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Abstract

Multiple logic-based reconstructions of UML class di
agram, Entity Relationship diagrams, and Obect-Role 
Model diagrams exists. They mainly cover various 
fragments of these Conceptual Data Modelling Lan
guages and none are formalised such that the logic 
applies simultaneously for the three language families 
as a unifying mechanism. This hampers interchange
ability, interoperability, and tooling support. In addi
tion, due to the lack of a systematic design process of 
the logic used for the formalisation, hidden choices 
permeate the formalisations that have rendered them 
incompatible. We aim to address these problems, first, 
by structuring the logic design process in a method
ological way. We generalise and extend the DSL de
sign process to logic language design. In particular, 
a new phase of ontological analysis of language fea
tures is included, to apply to logic language design 
more generally and, in particular, by incorporating 
an ontological analysis of language features in the 
process. Second, we specify minimal logic profiles 
availing of this extended process, including the onto
logical commitments embedded in the languages, of 
evidence gathered of language feature usage, and of 
computational complexity insights from Description 
Logics (DL). The profiles characterise the essential 
logic structure needed to handle the semantics of con
ceptual models, therewith enabling the development of 
interoperability tools. No known DL language matches 
exactly the features of those profiles and the common 
core is in the tractable DL ACJfl. Although hardly 
any inconsistencies can be derived with the profiles, 
it is promising for scalable runtime use of conceptual 
data models.

Keywords: Conceptual modelling, language profiles, 
modelling languages, modelling language use

Resumen

Existen varias reconstrucciones basadas en lógica de 

lenguajes de modelado conceptual como EER, diagra
mas de clases UML y ORM. Principalmente cubren 
fragmentos de estos lenguajes, y sus formalizaciones 
no están hechas para que se apliquen simultáneamente 
a estas tres familias de lenguajes como un mecanismo 
de unificación. Este hecho atenta contra el intercam
bio y la interoperabilidad de los modelos y el desar
rollo de herramientas de soporte. Además, dada la 
falta de un proceso sistemático de diseño, ciertas deci
siones ocultas en la representación lógica hacen que las 
formalizaciones sean incompatibles. En este trabajo 
nos proponemos atacar este problema, proponiendo 
primero un proceso de diseño lógico que puede ser 
aplicado en forma metodológica. Se generaliza y ex
tiende el proceso DSL para que se pueda aplicar al 
diseño de lenguajes lógicos en general, incorporando 
análisis ontológico de las características del lenguaje. 
Segundo, se especifican perfiles lógicos minimales que 
sacan provecho de este proceso extendido, incluyendo 
los compromisos ontológicos asumidos, de evidencia 
de uso de las características del lenguaje, y de los 
propiedades computacionales de las Lógicas Descrip
tivas (DL, description logics). Estos perfiles caracteri
zan la estructura lógica esencial que se necesita para 
manejar la semántica de los modelos conceptuales, ha
bilitando el desarrollo de herramientas automáticas de 
interoperabilidad. No existe correspondencia exacta 
directa entre estos perfiles y fragmentos conocidos de 
lenguajes DL, y el núcleo común es pequeño (la lógica 
tratable ACNT). Aunque es muy poca la posibilidad 
de derivar inconsistencias dentro de estos perfiles, es 
prometedor su uso en modelos conceptuales dado su 
complejidad en tiempo escalable.

Palabras claves: Lenguajes de modelado conceptual, 
modelos conceptuales, perfiles de lenguajes, uso de 
lenguajes de modelado

1 Introduction

Conceptual data models were proposed in the 1970s 
as a vehicle to describe what has to be stored or pro
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cessed in a prospective information system, aiming 
at separating those ‘what' aspects from the ‘how' to 
achieve them. Many conceptual data modelling lan
guages (CDMLs) have been proposed over the past 40 
years by several research communities, notably orig
inating from relational databases and object-oriented 
software. A number of variants emerged with motiva
tions that include aiming for simplicity and leanness 
vs. expressiveness, modelling aspect of an application 
domain (e.g., spatial entities in geographic information 
systems), and ontology-driven modelling language pro
posals. Such proposals focus typically on graphical 
syntax of the languages with, at best, a partial formal
isation for a proposed extension; afterward, other re
searchers aim to specify a formal semantics for a larger 
fragment of the language to facilitate computational 
support. Both leave loose ends either as “semantic 
variation point” [1] or as ‘unsupported' by that partic
ular logic-based reconstruction, which in turn spurs 
research into those contentious aspects. Meanwhile, 
it hampers interoperability even at the syntax level; 
e.g., a GenMyModel1 serialisation of a UML Class 
Diagram is different from that of draw.io2 and other 
modelling tools, and they are not mutually readable 
by the respective tools. This stands in stark contrast 
to related artefacts such as ontologies, which are typ
ically serialised in the same RDF/XML format that 
can be used across editors and where each element 
of the model has the same semantics everywhere, as 
specified in a standard like [2].

1https://www.genmymodel.com/
2https://app.diagrams.net/

3Note: The diagram is introduced with the sole purpose of il
lustrating supported elements and constraints. Whether this is a 
good model is a separate matter and not the topic of this paper. For 
instance, one may want to model the roles persons play in a differ
ent way or make the Affiliation's Address a class rather than an 
attribute; see [20] for sample patterns to assist redesign.

The number of CDML modelling features has in
creased over time toward higher precision; e.g., Uni
fied Modelling Language (UML) has identifiers since 
v2.4.1 [3], Object Role Modelling (ORM) version 2 
has more ring constraints than the original ORM (com
pare [4] and [5]), and Extended Entity-Relationship 
(EER) also supports entity type subsumption and dis
jointness compared to Entity-Relationship (ER) [6, 7]. 
Opinions vary about this feature richness and its rela
tion to model quality [8] and fidelity of capturing all 
the constraints specified by the customer. Asking mod
ellers and domain experts which features they think 
they use, actually use, and need showed discrepancies 
between them [9]. It has been shown that advanced 
features are being used somewhere by someone, albeit 
infrequently [10, 11].

With such insight into feature usage, it is possible 
to define an appropriate logic as underlying founda
tion of a CDML so as to not only clarify semantics 
but also use it for computational tasks. Logic-based 
reconstructions can be used for, among others, auto
mated reasoning over a model to improve its quality 
(e.g., [12, 13]) and other runtime usage, such as con
ceptual and visual query formulation [14, 15, 16] and 
optimisation of query compilation [17].

Logic-based reconstructions proposed over the 

years (and discussed below) can be grouped into either 
the Description Logics (DL)-based approach or the 
as-expressive-as-needed approach. While the former 
proposes logics from the computational complexity 
point of view, the latter prioritises the needs and us
ages of modellers, such as in the case of full first-order 
predicate logic. None of them have taken a method
ological approach to language design and brush over 
several thorny details of CDMLs, such as which core 
types of elements to formalise with their own seman
tics (aggregation, association ends), whether to include 
n-aries (when n > 2, not n = 2), and various advanced 
constraints. This has resulted into an embarrassment 
of the riches of logic-based reconstructions, which 
hampers the actual use of logic-based conceptual data 
models in information systems and therewith risk slid
ing into disuse. These problems with the multitude of 
incompatible ad hoc formalisations raise the questions 
of:

i. How should one design a logic methodologically?
ii. What would be a compatible set of logics for 

CDMLs that do take into account model feature 
usage and ontological commitments?

We aim to address these problems and answer these 
questions in this paper, specifically for the structural 
fragment of the most widely used CDMLs, because 
this features most prominently as a core interoperabil
ity issue in system integration and needs to be resolved 
before harmonising any ‘dynamic' components such 
as methods.

