
- no parthood primitive - no parthood primitive - no parthood primitive - no parthood primitive
- no n-aries + with n-aries - no n-aries + with n-aries
+ 3-dimensionalism + 3-dimensionalism + 3-dimensionalism + 3-dimensionalism
- OT refinement with subsumption - OT refinement with subsumption - OT refinement with sub

sumption
- OT refinement with sub
sumption

- no NL-logic separation - no NL-logic separation ± partial NL-logic separa
tion

- no NL-logic separation

- very few features; large feature
mismatch

+ little feature mismatch ± some feature mismatch,
with overlapping sets

+ little feature mismatch

- logic-based reconstructions to
complete

+ logic-based reconstructions exist - logic-based reconstructions
to complete

± logic-based reconstruc
tions exist

Computation and implementability
+ PTIME (TBox); AC0 (ABox) ± ExpTime-complete ± N2ExpTime-complete - undecidable
+ very scalable (TBox and ABox) ± somewhat scalable (TBox) ± somewhat scalable (TBox) - not scalable
+ relevant reasoners - no implementation + relevant reasoners ± few relevant reasoners
+ linking with ontologies doable - no interoperability + linking with ontologies

doable
- no interoperability with
widely used infrastructures

+ compatibility with DOL - no compatibility with DOL + compatibility with DOL + compatibility with DOL
+ modularity infrastructure - modularity infrastructure + modularity infrastructure - modularity infrastructure

Figure 3: Sketch of the orchestration between the pro
files and algorithms.

and most of its fragments, notably standard DLs [58],
do not exhibit roles (DL role components) among its
vocabulary. In order to be able to do reasoning, con
ceptual schemas written in these CMDLs are generally
translated into a DL by removing roles. As a side
effect, the connection hold by the role name is lost,
and two concepts that played the same role now play
two completely independent roles. as the following
example shows.

Example 1. Consider de ER diagram shown in Fig. 4.
In the rent relationship any person may rent any real
estate property and then is assumed to occupy it some
how, whereas in the mortgage relationship any person
living in a residential property may put a lien on it to
obtain a loan from the bank. Both relationships involve
the occupant role played by instances of the Person
entity. This role name is relevant for querying, say, the
real estate occupants in the database, so it is relevant
for the model's intended meaning. Following the trans
lation procedure described in [59] to the DL-Lite DL

family, the role occupant in the rent relationship is
formalised as

3occupant C Person

3occupant- C RealEstateProperty

The two formulas state the domain and the range of
the role. Similarly, the role occupant in the mortgage
relationship is translated, including the functional con
straint, as

3occupant C Person

3occupant- C Residential
> 2occupant C ±

In the case that both formalisations are merged into
the same conceptual model formalisation, then an un
intended meaning may be obtained; e.g., that only
houses may be rented, and that a person may rent
only one property. The usual solution to such unin
tended consequences is to change the name one of the
DL roles (i.e., the EER role bumped up to a binary
relationship in the formalisation step), but then the
connection between both roles is lost in the formal
isation: the role is split, and therewith the intended
meaning is weakened. This problem does not arise in
the translation to the positionalist DLRifd following
[12], since the roles are part of a different relationship
and remain roles rather than be subject to element type
recasting in the formalisation step.

Therefore, we consider it relevant to design a posi-
tionalist core profile that preserves roles as first-class
citizens among the DL vocabulary. In case reasoning

- 99 -

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

Figure 4: EER diagram showing multiple uses of the
same role occupant.

over advanced modelling features is needed, it is possi
ble to switch to the standard core profile with the cost
of losing this connection. This translation is given in
Algorithm 1 further below.

4.1.1 Positionalist Core Profile

In this section we define the DL fragments that de
scribes the positionalist core profile. We use the stan
dard DL syntax and semantics, as given in [58, 12],
and the terminology as listed in Table 1.

Definition 1. Given a conceptual model in any of the
analysed CDMLs, we construct a knowledge base in
DC p by applying the rules:

1. we take the set all of object types ranging
over symbols A, B, ..., binary relationships P,
datatypes T and attributes a in the model as the
basic elements in the knowledge base.

2. for each binary relationship P formed by object
types A and B, we add the assertions > 1[1]P c A
and > 1 [2]P C B.

3. for each attribute a of datatype T within an object
type A, including the transformation of ORM's
Value Type following the rule given in [60], we
add the assertion A C Ba. Tn < 1a.

4. subsumption between two object types A and B is
represented by the assertion A C B.

5. for each object type cardinality m..n in relation
ship P with respect to its i-th component A, we
add the assertions A C < n[i]Pn > m[i]P.

6. we add for each mandatory constraints of a con
cept A in a relationship P the axiom A C > 1 [1]P
or A C > 1 [2]P depending on the position played
by A in P. This is a special case of the previous
one, with n = 1.

7. for each single identification in object type A with
respect to an attribute a of datatype T we add the
axiom id A a.

This construction is linear in the number of elements
in the original conceptual model, so the overall com
plexity of the process (translation and then reasoning)
on the theory is the same as on the conceptual model.
We restrict it to binary relationships only, because gen
eral n-ary relationships are rarely used in the whole
set of analysed models. The EER and ORM2 mod
els exhibit a somewhat higher incidence of n-aries, so
they are included in the respective profiles (see be
low). Also, we allow only one such constraint for each
component, as multiple cardinality constraints over the
same component in a relationship are used very rarely.

DC p can be represented by the following DL syn
tax. Starting from atomic elements, we can construct
binary relations R, arbitrary concepts C and axioms X
according to the rules:

C —>T| A | < k[i]R | > k[i]R |Va.T |Ba.T |

< 1 a | C n D
R ’'2 | P | (i: C)
X —>C C D | id Ca

where i = 1, 2 and 0 < k. For convenience of presenta
tion, we generally use the numbers 1 and 2 to name the
role places, but they can be any number or string and
do not impose an order. Whenever necessary we note
with U the set of all role names in the vocabulary, with
from, to 6 U fixed argument places for attributes such
that [from] is the role played by the concept, and [to]
the role played by the datatype. These names must be
locally unique in each relationship/attribute.

Although this syntax represents all DC p knowledge
bases, there are sets of formula following the syn
tactic rules that are not DC p knowledge bases since
they are not result of any translation of a valid con
ceptual model. For example, the knowledge base
{A C Ba.Tn < 1anVa.T} is not a DCp knowledge
base, it can't be obtained from the translation of any
diagram.

Now we introduce the semantic characterisation.

Definition 2. An DCp interpretation I = (•I, , •I)
for a knowledge base in DC p consists of a set of objects
A1, a set of datatype values Ay, and a function •I

satisfying the constraints shown in Table 3. It is said
that I satisfies the assertion C C D iffC1 C D1; and it
satisfies the assertion id C a iff there exists T such that
C1 C (Ba.T n < 1a)1 (mandatory 1) and for all v 6 T1

it holds that #{c|c 6 Ay A (c, v) 6 a1} < 1 (inverse
functional).

Example 2. Let's consider the formalisation of the
conceptual model in Fig. 4 in DC p, including some
attributes and identification constraints not shown in

- 100 -

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

the figure.

> 1[occupant]Rent C Person
> 1[isRented]Rent C RealEstateProperty

Person C 3name.Stringn < 1 name
Person C 3idCard.Integer

n < 1 idCard
Person C 3phone.Integer n < 1 phone

Residential C RealEstateProperty
Commercial C RealEstateProperty

Farm C RealEstateProperty
id Person idCard

The ternary relationship Mortgage and the exclusive
ness between the subconcepts of RealEstateProperty
cannot be expressed in this profile. This allows the
modeller to figure out which transformations are ad
equate to include in the formalisation (for example,
an objectification of the relationship), and which se
mantics is missing. In this case, for simplicity, all the
ternary relation is excluded from the formalisation.