First, we adapt ontology-driven language design 
principles for ontologies languages [18] to the CDML 
setting, which is informed by Frank's [19] domain
specific language (DSL) design methodology regard
ing process as well. Second, we apply this to the 
design of logics for several conceptual data modelling 
languages that is informed by the language feature 
usage reported in [11]. These logic ‘profiles' formal
izes a subset of features covering about 99% of those 
appearing in conceptual data models.The outcome is 
a so-called ‘positionalist' and a ‘standard view' core 
profile, and three language family profiles formalised 
in a DL, most of which have a remarkable low compu
tational complexity.

An example of a model in UML Class Diagram 
notation that can be fully reconstructed into the stan
dard view core profile (more precisely: DC s) is in
cluded in Fig. 13 It has a logical underpinning thanks 
to the knowledge base construction rules and three al
gorithms we propose in this paper, and therewith also 
has grounded equivalents in EER and ORM notation.

The main contributions presented here are: i) a 
methodological language design process; ii) a new
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Figure 1: Sample UML Class Diagram containing 
all possible constraints of the Standard Core Profile, 
DC s, which emanated from the evidence-based profile 
specifications.

positionalist core profile; and iii) the profiles have 
been defined with a formal syntax and semantics. 
They are built upon a line of research reported in 
[21, 22, 23, 24, 11], which provided preliminary in
sights, such as the quantitative assessment of concep
tual models on their features that inform the profile 
specification. The remainder of the paper is structured 
as follows. The state of the art and related works are 
discussed in Section 2. Section 3 presents our first con
tribution, which is a first inventarisation and discussion 
of ontological issues that affect language design. Our 
second main contribution is the logic-based profiles, 
which are described in Section 4. We close with a 
discussion in Section 5 and conclusions in Section 6.

2 Related work

Many conceptual data modelling languages have been 
proposed over the past 40 years; e.g., UML [3], EER 
[25, 6, 7] and its flavours such as Barker ER and IE no
tation, ORM [4, 5] and its flavours such as CogNIAM 
and FCO-IM, and others, such as MADS [26] and Te- 
los [27]. Some of those are minor variants in notation, 
whereas others have a different number of features. 
Some ‘families' of languages still run along the lines of 
the subfield from which they originally emerged: ER 
and EER originate from the relational database com
munity, UML Class Diagrams from object-oriented 
programming, and ORM bears similarities with se
mantic networks, can be used for both relational and 
object-oriented and, more recently, also business rules. 
Each ‘family' has their own set of preferred tools and 
community of users.

Besides these three main groups, some CDMLs 
have been developed specifically for additional fea
tures (e.g., temporal extensions) or somewhat revised 
graphical notations of the elements, such as different 
colours and a ‘craw's feet' icon vs ..n or ..* for ‘many' 
multiplicity or cardinality. We will not address this 

here, but instead will focus on the underlying language 
features from a logic-based perspective to which the 
best graphical elements could be attached as ‘syntac
tic sugar' (see, e.g., [28, 29] for this approach), and 
language design. The following sections highlight 
key aspects and are not to be assumed an exhaustive 
literature review.

2.1 Logic-based reconstructions of CDMLs 

The two principal reasons for formalising conceptual 
models are: 1) to be more precise to improve a model's 
quality and 2) runtime usage of conceptual models. 
Most works are within the scope of the first motiva
tion. Notably, various DLs have been used for giving 
the graphical elements a formal semantics and for au
tomated reasoning over them [30, 12], although also 
other logics are being used, including OCL [13], CLIF 
[31], Alloy [32], and Z [33].

Zooming in on DLs, the ALUN I language has 
been used for a partial unification of CDMLs [28], 
whereas other DLs are used for particular modelling 
language formalisations, such as DL-Lite and DLRifd 
for ER [30] and UML [12], and OWL for ORM and 
UML [34]. These logic-based reconstructions are 
typically incomplete with respect to the CDML fea
tures they cover, such as omitting ER's identifiers 
(‘keys') [28] or n-aries [30, 34], among many vari
ants. Also, multiple formalisations in multiple logics 
for one conceptual modelling language have been pub
lished. ORM formalisations can be found in, among 
others, [35, 4, 36, 37, 34], noting that full ORM and 
ORM2 (henceforth referred to inclusively as ORM2) 
is undecidable due to arbitrary projections over n-aries 
and the acyclic role constraints (and probably antisym
metry). Even for the more widely-used ER and EER 
(henceforth referred to inclusively as EER), multiple 
logic-based reconstructions exist from the modeller's 
viewpoints [25, 6, 7] and from the logician's vantage 
points with the DLR family [38, 39] and DL-Lit e fam
ily [40] of languages.

The second principal reason for formal foundations 
of CDMLs, runtime usage, comprises a separate track 
of works, which looks as very lean fragments. The 
driver for language design here is computational com
plexity and scalability, and the model is relegated to so- 
called ‘background knowledge' of the system, rather 
than the prime starting point for software development. 
Some of the typical runtime usages are: scalable test 
data generation for verification and validation [41, 10] 
and ontology-mediated query answering that involves, 
among others, user-oriented design and execution of 
queries [42, 14, 15, 16], querying databases during 
the stage of query compilation [17], and recent spatio
temporal stream queries that avail of ontology-based 
data access with conceptual models [43].

In sum, many logics are used for many fragments of 
the common CDMLs, where the fragments have been 
chosen for complexity or availability reasons rather
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1a. Determine scope, benefits
1b. Long-term perspective
1c. Economics, feasibility
2/3a. Consult requirements catalogue
2/3b. Use scenarios
2/3c. Assign priorities
234.Ontological analysis of 

language features
4a. Specify syntax and semantics
4b. Define glossary
4c. Define metamodel

5a. Create sample diagrams
5b. Evaluate notation

7a. Test cases
7b. Analyse against requirements
7c. Analyse effect of use against 

current practice

Figure 2: CDML language design process, adapted 
from [19, 18], where the focus of this paper is high
lighted in bold and shaded (blue).

than for which features a modeller uses.

2.2 Language design

The design of a modelling or knowledge representation 
language is an engineering task, involving several steps 
and decision points among alternatives. A requirement 
might include n-ary relationships, no attributes, and a 
graphical syntax. Systematic approaches to language 
design have been developed, notably Frank's pipeline 
[19], as well as specifics for one step in the pipeline 
(e.g., requirements engineering [44]) or for one class of 
modelling languages (e.g., domain-specific languages 
[45]). In [18], we adapted Frank's waterfall model 
for domains-specific modelling languages (DSLs) [19] 
to the design of languages for ontologies, which we 
adapt here for CDLM design. Fig. 2 shows the adapted 
model with the steps we address in this paper high
lighted. We will step through describing only these 
modified steps and with respect to applicability and 
related works on CDML design.

In order to identify requirements for Steps 2 and 3, 
there is no requirements catalogue for CDMLs (step 
2/3a), but there is one for ontology languages [18] and 
there are several use cases (step 2/3b) (e.g., [46, 15]). 
Assigning priorities (step 2/3c) has been done for sev
eral languages, but mostly implicitly; e.g., prioritising 
scalability in the presence of large amounts of data, 
like with OWL 2 QL [47]. Assessment of sets of con
flicting requirements are available, such as the pros 
and cons of several logics for formalising conceptual 
models [21]. It has yet to be decided how to assign 
priorities. One could survey industry [48], but it has 
been shown in at least one survey that modellers do not 
know the features well enough to be a reliable source
[9].  Thus, existing works fall short on providing an
swers to steps 2 and 3.