Table 3: Semantics of DC p.
T1 C Al
AI I

T| = T1 x T1

P1 CT|

T I C ATI

a1 CT1 x A|

(C n d)1 = c1 n d1
(< k[i]R)1 = {c G A1 |#{(di,d2) G R1 .di = c} < k}
(> k[i]R)1 = {c G A1 |#{di,d2) G R1 .di = c} > k}
(3a.T)I = {c e Al|3v G A|.(c, v) G a1 A v G T1}

(Va.T)I = {c g A||Vv g A|.(c, v) G a1 v G T1}
(< 1 a) I = { c e ACI| #{ (c, v) e aI} < 1 }

(i: C)1 = {(di,d2) gT||di G C1}

In total, all the entities in the core profile sum up
to 87.57% of the entities in all the analysed models,
covering 91,88% of UML models, 73.29% of ORM
models, and 94.64% of EE/EER models. Conversely,
the following have been excluded from the core de
spite the feature overlap, due to their low incidence
in the model set: Role (DL role component) and Re
lationship (DL role) Subsumption, and Completeness
and Disjointness constraints. This means that it is not
possible to express union and disjointness of concepts
in a DC p knowledge base obtained by formalising a
conceptual model. Clearly, they can be expressed by
combinations of the constructors in DC p, but this is
not possible if we follow the previous construction
rules. Since completeness and disjointness constraints
are not present, reasoning in this core profile is quite
simple.

This logic DCp can be directly embedded into DLR
(attributes are treated as binary relationships, and iden

tification constraint over attributes can represented as
in [39]) which gives ExpTime worst case complex
ity for satisfiability and logical implication. A lower
complexity would be expected due to the limitations
in the expressivenes. For example, completeness and
disjointness constraints are not present, and negation
cannot be directly expressed. It is possible to code
negation only with cardinality constraints [58, chapter
3], but then we need to reify each negated concept as a
new idempotent role, which is not possible to get from
the DC p rules. Another form of getting contradiction
in this context is by setting several cardinality con
straints on the same relationship participation, which
is also disallowed in the rules. In any case, the main
reasoning problems on the conceptual model are only
class subsumption and class equivalence on the given
set of axioms.

Despite all these limitations, no simpler positionalist
DL has been introduced. To get lower complexity
bounds, we need to translate a DCp TBox to a standard
(non-positionalist) logic, like DCs below.

Algorithm 1 Positionalist Core to Standard Core
P an atomic binary relationship; DP domain of P; RP range of P
if DP = RP then

Rename P to two ‘directional' readings, Pe1 and Pe2
Make Pe1 and Pe2 a DL relation (role)
Type the relations with 3Pe1 C VDP and 3Pe- C RP
Declare inverses with Pe1 = Pe-

else
if DP = RP then

if i = 1, 2 is named then
Pei i

else
Pei user-added label or auto generated label

end if
Make Pei a DL relation (role)
Type one Pei, i.e., 3Pei C DP and 3Pe- C RP
Declare inverses with Pei Pe-end if = 2

end if

4.1.2 Standard Core Profile

Considering formalisation choices such as the position-
alism of the relationships [52, 61] and whether to use
inverses or qualified cardinality constraints, a standard
core profile has been specified [21]. In case the orig
inal context is a positionalist language, a translation
into a standard (role-less) language is required. Algo
rithm 1 (adapted from [21]) does this work in linear
time in the number of elements of the vocabulary. The
main step involves recursive binary relations that gen
erally do have their named relationship components vs
‘plain' binaries that have only the relationship named.

Definition 3. Given a conceptual model in any of the
analysed CDMLs, we construct a knowledge based in
DCs by applying algorithm 1 to its DC p knowledge
base.

Again, the algorithm is linear in the number of bi
nary relationships in the knowledge base, not affecting

- 101 -

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

complexity results when reasoning.
Once this conversion step is done, the formalisation

of the standard core profile is described as follows.
It includes inverse relations to keep connected both
relationships generated by reifying roles. Take atomic
binary relations (P), atomic concepts (A), and simple
attributes (a) as the basic elements of the core profile
language DC s , which allows us to construct binary
relations and arbitrary concepts according to the fol
lowing syntax:

C —>Ti1A |VR.A |3R.A | < kR | > kR |Va.T |3a.T |

< 1 a.T |CnD

R '1P | P-
X —>C C D | id Ca

Definition 4. A DC s interpretation for a knowledge
base in DCs is given by I = (-CC, -T, •I), with A1 the
domain of interpretation for concepts, ATI the domain
of datatype values, and the interpretation function • I

satisfying the conditions in Table 4. I satisfies an
axiom X as in DCp.

Table 4: Semantics of DCs .
TC C Al

A1 CT1

T| = TC x TC

P1 CT|

TI C ATI

a1 CT1 x Al

(C n d)1 = cC n d1

(R-)I = {(c2, c1) e ACI x ACI|(c1, c2) e RI}
(VR.A)C = {ci G A1 |Vc2.(ci,c2) G R1 c2 G A1}
(3R.A)C = {ci G Al|3c2.(ci,c2) G R1 A c2 G A1}
(< kR)I = {ci G ACI| #{c2|(ci, c2) G RI} < k}
(> kR)I = {ci G ACI| #{c2|(ci, c2) G RI} > k}
(Va.T)C = {c G Al|Vv.(c, v) G a1 v G T1}
(3a.T)C = {c G AC|3v.(c, v) G a1 A v G T1}
(< ia)I = {c G ACI| #{(c, v) G aI}| < i}

Example 3. We now show the formalisation of the
same conceptual model as in Example 2, but then
in this new standard view profile DCs. Recall that
Algorithm 1 must be performed to get rid of roles,
so the relationship Rent is renamed into Rent1 and
Rent2 (we omit the subsumption axioms from this list,
which are the same).

3Rent1 C VPerson

3Rent1- C VRealEstateProperty

Rent1 = Rent2-

> i Rent1 C Person
> i Rent2 C RealEstateProperty

Person C< i name.String

Person C< i idCard.Integer

Person C 3phone.Integer n < i phone
id Person idCard

It is possible to conclude from this example that the
overall expressivity of the model, apart from the non
positionalist view, is the same as in Example 2.

From the perspective of reasoning over DCs, this is
rather simple and little can be deduced: negation can
not be directly expressed here either, as discussed for
DCp. This leaves the main reasoning problem of class
subsumption and class equivalence here as well. At
most the DL ALNI (called PLi in [62]) is expressive
enough to represent this profile, since we only need
T, n, inverse roles and cardinality constraints; PLi
has polynomial subsumption, but its data complexity
is unknown. That said, using a similar encoding of
conceptual models as given in Section 4.i.i, the lan
guage can be reduced further to DL-Lite(cHoreN) which is
NLogSpace with some restrictions on the interaction
between role inclusions and number restrictions, and
the Unique name Assumption (UNA). Observe that the
DL-Litecore fragment is also enough to include class
disjointness in NLogSpace, and jumps to NP including
disjoint covering [59].

4.1.3 UML Class diagram Profile

The profile for UML Class Diagrams strictly extends
DCs. It was presented extensively in [2i] and suc
cinctly formally specified here.

Definition 5. A knowledge base in DCU ML from a
given conceptual model in UML is obtained by adding
to its DCs knowledge base the following formulas and
axioms:

1. for each attribute cardinality m.. n in an attribute
a of datatype T within an object type A we add
the assertion A C< na.T n > ma.T.