Many papers describe a language specification (step 
4), notably in a DL. Most of them do not have a meta
model, however. Regarding existing metamodels one 
may be able to reuse for the language specification: ex
tant proposals in the conceptual modelling community 

span theoretical accounts, academic proof-of-concept 
implementations, and industry-level applications, such 
as in the Eclipse Modeling Framework4. The UML 
diagrams in the OWL and UML standards [2, 3] are 
essentially metamodels as well. To enable a compari
son between CDMLs, a recent unified metamodel is 
required that covers all the language features, which 
reduces the choice to [46]. It covers all the static struc
tural components in unifying UML Class Diagrams, 
ER and EER, and ORM and ORM2 at the metamodel 
layer and has both a glossary of elements and the con
straints among them.

4https://www.eclipse.org/modeling/emf/

While the 7-step waterfall process for domain
specific languages is generally applicable for logic
based CDML design as well, some ontological analy
sis during steps 2-4 should improve the outcome. The 
case for, and benefits of, using insights from ontology 
to advance the modelling has been well-documented 
[49, 50], with ample detail about improvements on 
precision of representing the information; e.g., deploy
ing the UFO foundational ontology to improve the 
UML 2.0 metamodel [51] and examining the nature 
of relationships [52, 53], and more general philosophi
cal assessments about conceptual models, such as 3D 
versus 4D conceptual models [54]. The latter choice 
is primarily a metaphysical one, which is practically 
relevant in the data analysis stage. For instance, the 
Philips corporation evolved over its past 130 years of 
existence, acquiring companies into its conglomerate 
and spinning off others. If it is relevant for the domain 
of discourse to keep track of these changes, then a 4D 
perspective assists in the analysis.

Thus, current resources fall short especially on a 
clear requirements specification and priority-setting 
for CDMLs and on ontology-driven language design. 
We will contribute to filling these gaps in the following 
two sections.

2.3 Quantitative assessments on language 
feature usage

To the best of our knowledge, there are only two quan
titative studies on CDML feature usage. In the first 
study, industry-grade ORM diagrams were examined
[10] and in the second study, publicly available con
ceptual models in EER, UML, and ORM [11] were 
examined, whose results for ORM are similar to those 
reported in the former study. The diagrams of [11] 
were analysed using aforementioned unified meta
model [46], which facilitated cross-language compar
isons and categorisation of entities in those languages 
into the harmonised terminology; a relevant selection 
of the terminology is included in Table 1. This meta
model's top-type is Entity that has four immediate 
subclasses: Relationship with 11 subclasses, Role, En

tity type with 9 subclasses, and Constraint that has 49 
subclasses (i.e., across the three CDML families, there
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Table 1: Terminology of the languages considered 
(relevant selection).

Metamodel 
term

UML Class
Diagram

EER ORM/FBM

Relationship Association Relationship Fact type
Role Association/ 

member end
Component 
of a relation
ship

Role

Entity type Classifier - Object type
Object type Class Entity type Nonlexical 

object type/
Entity type

Attribute Attribute Attribute -
Value type Lexical 

object type/
Value type

Data type Literal Spec
ification -

Data type

are 49 different types of constraint). In addition to 
the hierarchy, the entities have constraints declared 
among them to constrain their use; e.g., each relation
ship must have at least two roles and a disjoint object 
type constraint is only declared on class subsumptions.

This metamodel was used to classify the entities 
of the diagrams in a set of 101 UML, EER, and 
ORM2 models that were publicly available from on
line sources, published papers, and textbooks5. The 
average size of the diagram (vocabulary+subsumption) 
was found to be about 50 entities/diagram, totalling to 
8036 entities, of which 5191 (i.e., 64%) were entities 
that were classified in an entity (language feature) that 
is included in all three language families and 1108 
(13.8%) in ones that are unique to a language family 
(e.g., UML's aggregation) [11]. The results are de
scribed and discussed in [11], where it is noted that 
while most features of each language family is typ
ically used somewhere, their frequency varies; e.g., 
disjoint and covering constraints are used sparingly 
throughout the models, as are ring constraints in ORM 
and n-aries or association classes in UML. The ob
tained usage frequency for each entity, together with 
the design choices described in Section 3, sustain the 
logic profiles that will be introduced in Section 4.

5the models, their respective provenance, and raw data analy
sis are available from http://www.meteck.org/swdsont.html, 
which is not within the scope of this paper. That experiment design, 
results, and discussion are described in [11].

3 Design choices for logic-based profiles 

A formalisation based on the quantitative evidence is 
not as straight-forward as it may sound. Several design 
choices may result in a different logic, possibly be of 
a different computational complexity, use different re
construction algorithms, and differ in tool support for 
the logic. This brings us to the “4” of the “234. Onto

logical analysis of language features” of Fig. 2. The 
“language specification” step concerns affordances and 
features of the logic, including the ability to represent 
the universe of discourse more or less precisely with 
more or less constraints and whether the representa
tion language contributes to support, or even shape, 
the conceptualisation and one's data analysis for the 
conceptual data model or embeds certain philosoph
ical assumptions and positions. Regarding the latter, 
we identified several decision points [18], which we 
adjusted to CDMLs, including, but not limited to:

1. Should the CDML be ‘truly conceptual', ignoring 
the design and implementation, or also somewhat 
computational? That is, whether the language 
should be constrained to permit representation 
of only the what of the universe of discourse vs. 
not only what but also some how in the prospec
tive system. The typical example is whether to 
include data types for attributes or not.

2. Are the roles that objects play fundamental com
ponents of relationships, i.e., should roles be ele
ments of the language?

3. Will refinements of the kinds of general 
elements—that then have their own representa
tion element—result in a different (better) con
ceptual model? For instance,

(a) to have not just Relationship but also an extra 
element for, say, parthood;

(b) to have not just Object type but also refine
ments thereof so as to indicate ontological 
distinctions between the kind of entities, 
such as between a rigid object type and the 
role it plays (e.g., Person vs Student, respec
tively, as being of a different kind);

4. Does one have a 4-dimensionalist view on the 
world (space-time worms) and thus a language 
catering for that, or are there only 3-dimensional 
objects with, perhaps, a temporal extension?

5. What must be named? The act of naming or la
belling something amounts to identifying it and 
its relevance; conversely, if it is not named, per
haps it is redundant.

Little is known about what effects the different deci
sions may have, with two notable observations: bina
ries vs. n-aries and plain relationship vs. also aggrega
tion in the language. The latter was observed for UML 
vs. EER and ORM2 [11] and the former for UML 
[55]. The n-aries in UML class diagrams are hard to 
read due to the look-across notation [55] and it uses 
a different visual element than a binary association 
(diamond vs. line), and therefore used less frequently 
compared to EER and ORM2.

The interested reader is referred to [18] for a com
prehensive explanations of the philosophical aspects. 
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Here, we distill it into the main salient aspects that 
are interesting for comparing logics that are relatively 
popular for formalising CDMLs. This comparison is 
included in Table 2 and discussed in the remainder of 
this section. The first section of the table summarises 
the main design decisions discussed in the preceding 
paragraphs, whereas the second part takes into consid
eration non-ontological aspects with an eye on prac
ticalities. Such practicalities include among others, 
scalability, tooling support, and whether it would be 
easily interoperable with other systems. Observe that 
the first section in the table suggests DLRifd and FOL 
are good candidates for logic-based reconstructions of 
conceptual data models; the second section has more 
positive evaluations for DL-Lit eA and OWL 2 DL. Put 
differently: neither of them is ideal, so one may as 
well design one's own language for the best fit.

A key difference across the different formalisations 
is whether to honour ‘roles' in the language, which 
has been discussed at some length in [21, 52], because 
the main issue is that the CDMLs are all positionalist, 
yet most logics use predicates with the standard view. 
What does that mean? Take, e.g., a relationship teach 

that holds between Prof and Course. With the ‘just 
predicates' decision, there is no teach relationship, but 
at least one predicate, teaches or taught by in which 
Professor and Course participate—in that specific order 
or in the reverse, respectively. Alternatively, the ‘there 
are roles too'-option: Prof plays a role, e.g., [lecturer], 
in the relationship teach and Course plays the role [sub

ject]; thus, role is an element in the language. This 
distinction between predicates-only and roles-too is 
called standard view vs. positionalist, respectively.