2. for each binary relationship subsumption be
tween relationships R and S we add the axiom
R C S.

The syntax is as in DCs, with the additions high
lighted in bold face for easy comparison:

C —>T| A |VR.A [BRA | < kR | > kR [Va.T \Ba.T |

< ka.T | > ka.T | CnD

R '1P | P-
X -^C C D | R C S | id Ca

With this profile, we cover 99. 44% of all the elements
in the UML models of the test set. Absence of rarely
used UML-specific modelling elements, such as the
qualified association (relationship), completeness and
disjointness among subclasses does limit the formal

- 102 -

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

meaning of their models. On the positive side from a
computational viewpoint, however, is that adding them
to the language bumps up the complexity of reasoning
over the models (to ExpTime-hardness [12]); or: the
advantage of their rare use is that reasoning over such
limited diagrams has just becomes much more efficient
than previously assumed to be needed.

Definition 6. A DCU ML interpretation for a DCU ML

knowledge base is a DC s interpretation I that also sat
isfies R C S if and only ifR1 C S1, with (< ka.T)y =
{c 6 ACI|#{a 6 TI|(c,a) 6 aI} <k} and (> ka.T)I =
{c 6 ACI|#{a 6 TI|(c,a) 6 aI} > k}.

Example 4. We now show the formalisation of the
same conceptual model as before, but including the
new constraints available in DCU ML. We add the pos
sibility for a Person to have two phone numbers.

BRentl CVPerson

BRent1- C VRealEstateProperty

Rentl = Rent2-

> 1 Rentl C Person
> 1 Rent2 C RealEstateProperty

Person C< 1 name.String

Person C< 1 idCard.Integer

Person C < 2 phone.Integer

idPerson idCard

The only new constraint here is a cardinality constraint
on the attribute phone.

Compared to DC s, role hierarchies have to be added
to the ALNI logic of the Core Profile, which yields
the logic ALN HI. To the best of our knowledge,
this language has not been studied yet. If we adjust
it a little by assuming unique names and some, from
the conceptual modelling point of view, reasonable
restrictions on the interaction between role inclusions
and cardinality constraints, then the UML profile can
be represented in the known DL-Litec{oHreN }, which is
NLogSpace for subsumption and AC0 for data com
plexity [59]. Also, if one wants to add attribute value
constraints to this profile then reasoning over concrete
domains is necessary. The interaction of inverse roles
and concrete domains is known to be highly intractable,
just adding them to ALC gives ExpTime-hard concept
satisfiability [63].

4.1.4 ER and EER Profile

The profile for ER and EER Diagrams also extends
DCs.

Definition 7. A knowledge base in DC EER from a
given conceptual model in EER is obtained by adding
to its DC s knowledge base the following formulas and
axioms:

1. we include atomic ternary relationships in the
basic vocabulary.

2. for each attribute cardinality m.. n in an attribute
a of datatype T within an object type A, we add
the assertion A C< na.T n > ma.T.

3. for each weak identification of object type A
through relationship P in which it participates
as the i3-th component, we add the assertion
fd R i1, i2 i3, such that 1 < i, i1, i2 < 3 and are
all different.

4. associative object types are formalised by the
reification of the association as a new DL concept
with two binary relationships.

5. multi-attribute identification is formalised as a
new composite attribute with single identification.

This profile was presented extensively in [21] and
is here recast in shorthand DL notation. The syntax is
as in DC s, with the additions highlighted in bold face
for easy comparison:

C —>T| A |VR.A |BR.A | < kR | > kR\Va.T |Ba.T |

< ka.T | > ka.T | CnD

R n | P | P-
X —>C C D | id Ca | fd Ri1, i2 i3

where n = 2, 3 and all i j = 1 , 2, 3 and different.

Definition 8. An interpretation I satisfies a knowl
edge base in DC EER is it is a DC s interpretation, and
satisfies fd Ri1, i2 i3 iff for all r, s 6 R1 it holds that
if [i1]r = [i1]s and [i2]r = [i2]s then [i3]r = [i3]s, , with
(< ka.T)I = {c 6 ACI| #{a 6 TI|(c, a) 6 aI} < k} and
(> ka.T)I = {c 6 ACI| #{a 6 TI|(c, a) 6 aI} > k}.

This profile covers relative frequent EER modelling
entities such as composite and multivalued attributes,
weak object types and weak identification, ternary re
lationships, associated objet types and multiattribute
identification in addition to those of the standard core
profile. This profile can capture 99. 06% of all the
elements in the set of EER models. Multivalued at
tributes can be represented with attribute cardinality
constraints, and composite attributes with the inclusion
of the union datatype derivation operator. Each object
type (entity type) in EER is assumed by default to have
at least one identification constraint. In order to rep
resent external identification (weak object types), we
can use functionality constraints on roles as in DLRifd
[39] and its close relative DLR+ [64] or in CFD [65].
Ternary relationships are explicitly added to the profile.
If we want to preserve the identity of these relation
ships in the DL semantics, then we need to restrict
to logics in the DLR family. Otherwise, it is possi
ble to convert ternaries into concepts by reification,
as described in Algorithm 2, using three traditional
DL roles and therefore allowing the translation into

- 103 -

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

logics such as CF D. Since associative object types
do not impose new static constraints on the models,
they are formalised by reification of the association
as a new DL concept with two binary relationships.
Finally, multiattribute identification can be represented
as a new composite attribute with single identification.

This profile presents an interesting challenge regard
ing existing languages. The only DL language family
that has arbitrary n-aries and the advanced identifica
tion constraints needed for the weak entity types is the
positionalist DLRifd . However, DLRifd also offers
DL role components that are not strictly needed for
EER, so one could pursue a binary or n-ary DL without
DL role components but with identification constraints,
the latter being needed of itself and for reification of
a n-ary into a binary (Algorithm 2). The CF D family
of languages may seem more suitable, then. Using
Algorithm 2's translation, and since we do not have
covering constraints in the profile, we can represent
the EER Profile in the description logic DL-LitecNore
[59] which has complexity NLogSpace for the satisfia
bility problem. This low complexity is in no small part
thanks to its UNA, whereas most logics operate under
no unique name assumption. A similar result is found
in [30] for ERref , but it excludes composite attributes
and weak object types.

Algorithm 2 Equivalence-preserving n-ary into a bi
nary conversion

DP : domain of P; RP range of P; n set of P-components
Reify P into P' C T
for all i, 3 > i > n do

Re¡ user-added label or auto generated label
Make Rei a DL role,
Type Re¡ as BRe¡ C P' and BRe- C RP, where RP is the player

(EER entity type) in n
Add P' C BRe;.T and P' C < 1 Re¡.T

end for
Add external identifier TC< 1 (U;Re;)-.P'

Example 5. In the formalization of Fig. 4 in this
profile, we can now include the ternary relationship
Mortgage that was absent from previous examples. By
applying algorithm 1 we get three new roles which are
labeled as Lender, Occupant, and Lien. Next we show
only the new axioms for the second role, which it is
more interesting since it has the uniqueness constraint.
The other roles of the ternary relations are handled
similarly, and the rest of the axioms as in previous
examples.

Mortgage CT3

BOccupant CVPerson

BOccupant- CVMortgage
> 1 Occupant C Person

> 1 Occupant- C Mortgage
< 1 Occupant C Person

T3 is the universe of all ternary relationships in the
discourse domain. To this formalisation we can further

apply algorithm 2 if needed. Observe, as mentioned
in example 1, the lost connection between the same
named roles.