The notion of role as a component of an n-ary pred
icate is not an element of FOL (it just has predicates, 
functions, and constants), i.e., FOL adheres to the 
standard view by design, as do most DLs. In con
trast, the DLR family [38] is positionalist, where 
the syntax does include a “DL role component” for 
the DL roles and it has a corresponding semantics. 
For instance, the teaching could then be specified as 
teach C [lecturer]Prof x [subject]Course.

To address the impasse between CDMLs on the one 
hand and most logics on the other, there are several 
options. One could commit to a logic-based recon
struction of the models into a positionalist logic, such 
as those in the DLR family of DLs that have been used 
already for partial reconstructions of ER [38], UML 
class diagrams [12], and ORM [52], or include roles 
in the Z formalisation as proposed in [33], or devise a 
new logic for it. One also could deny positionalism in 
some way and force it into a standard view logic. For 
instance, one could change the [lecturer] and [subject] 

roles into a teaches and/or a taught by predicate and 
declare them as inverses if both are included in the vo
cabulary, or pick one of the two and represent the other 
implicitly through taught by- or teaches- , respectively. 
Sampling decisions made in related works showed that, 

e.g., Pan and Liu [31] use a hybrid of both roles and 
predicates for ORM and its reading labels also may 
be ‘promoted' to relationships [34], the original ORM 
formalisation was without roles in the language [4], 
and UML's association ends are sometimes ignored as 
well (e.g., [32, 56]), but not always [12].

Exploring the conversion strategies brings one to 
the computational complexity of the logic. Mostly, 
adding inverses does not change the worst-case com
putational complexity of a language; e.g., ALCQ and 
ALCQI are both ExpTime-complete under GCIs[57]. 
A notable exception is the OWL 2 EL profile that does 
not have inverse object properties [47].

4 Logic-based profiles for conceptual 
data modelling languages

We now proceed to define logics to characterise the 
model-theoretic semantics such that it is minimalist 
with respect to the most-used features for each of the 
three families of CDMLs. The language design takes 
into account the ontological considerations discussed 
in the previous section as well as the evidence from
[11] and the requirement to have a coverage of around 
99% of the used entities and constraint. Because of 
afore-mentioned ontological reasons in favour of roles 
as well as that all three CDML families are position- 
alist, a Positionalist Core is defined despite its current 
lack of implementation support (Section 4.1.1). Af
terward, a standard view Standard Core and language
specific profiles are defined in Sections 4.1.2-4.1.5.

An overview of the definitions and algorithms is 
shown in Fig. 3. These profiles constitute a theoretical 
backbone for an interoperability tool between concep
tual models expressed in different graphical languages 
and with different philosophical assumptions. The 
main distinction is the positionalist or the standard 
view, resulting in profiles DC p and DCs, which each 
formalise the most widely used language features. The 
standard view profile is then extended into three dif
ferent profiles, one for each CDML, which serves as 
background knowledge to be exchanged between pro
files. In order to interoperate from the positionalist and 
the standard view profiles some compromises must be 
taken, described mainly in Algorithm 1. Importing 
conceptual models into CDML may be carried out 
also with this theoretical structure, while exporting 
may be done by translating reasoner output into a suit
able textual representation.

4.1 Profiles

Positionalism is the underlying commitment of the re
lational model and a database's physical schema, as 
well as of the main CMDLs. It has been employed in 
ORM and its precursor NIAM for the past 40 years 
[5], UML Class Diagram notation requires association 
ends as roles, and ER Models have relationship com
ponents [21]. On the other hand, First Order Logic
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Table 2: Popular logics for logic-based reconstructions of CDMLs assessed against a set of requirements; “-”: 
negative evaluation; “+”: positive; “NL-logic”: natural language interaction with the logic; “OT refinement”: 
whether the language permits second order or multi-value logics or can only do refinement of object types through 
subsumption; DOL aims to link logical theories represented in the same or different languages.
DL-LiteA DLRifd OWL 2 DL FOL

Language features
- standard view + positionalist - standard view - standard view
- with datatypes - with datatypes - with datatypes + no datatypes
- no parthood primitive - no parthood primitive - no parthood primitive - no parthood primitive
- no n-aries + with n-aries - no n-aries + with n-aries
+ 3-dimensionalism + 3-dimensionalism + 3-dimensionalism + 3-dimensionalism
- OT refinement with subsumption - OT refinement with subsumption - OT refinement with sub

sumption
- OT refinement with sub
sumption

- no NL-logic separation - no NL-logic separation ± partial NL-logic separa
tion

- no NL-logic separation

- very few features; large feature 
mismatch

+ little feature mismatch ± some feature mismatch, 
with overlapping sets

+ little feature mismatch

- logic-based reconstructions to 
complete

+ logic-based reconstructions exist - logic-based reconstructions 
to complete

± logic-based reconstruc
tions exist

Computation and implementability
+ PTIME (TBox); AC0 (ABox) ± ExpTime-complete ± N2ExpTime-complete - undecidable
+ very scalable (TBox and ABox) ± somewhat scalable (TBox) ± somewhat scalable (TBox) - not scalable
+ relevant reasoners - no implementation + relevant reasoners ± few relevant reasoners
+ linking with ontologies doable - no interoperability + linking with ontologies 

doable
- no interoperability with 
widely used infrastructures

+ compatibility with DOL - no compatibility with DOL + compatibility with DOL + compatibility with DOL
+ modularity infrastructure - modularity infrastructure + modularity infrastructure - modularity infrastructure

Figure 3: Sketch of the orchestration between the pro
files and algorithms.

and most of its fragments, notably standard DLs [58], 
do not exhibit roles (DL role components) among its 
vocabulary. In order to be able to do reasoning, con
ceptual schemas written in these CMDLs are generally 
translated into a DL by removing roles. As a side 
effect, the connection hold by the role name is lost, 
and two concepts that played the same role now play 
two completely independent roles. as the following 
example shows.

Example 1. Consider de ER diagram shown in Fig. 4. 
In the rent relationship any person may rent any real 
estate property and then is assumed to occupy it some
how, whereas in the mortgage relationship any person 
living in a residential property may put a lien on it to 
obtain a loan from the bank. Both relationships involve 
the occupant role played by instances of the Person 
entity. This role name is relevant for querying, say, the 
real estate occupants in the database, so it is relevant 
for the model's intended meaning. Following the trans
lation procedure described in [59] to the DL-Lite DL 

family, the role occupant in the rent relationship is 
formalised as

3occupant C Person 

3occupant- C RealEstateProperty

The two formulas state the domain and the range of 
the role. Similarly, the role occupant in the mortgage 
relationship is translated, including the functional con
straint, as

3occupant C Person 

3occupant- C Residential
> 2occupant C ±

In the case that both formalisations are merged into 
the same conceptual model formalisation, then an un
intended meaning may be obtained; e.g., that only 
houses may be rented, and that a person may rent 
only one property. The usual solution to such unin
tended consequences is to change the name one of the 
DL roles (i.e., the EER role bumped up to a binary 
relationship in the formalisation step), but then the 
connection between both roles is lost in the formal
isation: the role is split, and therewith the intended 
meaning is weakened. This problem does not arise in 
the translation to the positionalist DLRifd following 
[12], since the roles are part of a different relationship 
and remain roles rather than be subject to element type 
recasting in the formalisation step.