4.1.5 ORM and ORM2 Profile

Unlike the case of the ER and EER profile, there is
no suitable mechanism to avoid ORM roles (DL role
components), as they are used for several constraints
that have to be included. Therefore, to realise this
profile, we must transform the ORM positionalist com
mitment into a standard view, as we did in Algorithm
1. This is motivated by the observation that typically
fact type readings are provided, not user-named ORM
role names, and only 9.5% of all ORM roles in the 33
ORM diagrams in our dataset had a user-defined name,
with a median of 0. We process the fact type (relation
ship P) readings and ignore the role names following
Algorithm 3. DLR's relationship is typed, w.l.o.g.
as binary and in DLR-notation, as P C [rc]Cn [rd]D,
with rc and rd variables for the ORM role names and
C and D the participating object types. Let read1 and
read2 be the fact type readings, then use read1 to name
DL role Re1 and read2 to name DL role Re2, and type
P as T CVRe1.CnVRe2.D. This turns, e.g., a disjoint
constraints between ORM roles rc of relationship P
and sc of S into Re1 C -Se1 and Se1 C —Re1.

Algorithm 3 ORM2 to standard view and common
core.___

P an atomic relationship
if P is binary then

Take fact type readings F
if there is only one fact type reading then

Re1 F
Type Re1 with domain and range
Create Re2
Declare Re1 and Re2 inverses

else
Assign one reading to Re1 and the other to Re2
Type Re1 with domain and range accordingly
Declare Re1 and Re2 inverses

end if
else

P is n-ary with n > 2
Reify P into P' C T, like in Algorithm 2, with for the n

binaries using the fact type readings as above
end if

The profile for ORM2 Diagrams was presented in
[21], and a more detailed version including a text
based mapping as a restricted “ORM2cfd ” was devel
oped in [23] using CFDInVc- as underlying logic, yet
that could cover only just over 96% of the elements
in the set of ORM models, whereas this one reaches
98.69% coverage.

Definition 9. A knowledge base in DC ORM from a
given conceptual model in ORM2 is obtained by
adding to its DCs knowledge base the following for
mulas and axioms:

1. each n-ary relationship is reified as in Algo
rithm 3.

- 104 -

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

2. each unary role is formalised as a boolean at
tribute.

3. add pairwise disjoint axioms for each pair of
relationships with different arity.

4. each subsumption between roles R, S is repre
sented by the formula R C S.

5. each subsumption between relationships R, S is
represented by the subsumption between the rei
fied concepts, R' C S', and the subsumption of
each of the n components of the relationships,
Rei C Sei- i < i < n.

6. each disjoint constraint between roles R and S
is formalised as two inclusion axioms for roles:
R C-SandS C -R.

7. each nested object type is represented by the rei
fied concept ofthe relationship.

8. each value constraint is represented by a new
datatype that constraint.

9. each disjunctive mandatory constraint for object
type A in roles Ri is formalised as the inclusion
axiom A C Ui3Ri.

10. each internal uniqueness constraint for roles
Ri, i < i < n over relationship objectified with
object type A is represented by id A iRi, . . . , iRn

11. each external uniqueness constraint between
roles Ri, i < i < n not belonging to the same
relationship is represented by id A iRi, . . . , iRn,
where A is the connected object type between
all the Ri, if it exists, or otherwise a new object
type representing the reification of a new n-ary
relationship between the participating roles.

12. each external identification is represented as the
previous one, with the exception that we are now
sure such A exists. (i.e., the mandatoryness is
added compared to simple uniqueness).

This slightly more comprehensive language is here
recast in shorthand DL notation, with the additions
highlighted in bold face for easy comparison:

C —>Ti | A \YRA |3R.A | < kR | > kR \Va.T \3a.T |

< ia.T |CnD| CUD

R ' | P | P-|-R
X —>C C D | R C S | idCa | id CR1... Rn

Definition 10. A DCORM interpretation for a DCORM

knowledge base is a DCs interpretation I with the
constraints that (C U D)C = C1 U DC, and (-R)C =
TC\RC. I satisfies the assertion R C S iff (R C S)C =
RI C SI, and the assertion idCRi . . . Rn iff CI C
n¡ (3R(-n < iRi)C and for all objects di,..., dn G TC it
holds that #{c|c G CI A (c, di) G RiI, i < i < n} < i.

We decided not to include any ring constraint in this
profile. Although the irreflexivity constraint counts for
almost half of all appearances of ring constraints, its
participation is still too low to be relevant. We show
an example of this profile in next subsection.

The semantics, compared to DCs, is, like with the
UML profile, extended in the interpretation for rela
tionship subsumption. It also needs to be extended
for the internal uniqueness, with the identification ax
ioms for relationships. Concerning complexity of the
ORM2 Profile, this is not clear either. The ExpTime
complete DLRifd is the easiest fit, but contains more
than is strictly needed: neither concept disjointness
and union are needed (but only among roles), nor its
fd for complex functional dependencies. The PTIME
CF DInVc- [66] may be a better candidate if we admit a
similar translation as the one given in Algorithm 2, but
giving up arbitrary number restrictions and disjunctive
mandatory on ORM roles.

4.2 Example application of the construction
rules

Let us now return to the claim in the introduction about
the sample UML Class Diagram in Fig. i: that it has
a logical underpinning in DCs and therewith also has
grounded equivalents in EER and ORM notation. The
equivalents in EER and ORM are shown in Fig. 5.

The first step is to note that the DCs reconstruction
is obtained from DCp+ Algorithm i (by Definition 3).
By the DCp rules from Definition i, we obtain the
set of object types (fltr) { Person, Affiliation, ..., Pub
lisher} and of data types {Name, ..., VAT reg no}. For
the relationships, we need to use Algorithm i, which
we illustrate here for the association between Person
and Affiliation: i) bump up the association end names,
has member and has, to DL roles; 2) type the relation
ships with:
T C VhasMember.Affiliation n

VhasMember-.Person
T CVhas.PersonnVhas-.Affiliation
and 3) declare inverses, hasMember = has-. After
doing this for each association in the diagram, we con
tinue with step 3 of Definition i, being the attributes.
For instance, the Person's Name we obtain the axiom
Person C 3Name.Stringn < i Name
and likewise for the other attributes. Step 4 takes care
of the subsumptions; among others
Popular_science_book C Book
is added to the DCs knowledge base. Then cardinal
ities are processed in steps 5 and 6 (noting the algo
rithmic conversion from positionalist to standard view
applies in this step), so that, for the membership associ
ation illustrated above, the following axioms are added
to the knowledge base: Affiliation C> i has_member
(mandatory participation) whereas for, say, the scien
tist, it will be Scientist C < 3 has. Finally, any identi
fiers are processed, such as ISBN for Book, generating
the addition of the id BookISBN to the DCs knowledge

- 105 -

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

Figure 5: The sample diagram of Fig. 1 rendered in EER and ORM2 notation; the common DCs logic-based
construction is discussed in the text.

base.
The process for the EER diagram is the same except

that the name of the relationship can be used directly
instead of bumping up the role names to relationship
names. The reconstruction into ORM has two permuta
tions compared to the UML one, which are covered by
step 3 in Definition 1, being the conversion algorithm
from ORM's value types to attributes as described in
[60], and it passes through the second else statement
of Algorithm 1 cf. the first if statement that we used
for UML when going from positionalist to standard
view.

Diagram construction rules, i.e., going in the direc
tion from the logic-based profile to a graphical nota
tion, can follow the same process in reverse. This can
be done automatically, except for the generation of
labels. For instance, if one were to have a scenario on
an interoperability tool of “UML diagram DCs
ORM diagram” and one wants to have the fact type
readings, they will have to be added, which a user
could write herself or it could be generated by one of
the extant realisation engines for the controlled natural
language6.

6It would have rules that render, e.g., a has_member into ... has
member ... and a has_member- into ... member of ...

5 Discussion

The methodological approach proposed is expected to
be of use for similar research to inform better the lan
guage design process and elucidate ontological com
mitments that are otherwise mostly hidden. The five
profiles form an orchestrated network of compatible
logics, which serve as the logic-based reconstructions
of fragments of the three main CDMLs that include
their most used features. In the remainder of the sec
tion, we discuss language design and computational
complexity, and look ahead at applicability.

Language design To the best of our knowledge,
there is no ‘cookbook process' for logic or concep
tual data modelling language design. Frank's waterfall
process [19] provided useful initial guidance for a
methodological approach. In our experience in design
ing the profiles, we deemed our proposed extension
with “Ontological analysis of language features” nec
essary for the conceptual modelling and knowledge
representation languages setting compared to Frank's
domain-specific languages. An alternative option we
considered beforehand was [45]'s list of 26 guidelines,
but they are too specific to DSLs to be amenable to
CDML design, such as the DSL's distinction between
abstract and concrete syntax and their corresponding
guidelines. An interesting avenue for further research
is transforming the proposed waterfall into actionable
guidelines for CDML design.

Zooming in on the extra “Ontological analysis of
language features” step, we had identified five decision
points for language design with respect to ontology
and several practical factors that are listed in Table 2
in Section 3. To the best of our knowledge, it is the
first attempt to scope this component of language/logic
design systematically. Our contribution in that regard
should be seen as a starting point for a broader sys
tematic investigation into this hitherto neglected as
pect. In making choices, we had to accommodate
alternative design choices and the need to achieve high
coverage. This was addressed by designing two al
ternative cores—positionalist and standard view (item
2 in Section 3)—and, importantly, three algorithms
to achieve that level of compatibility. More precisely,
Algorithm 1 provides the conversion option for item
2—roles or not—in a generic way, Algorithm 2 takes
case of the binaries vs n-aries (item 3a), and Algo
rithm 3 is a specific adaptation of Algorithm 2. All
profiles have data types (item 1 in Section 3), for they
are present in UML Class Diagrams and ORM2, not
ing that it simply can be set to xsd:anyType and thus
have no influence, which is the case for EER. Further,

- 106 -

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

if the intended semantics of the aggregation associ
ation were to have been more specific in the UML
standard, it would have merited inclusion in its profile
(item 3b in Section 3), with then the onus on the DL
community to find a way to add it as a primitive to
a DL. If included, it would likely also be possible to
design a conversion algorithm between the new prim
itive and a plain DL role with properties. Regarding
adding more types of entity types to the language (item
3c), like sortal and phase: the one proposal [32, 67] is
not in widespread use and therewith did not meet the
evidence-based threshold for inclusion.

Complexity considerations for the profiles Tradi
tionally, the DL research community has strived for
identifying more and more expressive DLs for which
reasoning is still decidable. The introduced profiles
show that high expressivity is not necessary for repre
senting most of the semantics of conceptual models,
independently of the chosen modelling language. They
thus are ‘lean', evidence-based, profiles that, while not
covering all corners of modelling issues, do have those
features that are used most in practice. We summarise
the complexity of each profile by immersion into a
DL language in Table 5. The “Approximate DL” col
umn is not an exact match for each profile, and often
involves some extra assumptions that explains the dif
ferent complexities. Low complexities are achievable
by the standard profiles (i.e., those that give up on
positionalism), due to the existence of a more accu
rate matching logic. Recall that DCs is included in
DCUML, DCEER, and DCORM . The biggest gap be
tween the profiles and the matching DLs is given in
DCp showing that further work is necessary on the
associated reasoning algorithms.

An outstanding issue is whether object types in the
diagrams are by default disjoint when not in a hier
archy, or not. Some research are convinced they are,
and some are not; most formalisations and tools do not
include it. Because of the lack of agreement, we have
not included it. Note further that if this assumption
were to be added, i.e., full negation in the profiles,
it would affect the computational complexity of the
profiles negatively.

It is also interesting to analyse at which point in
creasing expressiveness by adding new features to the
language is worthwhile from the point of view of the
modeller. If the feature is present, at least one mod
eller will use it, though mostly only occasionally. It
is not clear if this is due to them being corner cases,
a lack of experience on representing advanced con
straints by modellers, tooling, or another reason. On
the other hand, UML's aggregation as ‘extra' feature
as compared to EER's and ORM2's plain relationships
is being used disproportionally more often than part
whole relations in EER and ORM2. It remains to be
investigated why exactly this is the case.

Toward applicability The presented profiles may
be applied as the back-end of CASE tools using the
compatible profiles as unifying logics and orchestra
tion of corresponding optimised reasoners for, say,
Ontology-Based Data Access such that it focusses on
the perceived language needs of the modellers (instead
of the logic and technology, as in, e.g., [68]), whilst
still keeping it tractable. The current conceptual mod
elling tools that have a logic back-end are still sparse
[32, 69, 70, 7i], and allow a modeller to model in
only one language, rather than being allowed to switch
between language families.

Using the common core for model interoperability
by mapping each graphical element into a construct in
DCs is an option. However, one also would want to
be precise and therefore use more language features
than those in the common core, and when linking mod
els, ‘mismatch' links would still need to be managed,
and wrong ones discarded. To solve this, an interop
erability approach with equivalence, transformation,
and approximation rules that is guided by the meta
model is possible [60, 72]. There, one can have two
models with an intermodel assertion; e.g., between a
UML association and an ORM fact type. The entities
are first classified/mapped into entities of the meta
model, any relevant rules are executed, and out comes
the result, being either a valid or an invalid link. The
‘any relevant rules are executed' is coordinated by the
metamodel; e.g., the metamodel states that each Rela
tionship has to have two or more Roles, which, in turn,
have to have attached to it either an Object Type or
Value Type, so those mapping and transformation rules
are called as well during the checking of the link. The
MIST EER tool [73] has a similar goal, though cur
rently it supports only EER and its translation to SQL
and therewith is complementary to our work presented
here.

The formal foundation presented here would enable
such an interface were either multiple graphical ren
dering in different modelling language families could
be generated, or link models represented in different
languages in a system integration scenario.

6 Conclusion

A systematic logic design process was proposed that
generalises and extends the DSL design process to
be more broadly applicable by incorporating an on
tological analysis of language features in the process.
This first compilation of ontological commitments em
bedded in a logic design process includes, among
others, the ontology of relations, the conceptual vs
design features trade-off, and 3-dimensionalist vs. 4-
dimensionalist commitments.

Based on this extended process with explicit onto
logical distinctions and the evidence of the prevalence
of the features in the models, different characteristic
profiles for the three conceptual data modelling lan-

- 107 -

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

Table 5: Profile comparison on language and complexity; “Approx. DL”: the existing DL nearest to the profile
defined.

Profile Main features Approx. DL Subsumption complexity

DC p positionalist, binary relationships, identifiers, cardinality constraints,
attribute typing, mandatory attribute and its functionality

DLR ExpTime

DCs standard view, binary relationships, inverses ALNI P
DCuml relationship subsumption, attribute cardinality DL-LiteHN NLogSpace
DCeer ternary relationships, attribute cardinality,

external keys
DL-LiteNCore NLogSpace
CFD P

dcorm entity type disjunction, relationships complement, relationship subsump
tion, complex identifiers (‘multi attribute keys')

DLRifd ExpTime
CFDIV- P

guage families were specified into a suitable Descrip
tion Logic, which also brought with it insights into
their computational complexity. The common core
profile is of relatively low computational complex
ity, being in the tractable ALN I. Without negation,
hardly any inconsistencies can be derived within the
profiles. Since -A is not in the language, inconsis
tencies can only occur as side effects of incompatible
cardinality constraints. This has as flip side that it
promises scalable runtime usage of conceptual data
models.