Therefore, we consider it relevant to design a posi- 
tionalist core profile that preserves roles as first-class 
citizens among the DL vocabulary. In case reasoning
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Figure 4: EER diagram showing multiple uses of the 
same role occupant.

over advanced modelling features is needed, it is possi
ble to switch to the standard core profile with the cost 
of losing this connection. This translation is given in 
Algorithm 1 further below.

4.1.1 Positionalist Core Profile

In this section we define the DL fragments that de
scribes the positionalist core profile. We use the stan
dard DL syntax and semantics, as given in [58, 12], 
and the terminology as listed in Table 1.

Definition 1. Given a conceptual model in any of the 
analysed CDMLs, we construct a knowledge base in 
DC p by applying the rules:

1. we take the set all of object types ranging 
over symbols A, B, ..., binary relationships P, 
datatypes T and attributes a in the model as the 
basic elements in the knowledge base.

2. for each binary relationship P formed by object 
types A and B, we add the assertions > 1[1]P c A 
and > 1 [2]P C B.

3. for each attribute a of datatype T within an object 
type A, including the transformation of ORM's 
Value Type following the rule given in [60], we 
add the assertion A C Ba. Tn < 1a.

4. subsumption between two object types A and B is 
represented by the assertion A C B.

5. for each object type cardinality m..n in relation
ship P with respect to its i-th component A, we 
add the assertions A C < n[i]Pn > m[i]P.

6. we add for each mandatory constraints of a con
cept A in a relationship P the axiom A C > 1 [1]P 
or A C > 1 [2]P depending on the position played 
by A in P. This is a special case of the previous 
one, with n = 1.

7. for each single identification in object type A with 
respect to an attribute a of datatype T we add the 
axiom id A a.

This construction is linear in the number of elements 
in the original conceptual model, so the overall com
plexity of the process (translation and then reasoning) 
on the theory is the same as on the conceptual model. 
We restrict it to binary relationships only, because gen
eral n-ary relationships are rarely used in the whole 
set of analysed models. The EER and ORM2 mod
els exhibit a somewhat higher incidence of n-aries, so 
they are included in the respective profiles (see be
low). Also, we allow only one such constraint for each 
component, as multiple cardinality constraints over the 
same component in a relationship are used very rarely.

DC p can be represented by the following DL syn
tax. Starting from atomic elements, we can construct 
binary relations R, arbitrary concepts C and axioms X 
according to the rules:

C —>T| A | < k[i]R | > k[i]R |Va.T |Ba.T |

< 1 a | C n D
R ’'2 | P | (i: C)
X —>C C D | id Ca

where i = 1, 2 and 0 < k. For convenience of presenta
tion, we generally use the numbers 1 and 2 to name the 
role places, but they can be any number or string and 
do not impose an order. Whenever necessary we note 
with U the set of all role names in the vocabulary, with 
from, to 6 U fixed argument places for attributes such 
that [from] is the role played by the concept, and [to] 
the role played by the datatype. These names must be 
locally unique in each relationship/attribute.

Although this syntax represents all DC p knowledge 
bases, there are sets of formula following the syn
tactic rules that are not DC p knowledge bases since 
they are not result of any translation of a valid con
ceptual model. For example, the knowledge base 
{A C Ba.Tn < 1anVa.T} is not a DCp knowledge 
base, it can't be obtained from the translation of any 
diagram.

Now we introduce the semantic characterisation.

Definition 2. An DCp interpretation I = (•I, , •I)
for a knowledge base in DC p consists of a set of objects 
A1, a set of datatype values Ay, and a function •I 

satisfying the constraints shown in Table 3. It is said 
that I satisfies the assertion C C D iffC1 C D1; and it 
satisfies the assertion id C a iff there exists T such that 
C1 C (Ba.T n < 1a)1 (mandatory 1) and for all v 6 T1 

it holds that #{c|c 6 Ay A (c, v) 6 a1} < 1 (inverse 
functional).

Example 2. Let's consider the formalisation of the 
conceptual model in Fig. 4 in DC p, including some 
attributes and identification constraints not shown in 
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the figure.

> 1[occupant]Rent C Person
> 1[isRented]Rent C RealEstateProperty

Person C 3name.Stringn < 1 name 
Person C 3idCard.Integer

n < 1 idCard
Person C 3phone.Integer n < 1 phone

Residential C RealEstateProperty
Commercial C RealEstateProperty

Farm C RealEstateProperty
id Person idCard

The ternary relationship Mortgage and the exclusive
ness between the subconcepts of RealEstateProperty 
cannot be expressed in this profile. This allows the 
modeller to figure out which transformations are ad
equate to include in the formalisation (for example, 
an objectification of the relationship), and which se
mantics is missing. In this case, for simplicity, all the 
ternary relation is excluded from the formalisation.

Table 3: Semantics of DC p.
T1 C Al
AI I

T| = T1 x T1 

P1 CT| 

T I C ATI 

a1 CT1 x A| 

(C n d)1 = c1 n d1
(< k[i]R)1 = {c G A1 |#{(di,d2) G R1 .di = c} < k} 
(> k[i]R)1 = {c G A1 |#{di,d2) G R1 .di = c} > k} 
(3a.T)I = {c e Al|3v G A|.(c, v) G a1 A v G T1} 

(Va.T)I = {c g A||Vv g A|.(c, v) G a1 v G T1}
( < 1 a) I = { c e ACI| #{ ( c, v) e aI} < 1 } 

(i: C)1 = {(di,d2) gT||di G C1}

In total, all the entities in the core profile sum up 
to 87.57% of the entities in all the analysed models, 
covering 91,88% of UML models, 73.29% of ORM 
models, and 94.64% of EE/EER models. Conversely, 
the following have been excluded from the core de
spite the feature overlap, due to their low incidence 
in the model set: Role (DL role component) and Re
lationship (DL role) Subsumption, and Completeness 
and Disjointness constraints. This means that it is not 
possible to express union and disjointness of concepts 
in a DC p knowledge base obtained by formalising a 
conceptual model. Clearly, they can be expressed by 
combinations of the constructors in DC p, but this is 
not possible if we follow the previous construction 
rules. Since completeness and disjointness constraints 
are not present, reasoning in this core profile is quite 
simple.

This logic DCp can be directly embedded into DLR 
(attributes are treated as binary relationships, and iden

tification constraint over attributes can represented as 
in [39]) which gives ExpTime worst case complex
ity for satisfiability and logical implication. A lower 
complexity would be expected due to the limitations 
in the expressivenes. For example, completeness and 
disjointness constraints are not present, and negation 
cannot be directly expressed. It is possible to code 
negation only with cardinality constraints [58, chapter 
3], but then we need to reify each negated concept as a 
new idempotent role, which is not possible to get from 
the DC p rules. Another form of getting contradiction 
in this context is by setting several cardinality con
straints on the same relationship participation, which 
is also disallowed in the rules. In any case, the main 
reasoning problems on the conceptual model are only 
class subsumption and class equivalence on the given 
set of axioms.

Despite all these limitations, no simpler positionalist 
DL has been introduced. To get lower complexity 
bounds, we need to translate a DCp TBox to a standard 
(non-positionalist) logic, like DCs below.

Algorithm 1 Positionalist Core to Standard Core
P an atomic binary relationship; DP domain of P; RP range of P 
if DP = RP then

Rename P to two ‘directional' readings, Pe1 and Pe2
Make Pe1 and Pe2 a DL relation (role)
Type the relations with 3Pe1 C VDP and 3Pe- C RP 
Declare inverses with Pe1 = Pe-

else
if DP = RP then

if i = 1, 2 is named then
Pei i

else
Pei user-added label or auto generated label

end if
Make Pei a DL relation (role)
Type one Pei, i.e., 3Pei C DP and 3Pe- C RP
Declare inverses with Pei Pe-end if = 2

end if

4.1.2 Standard Core Profile

Considering formalisation choices such as the position- 
alism of the relationships [52, 61] and whether to use 
inverses or qualified cardinality constraints, a standard 
core profile has been specified [21]. In case the orig
inal context is a positionalist language, a translation 
into a standard (role-less) language is required. Algo
rithm 1 (adapted from [21]) does this work in linear 
time in the number of elements of the vocabulary. The 
main step involves recursive binary relations that gen
erally do have their named relationship components vs 
‘plain' binaries that have only the relationship named.