We are looking into several avenues for future work,
including ongoing tool development and more precise
complexity results for the profiles so that it would
allow special, conceptual data model-optimised, rea
soners.

Competing interests

The authors have declared that no competing interests exist.

Funding

This work was partially supported by the National Research
Foundation of South Africa and the Argentinian Ministry of
Science and Technology.

Authors' contribution

PRF and CMK conceived the idea and developed the theory;
CMK was the main contributor to sections 2 and 3; PRF
and CMK both devised an example; PRF and CMK wrote
the manuscript. All authors read and approved the final
manuscript.

References

[1] Object Management Group, “OMG Unified Model
ing Language (OMG UML).” online, December 20i7.
http://www.omg.org/spec/UML/2.5.1.

[2] B. Motik, P. F. Patel-Schneider, and B. Parsia, “OWL
2 web ontology language structural specification and
functional-style syntax,” w3c recommendation, W3C,
27 Oct. 2009. http://www.w3.org/TR/owl2-syntax/.

[3] Object Management Group, “Superstructure specifi
cation,” Standard 2.4.i, Object Management Group,
20i2. http://www.omg.org/spec/UML/2.4.i/.

[4] T. Halpin, A logical analysis of information systems:
static aspects of the data-oriented perspective. PhD
thesis, University of Queensland, Australia, i989.

[5] T. Halpin and T. Morgan, Information modeling and re
lational databases. Morgan Kaufmann, 2nd ed., 2008.

[6] I.-Y. Song and P. P. Chen, “Entity relationship model,”
in Encyclopedia of Database Systems (L. Liu and M. T.
Ozsu, eds.), vol. i, pp. i003-i009, Springer, 2009.

[7] B. Thalheim, “Extended entity relationship model,” in
Encyclopedia of Database Systems (L. Liu and M. T.
(Ozsu, eds.), vol. i, pp. i083-i09i, Springer, 2009.

[8] D. L. Moody, “Theoretical and practical issues in eval
uating the quality of conceptual models: current state
and future directions,” Data & Knowledge Engineer
ing, vol. 55, pp. 243-276, 2005.

[9] R. Alberts, D. Calvanese, G. D. Giacomo, A. Gerber,
M. Horridge, A. Kaplunova, C. M. Keet, D. Lembo,
M. Lenzerini, M. Milicic, R. Moller, M. Rodrlguez-
Muro, R. Rosati, U. Sattler, B. Suntisrivaraporn, G. Ste-
fanoni, A.-Y. Turhan, S. Wandelt, and M. Wessel,
“Analysis of test results on usage scenarios,” deliverable
TONES-D27 vi.0, TONES Project, Oct. i0 2008.

[10] Y. Smaragdakis, C. Csallner, and R. Subramanian,
“Scalable satisfiability checking and test data genera
tion from modeling diagrams,” Automation in Software
Engineering, vol. i6, pp. 73-99, 2009.

[11] C. M. Keet and P. R. Fillottrani, “An analysis and char
acterisation of publicly available conceptual models,”
in Proceedings of the 34th International Conference on
Conceptual Modeling (ER'15) (P. Johannesson, M. L.
Lee, S. Liddle, A. L. Opdahl, and O. Pastor Lopez,
eds.), vol. 938i of LNCS, pp. 585-593, Springer, 20i5.
i9-22 Oct, Stockholm, Sweden.

[12] D. Berardi, D. Calvanese, and G. De Giacomo, “Rea
soning on UML class diagrams,” Artificial Intelligence,
vol. i68, no. i-2, pp. 70-ii8, 2005.

[13] A. Queralt, A. Artale, D. Calvanese, and E. Teniente,
“OCL-Lite: Finite reasoning on UML/OCL conceptual
schemas,” Data & Knowledge Engineering, vol. 73,
pp. i-22, 20i2.

[14] D. Calvanese, C. M. Keet, W. Nutt, M. Rodrlguez-
Muro, and G. Stefanoni, “Web-based graphical query
ing of databases through an ontology: the WONDER
system,” in Proceedings of ACM Symposium on Ap
plied Computing (ACM SAC'10) (S. Y. Shin, S. Os-
sowski, M. Schumacher, M. J. Palakal, and C.-C. Hung,

- 108 -

http://www.omg.org/spec/UML/2.5.1
http://www.w3.org/TR/owl2-syntax/
http://www.omg.org/spec/UML/2.4.i/

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

eds.), pp. 1389-1396, ACM, 2010. March 22-26 2010,
Sierre, Switzerland.

[15] D. Calvanese, P. Liuzzo, A. Mosca, J. Remesal,
M. Rezk, and G. Rull, “Ontology-based data integra
tion in epnet: Production and distribution of food dur
ing the roman empire,” Engineering Applications of
Artificial Intelligence, vol. 51, pp. 212-229, 2016.

[16] A. Soylu, E. Kharlamov, D. Zheleznyakov, E. J. Ruiz,
M. Giese, M. G. Skjaeveland, D. Hovland, R. Schlatte,
S. Brandt, H. Lie, and I. Horrocks, “OptiqueVQS: a
visual query system over ontologies for industry,” Se
mantic Web Journal, vol. 9, no. 5, pp. 627-660, 2018.

[17] D. Toman and G. E. Weddell, Fundamentals of Physi
cal Design and Query Compilation. Synthesis Lectures
on Data Management, Morgan & Claypool, 2011.

[18] P. R. Fillottrani and C. M. Keet, “An analysis of com
mitments in ontology language design,” in Proceedings
of the 11th International Conference on Formal On
tology in Information Systems (FOIS'20) (B. Brodaric
and F. Neuhaus, eds.), vol. 330 of Frontiers in Artificial
Intelligence and Applications, pp. 46-60, 2020.

[19] U. Frank, “Domain-specific modeling languages - re
quirements analysis and design guidelines,” in Domain
Engineering: Product Lines, Conceptual Models, and
Languages (I. Reinhartz-Berger, A. Sturm, T. Clark,
J. Bettin, and S. Cohen, eds.), pp. 133-157, Springer,
2013.

[20] P. R. Fillottrani and C. M. Keet, “Patterns for heteroge
neous tbox mappings to bridge different modelling de
cisions,” in Proceeding of the 14th Extended Semantic
Web Conference (ESWC'17) (E. Blomqvist et al., eds.),
vol. 10249 of LNCS, pp. 371-386, Springer, 2017. 30
May - 1 June 2017, Portoroz, Slovenia.

[21] P. R. Fillottrani and C. M. Keet, “Evidence-based lan
guages for conceptual data modelling profiles,” in 19th
Conference on Advances in Databases and Information
Systems (ADBIS'15) (T. Morzy et al., eds.), vol. 9282
of LNCS, pp. 215-229, Springer, 2015. 8-11 Sept,
2015, Poitiers, France.

[22] P. R. Fillottrani and C. M. Keet, “A design for coordi
nated and logics-mediated conceptual modelling,” in
Proceedings of the 29th International Workshop on
Description Logics (DL'16) (R. Peñaloza and M. Lenz-
erini, eds.), vol. 1577 of CEUR-WS, 2016. 22-25 April,
2016, Cape Town, South Africa.

[23] P. R. Fillottrani, C. M. Keet, and D. Toman, “Polyno
mial encoding of orm conceptual models in CF DInVc-,”
in Proceedings of the 28th International Workshop
on Description Logics (DL'15) (D. Calvanese and
B. Konev, eds.), vol. 1350 of CEUR-WS, pp. 401-414,
2015. 7-10 June 2015, Athens, Greece.

[24] C. M. Keet and T. Chirema, “A model for verbal
ising relations with roles in multiple languages,” in
Proceedings of the 20th International Conference on
Knowledge Engineering and Knowledge Management
(EKAW'16) (E. Blomqvist, P. Ciancarini, F. Poggi,
and F. Vitali, eds.), vol. 10024 of LNAI, pp. 384-399,
Springer, 2016. 19-23 November 2016, Bologna, Italy.

[25] P. P. Chen, “The entity-relationship model—toward a
unified view of data,” ACM Transactions on Database
Systems, vol. 1, no. 1, pp. 9-36, 1976.

[26] C. Parent, S. Spaccapietra, and E. Zimanyi, Con
ceptual modeling for traditional and spatio-temporal
applications—the MADS approach. Berlin Heidelberg:
Springer Verlag, 2006.

[27] J. Mylopoulos, A. Borgida, M. Jarke, and
M. Koubarakis, “Telos: Representing knowl
edge about information systems,” ACM Transactions
on Information Systems, vol. 8, no. 4, pp. 325-362,
1990.

[28] D. Calvanese, M. Lenzerini, and D. Nardi, “Unifying
class-based representation formalisms,” Journal of Ar
tificial Intelligence Research, vol. 11, pp. 199-240,
1999.

[29] C. M. Keet, “Ontology-driven formal conceptual data
modeling for biological data analysis,” in Biological
Knowledge Discovery Handbook: Preprocessing, Min
ing and Postprocessing of Biological Data (M. Elloumi
and A. Y. Zomaya, eds.), ch. 6, pp. 129-154, Wiley,
2013.

[30] A. Artale, D. Calvanese, R. Kontchakov, V. Ryzhikov,
and M. Zakharyaschev, “Reasoning over extended ER
models,” in Proceedings of the 26th International Con
ference on Conceptual Modeling (ER'07) (C. Parent,
K.-D. Schewe, V. C. Storey, and B. Thalheim, eds.),
vol. 4801 of LNCS, pp. 277-292, Springer, 2007. Auck
land, New Zealand, November 5-9, 2007.

[31] W.-L. Pan and D.-x. Liu, “Mapping object role model
ing into common logic interchange format,” in Proceed
ings of the 3rd International Conference on Advanced
Computer Theory and Engineering (ICACTE'10),
vol. 2, pp. 104-109, IEEE Computer Society, 2010.

[32] B. F. B. Braga, J. P. A. Almeida, G. Guizzardi, and A. B.
Benevides, “Transforming OntoUML into Alloy: to
wards conceptual model validation using a lightweight
formal methods,” Innovations in Systems and Software
Engineering, vol. 6, no. 1-2, pp. 55-63, 2010.

[33] A. Jahangard Rafsanjani and S.-H. Mirian-
Hosseinabadi, “A Z Approach to Formalization
and Validation of ORM Models,” in Digital En
terprise and Information Systems (E. Ariwa and
E. El-Qawasmeh, eds.), vol. 194 of CCIS, pp. 513-526,
Springer, 2011.

[34] H. M. Wagih, D. S. E. Zanfaly, and M. M. Kouta,
“Mapping Object Role Modeling 2 schemes into
S ROI Q(d) description logic,” International Journal
of Computer Theory and Engineering, vol. 5, no. 2,
pp. 232-237, 2013.

[35] E. Franconi, A. Mosca, and D. Solomakhin, “The
formalisation of ORM2 and its encoding in OWL2,”
KRDB Research Centre Technical Report KRDB12-
2, Faculty of Computer Science, Free University of
Bozen-Bolzano, Italy, March 2012.

[36] A. H. M. t. Hofstede and H. A. Proper, “How to for
malize it? formalization principles for information
systems development methods,” Information and Soft
ware Technology, vol. 40, no. 10, pp. 519-540, 1998.

[37] C. M. Keet, “Mapping the Object-Role Modeling
language ORM2 into Description Logic language
DLRi f d ,” Tech. Rep. 0702089v2, KRDB Research
Centre, Free University of Bozen-Bolzano, Italy, April
2009. arXiv:cs.LO/0702089v2.

- 109 -

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

[38] D. Calvanese, G. De Giacomo, and M. Lenzerini,
“On the decidability of query containment under con
straints,” in Proc. of the 17th ACM SIGACT SIG-
MOD SIGART Sym. on Principles of Database Systems
(PODS'98), pp. 149-158, 1998.

[39] D. Calvanese, G. De Giacomo, and M. Lenzerini,
“Identification constraints and functional dependencies
in description logics,” in Proc. of the 17th Int. Joint
Conf. on Artificial Intelligence (IJCAI 2001) (B. Nebel,
ed.), pp. 155-160, Morgan Kaufmann, 2001. Seattle,
Washington, USA, August 4-10, 2001.

[40] D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini,
and R. Rosati, “Tractable reasoning and efficient query
answering in description logics: The DL-Lite fam
ily,” Journal of Automated Reasoning, vol. 39, no. 3,
pp. 385-429, 2007.

[41] M. Nizol, L. K. Dillon, and R. E. K. Stirewalt, “Toward
tractable instantiation of conceptual data models us
ing non-semantics-preserving model transformations,”
in Proceedings of the 6th International Workshop on
Modeling in Software Engineering (MiSE'14), pp. 13
18, ACM Conference Proceedings, 2014. Hyderabad,
India, June 02-03, 2014.

[42] A. C. Bloesch and T. A. Halpin, “Conceptual Queries
using ConQuer-II,” in Proceedings of ER'97: 16th
International Conference on Conceptual Modeling,
vol. 1331 of LNCS, pp. 113-126, Springer, 1997.

[43] E. G. Kalayci, G. Xiao, V. Ryzhikov, T. E. Kalayci, and
D. Calvanese, “Ontop-temporal: A tool for ontology
based query answering over temporal data,” in Pro
ceedings of the 27th ACM International Conference on
Information and Knowledge Management, CIKM 2018,
Torino, Italy, October 22-26, 2018, pp. 1927-1930,
2018.

[44] S. de Kinderen and Q. Ma, “Requirements engineer
ing for the design of conceptual modeling languages,”
Applied Ontology, vol. 10, no. 1, pp. 7-24, 2015.

[45] G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe,
M. Schindler, and S. Volkel, “Design guidelines for
Domain Specific Languages,” in Proceedings of the
9th OOPSLA Workshop on Domain-Specific Model
ing (DSM'09), 2009. Orlando, Florida, USA, October
2009.

[46] C. M. Keet and P. R. Fillottrani, “An ontology-driven
unifying metamodel of UML Class Diagrams, EER,
and ORM2,” Data & Knowledge Engineering, vol. 98,
pp. 30-53, 2015.

[47] B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fok-
oue, and C. Lutz, “OWL 2 Web Ontology Language
Profiles,” W3C recommendation, W3C, 27 Oct. 2009.
http://www.w3.org/TR/owl2-profiles/.

[48] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and
A. Tang, “What industry needs from architectural lan
guages: A survey,” IEEE Transactions on Software
Engineering, vol. 39, no. 6, pp. 869-891, 2013.

[49] N. Guarino, “The ontological level: Revisiting 30
years of knowledge representation,” in Mylopoulos
Festschrift (A. Borgida et al., eds.), vol. 5600 of LNCS,
pp. 52-67, Springer, 2009.