Definition 3. Given a conceptual model in any of the 
analysed CDMLs, we construct a knowledge based in 
DCs by applying algorithm 1 to its DC p knowledge 
base.

Again, the algorithm is linear in the number of bi
nary relationships in the knowledge base, not affecting 
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complexity results when reasoning.
Once this conversion step is done, the formalisation 

of the standard core profile is described as follows. 
It includes inverse relations to keep connected both 
relationships generated by reifying roles. Take atomic 
binary relations (P), atomic concepts (A), and simple 
attributes (a) as the basic elements of the core profile 
language DC s , which allows us to construct binary 
relations and arbitrary concepts according to the fol
lowing syntax:

C —>Ti1A |VR.A |3R.A | < kR | > kR |Va.T |3a.T |

< 1 a.T |CnD

R '1P | P-
X —>C C D | id Ca

Definition 4. A DC s interpretation for a knowledge 
base in DCs is given by I = (-CC, -T, •I), with A1 the 
domain of interpretation for concepts, ATI the domain 
of datatype values, and the interpretation function • I 

satisfying the conditions in Table 4. I satisfies an 
axiom X as in DCp.

Table 4: Semantics of DCs .
TC C Al 

A1 CT1 

T| = TC x TC 

P1 CT| 

TI C ATI 

a1 CT1 x Al 

(C n d)1 = cC n d1

(R-)I = {(c2, c1) e ACI x ACI|(c1, c2) e RI} 
(VR.A)C = {ci G A1 |Vc2.(ci,c2) G R1 c2 G A1}
(3R.A)C = {ci G Al|3c2.(ci,c2) G R1 A c2 G A1} 
(< kR)I = {ci G ACI| #{c2|(ci, c2) G RI} < k}
(> kR)I = {ci G ACI| #{c2|(ci, c2) G RI} > k}
(Va.T)C = {c G Al|Vv.(c, v) G a1 v G T1}
(3a.T)C = {c G AC|3v.(c, v) G a1 A v G T1}
(< ia)I = {c G ACI| #{(c, v) G aI}| < i}

Example 3. We now show the formalisation of the 
same conceptual model as in Example 2, but then 
in this new standard view profile DCs. Recall that 
Algorithm 1 must be performed to get rid of roles, 
so the relationship Rent is renamed into Rent1 and 
Rent2 (we omit the subsumption axioms from this list, 
which are the same).

3Rent1 C VPerson

3Rent1- C VRealEstateProperty

Rent1 = Rent2-

> i Rent1 C Person
> i Rent2 C RealEstateProperty

Person C< i name.String

Person C< i idCard.Integer 

Person C 3phone.Integer n < i phone 
id Person idCard

It is possible to conclude from this example that the 
overall expressivity of the model, apart from the non 
positionalist view, is the same as in Example 2.

From the perspective of reasoning over DCs, this is 
rather simple and little can be deduced: negation can
not be directly expressed here either, as discussed for 
DCp. This leaves the main reasoning problem of class 
subsumption and class equivalence here as well. At 
most the DL ALNI (called PLi in [62]) is expressive 
enough to represent this profile, since we only need 
T, n, inverse roles and cardinality constraints; PLi 
has polynomial subsumption, but its data complexity 
is unknown. That said, using a similar encoding of 
conceptual models as given in Section 4.i.i, the lan
guage can be reduced further to DL-Lite(cHoreN ) which is 
NLogSpace with some restrictions on the interaction 
between role inclusions and number restrictions, and 
the Unique name Assumption (UNA). Observe that the 
DL-Litecore fragment is also enough to include class 
disjointness in NLogSpace, and jumps to NP including 
disjoint covering [59].

4.1.3 UML Class diagram Profile

The profile for UML Class Diagrams strictly extends 
DCs. It was presented extensively in [2i] and suc
cinctly formally specified here.

Definition 5. A knowledge base in DCU ML from a 
given conceptual model in UML is obtained by adding 
to its DCs knowledge base the following formulas and 
axioms:

1. for each attribute cardinality m.. n in an attribute 
a of datatype T within an object type A we add 
the assertion A C< na.T n > ma.T.

2. for each binary relationship subsumption be
tween relationships R and S we add the axiom 
R C S.

The syntax is as in DCs, with the additions high
lighted in bold face for easy comparison:

C —>T| A |VR.A [BRA | < kR | > kR [Va.T \Ba.T |

< ka.T | > ka.T | CnD

R '1P | P-
X -^C C D | R C S | id Ca

With this profile, we cover 99. 44% of all the elements 
in the UML models of the test set. Absence of rarely 
used UML-specific modelling elements, such as the 
qualified association (relationship), completeness and 
disjointness among subclasses does limit the formal 
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meaning of their models. On the positive side from a 
computational viewpoint, however, is that adding them 
to the language bumps up the complexity of reasoning 
over the models (to ExpTime-hardness [12]); or: the 
advantage of their rare use is that reasoning over such 
limited diagrams has just becomes much more efficient 
than previously assumed to be needed.

Definition 6. A DCU ML interpretation for a DCU ML 

knowledge base is a DC s interpretation I that also sat
isfies R C S if and only ifR1 C S1, with (< ka.T )y = 
{c 6 ACI|#{a 6 TI|(c,a) 6 aI} <k} and (> ka.T)I = 
{c 6 ACI|#{a 6 TI|(c,a) 6 aI} > k}.

Example 4. We now show the formalisation of the 
same conceptual model as before, but including the 
new constraints available in DCU ML. We add the pos
sibility for a Person to have two phone numbers.

BRentl CVPerson

BRent1- C VRealEstateProperty

Rentl = Rent2-

> 1 Rentl C Person
> 1 Rent2 C RealEstateProperty 

Person C< 1 name.String 

Person C< 1 idCard.Integer 

Person C < 2 phone.Integer

idPerson idCard

The only new constraint here is a cardinality constraint 
on the attribute phone.

Compared to DC s, role hierarchies have to be added 
to the ALNI logic of the Core Profile, which yields 
the logic ALN HI. To the best of our knowledge, 
this language has not been studied yet. If we adjust 
it a little by assuming unique names and some, from 
the conceptual modelling point of view, reasonable 
restrictions on the interaction between role inclusions 
and cardinality constraints, then the UML profile can 
be represented in the known DL-Litec{oHreN }, which is 
NLogSpace for subsumption and AC0 for data com
plexity [59]. Also, if one wants to add attribute value 
constraints to this profile then reasoning over concrete 
domains is necessary. The interaction of inverse roles 
and concrete domains is known to be highly intractable, 
just adding them to ALC gives ExpTime-hard concept 
satisfiability [63].

4.1.4 ER and EER Profile

The profile for ER and EER Diagrams also extends 
DCs.

Definition 7. A knowledge base in DC EER from a 
given conceptual model in EER is obtained by adding 
to its DC s knowledge base the following formulas and 
axioms:

1. we include atomic ternary relationships in the 
basic vocabulary.

2. for each attribute cardinality m.. n in an attribute 
a of datatype T within an object type A, we add 
the assertion A C< na.T n > ma.T.

3. for each weak identification of object type A
through relationship P in which it participates 
as the i3-th component, we add the assertion 
fd R i1, i2 i3, such that 1 < i, i1, i2 < 3 and are
all different.

4. associative object types are formalised by the 
reification of the association as a new DL concept 
with two binary relationships.

5. multi-attribute identification is formalised as a 
new composite attribute with single identification.

This profile was presented extensively in [21] and 
is here recast in shorthand DL notation. The syntax is 
as in DC s, with the additions highlighted in bold face 
for easy comparison:

C —>T| A |VR.A |BR.A | < kR | > kR\Va.T |Ba.T |

< ka.T | > ka.T | CnD

R n | P | P-
X —>C C D | id Ca | fd Ri1, i2 i3

where n = 2, 3 and all i j = 1 , 2, 3 and different.

Definition 8. An interpretation I satisfies a knowl
edge base in DC EER is it is a DC s interpretation, and 
satisfies fd Ri1, i2 i3 iff for all r, s 6 R1 it holds that 
if [i1]r = [i1]s and [i2]r = [i2]s then [i3]r = [i3]s, , with 
(< ka.T)I = {c 6 ACI| #{a 6 TI|(c, a) 6 aI} < k} and 
(> ka.T)I = {c 6 ACI| #{a 6 TI|(c, a) 6 aI} > k}.

This profile covers relative frequent EER modelling 
entities such as composite and multivalued attributes, 
weak object types and weak identification, ternary re
lationships, associated objet types and multiattribute 
identification in addition to those of the standard core 
profile. This profile can capture 99. 06% of all the 
elements in the set of EER models. Multivalued at
tributes can be represented with attribute cardinality 
constraints, and composite attributes with the inclusion 
of the union datatype derivation operator. Each object 
type (entity type) in EER is assumed by default to have 
at least one identification constraint. In order to rep
resent external identification (weak object types), we 
can use functionality constraints on roles as in DLRifd 
[39] and its close relative DLR+ [64] or in CFD [65]. 
Ternary relationships are explicitly added to the profile. 
If we want to preserve the identity of these relation
ships in the DL semantics, then we need to restrict 
to logics in the DLR family. Otherwise, it is possi
ble to convert ternaries into concepts by reification, 
as described in Algorithm 2, using three traditional 
DL roles and therefore allowing the translation into 
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logics such as CF D. Since associative object types 
do not impose new static constraints on the models, 
they are formalised by reification of the association 
as a new DL concept with two binary relationships. 
Finally, multiattribute identification can be represented 
as a new composite attribute with single identification.

This profile presents an interesting challenge regard
ing existing languages. The only DL language family 
that has arbitrary n-aries and the advanced identifica
tion constraints needed for the weak entity types is the 
positionalist DLRifd . However, DLRifd also offers 
DL role components that are not strictly needed for 
EER, so one could pursue a binary or n-ary DL without 
DL role components but with identification constraints, 
the latter being needed of itself and for reification of 
a n-ary into a binary (Algorithm 2). The CF D family 
of languages may seem more suitable, then. Using 
Algorithm 2's translation, and since we do not have 
covering constraints in the profile, we can represent 
the EER Profile in the description logic DL-LitecNore
[59] which has complexity NLogSpace for the satisfia
bility problem. This low complexity is in no small part 
thanks to its UNA, whereas most logics operate under 
no unique name assumption. A similar result is found 
in [30] for ERref , but it excludes composite attributes 
and weak object types.

Algorithm 2 Equivalence-preserving n-ary into a bi
nary conversion

DP : domain of P; RP range of P; n set of P-components
Reify P into P' C T
for all i, 3 > i > n do

Re¡ user-added label or auto generated label
Make Rei a DL role,
Type Re¡ as BRe¡ C P' and BRe- C RP, where RP is the player 

(EER entity type) in n
Add P' C BRe;.T and P' C < 1 Re¡.T

end for
Add external identifier TC< 1 (U;Re;)-.P'

Example 5. In the formalization of Fig. 4 in this 
profile, we can now include the ternary relationship 
Mortgage that was absent from previous examples. By 
applying algorithm 1 we get three new roles which are 
labeled as Lender, Occupant, and Lien. Next we show 
only the new axioms for the second role, which it is 
more interesting since it has the uniqueness constraint. 
The other roles of the ternary relations are handled 
similarly, and the rest of the axioms as in previous 
examples.

Mortgage CT3

BOccupant CVPerson

BOccupant- CVMortgage
> 1 Occupant C Person

> 1 Occupant- C Mortgage
< 1 Occupant C Person

T3 is the universe of all ternary relationships in the 
discourse domain. To this formalisation we can further 

apply algorithm 2 if needed. Observe, as mentioned 
in example 1, the lost connection between the same 
named roles.

4.1.5 ORM and ORM2 Profile

Unlike the case of the ER and EER profile, there is 
no suitable mechanism to avoid ORM roles (DL role 
components), as they are used for several constraints 
that have to be included. Therefore, to realise this 
profile, we must transform the ORM positionalist com
mitment into a standard view, as we did in Algorithm
1. This is motivated by the observation that typically 
fact type readings are provided, not user-named ORM 
role names, and only 9.5% of all ORM roles in the 33 
ORM diagrams in our dataset had a user-defined name, 
with a median of 0. We process the fact type (relation
ship P) readings and ignore the role names following 
Algorithm 3. DLR's relationship is typed, w.l.o.g. 
as binary and in DLR-notation, as P C [rc]Cn [rd]D, 
with rc and rd variables for the ORM role names and 
C and D the participating object types. Let read1 and 
read2 be the fact type readings, then use read1 to name 
DL role Re1 and read2 to name DL role Re2, and type 
P as T CVRe1.CnVRe2.D. This turns, e.g., a disjoint 
constraints between ORM roles rc of relationship P 
and sc of S into Re1 C -Se1 and Se1 C —Re1.

Algorithm 3 ORM2 to standard view and common 
core.___________________________________________

P an atomic relationship
if P is binary then

Take fact type readings F
if there is only one fact type reading then

Re1 F
Type Re1 with domain and range
Create Re2
Declare Re1 and Re2 inverses

else
Assign one reading to Re1 and the other to Re2 
Type Re1 with domain and range accordingly 
Declare Re1 and Re2 inverses

end if
else

P is n-ary with n > 2
Reify P into P' C T, like in Algorithm 2, with for the n 

binaries using the fact type readings as above
end if

The profile for ORM2 Diagrams was presented in 
[21], and a more detailed version including a text
based mapping as a restricted “ORM2cfd ” was devel
oped in [23] using CFDInVc- as underlying logic, yet 
that could cover only just over 96% of the elements 
in the set of ORM models, whereas this one reaches 
98.69% coverage.

Definition 9. A knowledge base in DC ORM from a 
given conceptual model in ORM2 is obtained by 
adding to its DCs knowledge base the following for
mulas and axioms:

1. each n-ary relationship is reified as in Algo
rithm 3.

- 104 -



Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

2. each unary role is formalised as a boolean at
tribute.

3. add pairwise disjoint axioms for each pair of 
relationships with different arity.

4. each subsumption between roles R, S is repre
sented by the formula R C S.

5. each subsumption between relationships R, S is 
represented by the subsumption between the rei
fied concepts, R' C S', and the subsumption of 
each of the n components of the relationships, 
Rei C Sei- i < i < n.

6. each disjoint constraint between roles R and S 
is formalised as two inclusion axioms for roles: 
R C-SandS C -R.

7. each nested object type is represented by the rei
fied concept ofthe relationship.

8. each value constraint is represented by a new 
datatype that constraint.

9. each disjunctive mandatory constraint for object 
type A in roles Ri is formalised as the inclusion 
axiom A C Ui3Ri.