[50] N. Guarino and G. Guizzardi, “In the defense of onto
logical foundations for conceptual modeling,” Scandi
navian Journal of Information Systems, vol. 18, no. 1,
pp. (debate forum, 9p), 2006.

[51] G. Guizzardi and G. Wagner, “Using the unified foun
dational ontology (UFO) as a foundation for general
conceptual modeling languages,” in Theory and Appli
cations of Ontology: Computer Applications, pp. 175
196, Springer, 2010.

[52] C. M. Keet, “Positionalism of relations and its conse
quences for fact-oriented modelling,” in OTM Work
shops, International Workshop on Fact-Oriented Mod
eling (ORM'09) (R. Meersman, P. Herrero, and D. T.,
eds.), vol. 5872 of LNCS, pp. 735-744, Springer, 2009.
Vilamoura, Portugal, November 4-6, 2009.

[53] G. Guizzardi and G. Wagner, “What's in a relation
ship: An ontological analysis,” in Proceedings of the
27th International Conference on Conceptual Model
ing (ER'08) (Q. Li, S. Spaccapietra, E. S. K. Yu, and
A. Olive, eds.), vol. 5231 of LNCS, pp. 83-97, Springer,
2008. Barcelona, Spain, October 20-24, 2008.

[54] M. West, C. Partridge, and M. Lycett, “Enterprise data
modelling: Developing an ontology-based framework
for the shell downstream business,” in Proceedings of
Formal Ontologies Meet industry (FOMI'10) (R. Cuel
and R. Ferrario, eds.), pp. 71-84, 2010. 14-15 Decem
ber 2010, Trento, Italy.

[55] P. Shoval and S. Shiran, “Entity-relationship and object-
oriented data modeling—an experimental comparison
of design quality,” Data and Knowledge Engineering,
vol. 21, pp. 297-315, 1997.

[56] A. Queralt and E. Teniente, “Decidable reasoning in
UML schemas with constraints,” in Proceedings of the
20th International Conference on Advanced Informa
tion Systems Engineering (CAiSE'08) (Z. Bellahsene
and M. Leonard, eds.), vol. 5074 of LNCS, pp. 281
295, Springer, 2008. Montpellier, France, June 16-20,
2008.

[57] S. Tobies, Complexity Results and Practical Algo
rithms for Logics in Knowledge Representation. PhD
thesis, RWTH Aachen, 2001.

[58] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi,
and P. F. Patel-Schneider, eds., The Description Logics
Handbook - Theory and Applications. Cambridge
University Press, 2 ed., 2008.

[59] A. Artale, D. Calvanese, R. Kontchakov, and M. Za-
kharyaschev, “The DL-Lite family and relations,” Jour
nal of Artificial Intelligence Research, vol. 36, pp. 1
69, 2009.

[60] P. R. Fillottrani and C. M. Keet, “Conceptual model in
teroperability: a metamodel-driven approach,” in Pro
ceedings of the 8th International Web Rule Symposium
(RuleML'14) (A. Bikakis et al., eds.), vol. 8620 of
LNCS, pp. 52-66, Springer, 2014. August 18-20, 2014,
Prague, Czech Republic.

[61] J. Leo, “Modeling relations,” Journal of Philosophical
Logic, vol. 37, pp. 353-385, 2008.

[62] F. Donini, M. Lenzerini, D. Nardi, and W. Nutt,
“Tractable concept languages.,” in Proc.of IJCAI'91,
vol. 91, pp. 458-463, 1991.

- 110 -

http://www.w3.org/TR/owl2-profiles/

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

[63] F. Baader, S. Brandt, and C. Lutz, “Pushing the EL en
velope,” in IJCAI-05, Proceedings of the Nineteenth In
ternational Joint Conference on Artificial Intelligence,
Edinburgh, Scotland, UK, July 30 - August 5, 2005
(L. P. Kaelbling and A. Saffiotti, eds.), pp. 364-369,
Professional Book Center, 2005.

[64] A. Artale, E. Franconi, R. Penaloza, and F. Sportelli,
“A decidable very expressive description logic for
databases,” in The Semantic Web - ISWC 2017: 16th
International Semantic Web Conference (C. d'Amato,
M. Fernandez, V. Tamma, F. Lecue, P. Cudré-Mauroux,
J. Sequeda, C. Lange, and J. Heflin, eds.), vol. i0587
of LNCS, (Cham), pp. 37-52, Springer, 20i7. 2i-25
October 20i7, Vienna, Austria.

[65] D. Toman and G. E. Weddell, “Applications and ex
tensions of PTIME Description Logics with functional
constraints,” in Proceedings of the 21st International
Joint Conference on Artificial Intelligence IJCAI'09,
pp. 948-954, AAAI Press, 2009.

[66] D. Toman and G. E. Weddell, “On adding inverse fea
tures to the description logic CFDVnc,” in PRICAI
2014: Trends in Artificial Intelligence - 13th Pacific
Rim International Conference on Artificial Intelligence,
Gold Coast, QLD, Australia, December 1-5, 2014.,
pp. 587-599, 20i4.

[67] G. Guizzardi, Ontological Foundations for Structural
Conceptual Models. Phd thesis, University of Twente,
The Netherlands. Telematica Instituut Fundamental
Research Series No. i5, 2005.

[68] D. Calvanese, B. Cogrel, S. Komla-Ebri,
R. Kontchakov, D. Lanti, M. Rezk, M. Rodriguez-
Muro, and G. Xiao, “Ontop: Answering SPARQL
queries over relational databases,” Semantic Web
Journal, vol. 8, no. 3, pp. 47i-487, 20i7.

[69] C. barre. A. Queralt, G. Rull, E. Teniente, and T. Urpi,
“Automated reasoning on UML conceptual schemas
with derived information and queries,” Information
and Software Technology, vol. 55, no. 9, pp. i529 -
i550, 20i3.

[70] P. R. Fillottrani, E. Franconi, and S. Tessaris, “The
ICOM 3.0 intelligent conceptual modelling tool and
methodology,” Semantic Web Journal, vol. 3, no. 3,
pp. 293-306, 20i2.

[71] G. A. Braun, C. Gimenez, P. R. Fillottrani, and L. A.
Cecchi, “Towards conceptual modelling interoperabil
ity in a web tool for ontology engineering,” in Proceed
ings of the 3rd Argentine Symposium on Ontologies
and their Applications co-located with 46 Jornadas
Argentinas de Informática (46JAIIO), pp. 25-38, 20i7.

[72] Z. C. Khan, C. M. Keet, P. R. Fillottrani, and K. Cenci,
“Experimentally motivated transformations for inter
model links between conceptual models,” in 20th Con
ference on Advances in Databases and Information
Systems (ADBIS'16) (J. Pokorny et al., eds.), vol. 9809
of LNCS, pp. i04-ii8, Springer, 20i6. August 28-3i,
Prague, Czech Republic.

[73] V. Dimitrieski, M. Celikovic, S. Aleksic, S. Risti,
A. Alargt, and I. Lukovic, “Concepts and evaluation of
the extended entity-relationship approach to database
design in a multi-paradigm information system model
ing tool,” Computer Languages, Systems & Structures,
vol. 44, no. Part C, pp. 299 - 3i8, 20i5.

Citation: P.R.Fillottrani and C.M.Keet. Evidence
based lean conceptual data modelling languages
Journal of Computer Science & Technology, vol
21, no. 2 , pp. 93-111, 2021.
DOI: 10.24215/16666038.21.e10
Received: January 18, 2021 Accepted: May 3, 2021
Copyright: This article is distributed under the
terms of the Creative Commons License CC-BY-
NC.

- 111 -