10. each internal uniqueness constraint for roles 
Ri, i < i < n over relationship objectified with 
object type A is represented by id A iRi, . . . , iRn

11. each external uniqueness constraint between 
roles Ri, i < i < n not belonging to the same 
relationship is represented by id A iRi, . . . , iRn, 
where A is the connected object type between 
all the Ri, if it exists, or otherwise a new object 
type representing the reification of a new n-ary 
relationship between the participating roles.

12. each external identification is represented as the 
previous one, with the exception that we are now 
sure such A exists. (i.e., the mandatoryness is 
added compared to simple uniqueness).

This slightly more comprehensive language is here 
recast in shorthand DL notation, with the additions 
highlighted in bold face for easy comparison:

C —>Ti | A \YRA |3R.A | < kR | > kR \Va.T \3a.T |

< ia.T |CnD| CUD

R ' | P | P-|-R
X —>C C D | R C S | idCa | id CR1... Rn

Definition 10. A DCORM interpretation for a DCORM 

knowledge base is a DCs interpretation I with the 
constraints that (C U D)C = C1 U DC, and (-R)C = 
TC\RC. I satisfies the assertion R C S iff (R C S)C = 
RI C SI, and the assertion idCRi . . . Rn iff CI C 
n¡ (3R(-n < iRi)C and for all objects di,..., dn G TC it 
holds that #{c|c G CI A (c, di) G RiI, i < i < n} < i.

We decided not to include any ring constraint in this 
profile. Although the irreflexivity constraint counts for 
almost half of all appearances of ring constraints, its 
participation is still too low to be relevant. We show 
an example of this profile in next subsection.

The semantics, compared to DCs, is, like with the 
UML profile, extended in the interpretation for rela
tionship subsumption. It also needs to be extended 
for the internal uniqueness, with the identification ax
ioms for relationships. Concerning complexity of the 
ORM2 Profile, this is not clear either. The ExpTime
complete DLRifd is the easiest fit, but contains more 
than is strictly needed: neither concept disjointness 
and union are needed (but only among roles), nor its 
fd for complex functional dependencies. The PTIME 
CF DInVc- [66] may be a better candidate if we admit a 
similar translation as the one given in Algorithm 2, but 
giving up arbitrary number restrictions and disjunctive 
mandatory on ORM roles.

4.2 Example application of the construction 
rules

Let us now return to the claim in the introduction about 
the sample UML Class Diagram in Fig. i: that it has 
a logical underpinning in DCs and therewith also has 
grounded equivalents in EER and ORM notation. The 
equivalents in EER and ORM are shown in Fig. 5.

The first step is to note that the DCs reconstruction 
is obtained from DCp+ Algorithm i (by Definition 3). 
By the DCp rules from Definition i, we obtain the 
set of object types (fltr) { Person, Affiliation, ..., Pub
lisher} and of data types {Name, ..., VAT reg no}. For 
the relationships, we need to use Algorithm i, which 
we illustrate here for the association between Person 
and Affiliation: i) bump up the association end names, 
has member and has, to DL roles; 2) type the relation
ships with:
T C VhasMember.Affiliation n

VhasMember-.Person
T CVhas.PersonnVhas-.Affiliation 
and 3) declare inverses, hasMember = has-. After 
doing this for each association in the diagram, we con
tinue with step 3 of Definition i, being the attributes. 
For instance, the Person's Name we obtain the axiom 
Person C 3Name.Stringn < i Name
and likewise for the other attributes. Step 4 takes care 
of the subsumptions; among others
Popular_science_book C Book
is added to the DCs knowledge base. Then cardinal
ities are processed in steps 5 and 6 (noting the algo
rithmic conversion from positionalist to standard view 
applies in this step), so that, for the membership associ
ation illustrated above, the following axioms are added 
to the knowledge base: Affiliation C> i has_member 
(mandatory participation) whereas for, say, the scien
tist, it will be Scientist C < 3 has. Finally, any identi
fiers are processed, such as ISBN for Book, generating 
the addition of the id BookISBN to the DCs knowledge
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Figure 5: The sample diagram of Fig. 1 rendered in EER and ORM2 notation; the common DCs logic-based 
construction is discussed in the text.

base.
The process for the EER diagram is the same except 

that the name of the relationship can be used directly 
instead of bumping up the role names to relationship 
names. The reconstruction into ORM has two permuta
tions compared to the UML one, which are covered by 
step 3 in Definition 1, being the conversion algorithm 
from ORM's value types to attributes as described in
[60],  and it passes through the second else statement 
of Algorithm 1 cf. the first if statement that we used 
for UML when going from positionalist to standard 
view.

Diagram construction rules, i.e., going in the direc
tion from the logic-based profile to a graphical nota
tion, can follow the same process in reverse. This can 
be done automatically, except for the generation of 
labels. For instance, if one were to have a scenario on 
an interoperability tool of “UML diagram DCs 
ORM diagram” and one wants to have the fact type 
readings, they will have to be added, which a user 
could write herself or it could be generated by one of 
the extant realisation engines for the controlled natural 
language6.

6It would have rules that render, e.g., a has_member into ... has 
member ... and a has_member- into ... member of ...

5 Discussion

The methodological approach proposed is expected to 
be of use for similar research to inform better the lan
guage design process and elucidate ontological com
mitments that are otherwise mostly hidden. The five 
profiles form an orchestrated network of compatible 
logics, which serve as the logic-based reconstructions 
of fragments of the three main CDMLs that include 
their most used features. In the remainder of the sec
tion, we discuss language design and computational 
complexity, and look ahead at applicability.

Language design To the best of our knowledge, 
there is no ‘cookbook process' for logic or concep
tual data modelling language design. Frank's waterfall 
process [19] provided useful initial guidance for a 
methodological approach. In our experience in design
ing the profiles, we deemed our proposed extension 
with “Ontological analysis of language features” nec
essary for the conceptual modelling and knowledge 
representation languages setting compared to Frank's 
domain-specific languages. An alternative option we 
considered beforehand was [45]'s list of 26 guidelines, 
but they are too specific to DSLs to be amenable to 
CDML design, such as the DSL's distinction between 
abstract and concrete syntax and their corresponding 
guidelines. An interesting avenue for further research 
is transforming the proposed waterfall into actionable 
guidelines for CDML design.

Zooming in on the extra “Ontological analysis of 
language features” step, we had identified five decision 
points for language design with respect to ontology 
and several practical factors that are listed in Table 2 
in Section 3. To the best of our knowledge, it is the 
first attempt to scope this component of language/logic 
design systematically. Our contribution in that regard 
should be seen as a starting point for a broader sys
tematic investigation into this hitherto neglected as
pect. In making choices, we had to accommodate 
alternative design choices and the need to achieve high 
coverage. This was addressed by designing two al
ternative cores—positionalist and standard view (item 
2 in Section 3)—and, importantly, three algorithms 
to achieve that level of compatibility. More precisely, 
Algorithm 1 provides the conversion option for item 
2—roles or not—in a generic way, Algorithm 2 takes 
case of the binaries vs n-aries (item 3a), and Algo
rithm 3 is a specific adaptation of Algorithm 2. All 
profiles have data types (item 1 in Section 3), for they 
are present in UML Class Diagrams and ORM2, not
ing that it simply can be set to xsd:anyType and thus 
have no influence, which is the case for EER. Further, 
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if the intended semantics of the aggregation associ
ation were to have been more specific in the UML 
standard, it would have merited inclusion in its profile 
(item 3b in Section 3), with then the onus on the DL 
community to find a way to add it as a primitive to 
a DL. If included, it would likely also be possible to 
design a conversion algorithm between the new prim
itive and a plain DL role with properties. Regarding 
adding more types of entity types to the language (item 
3c), like sortal and phase: the one proposal [32, 67] is 
not in widespread use and therewith did not meet the 
evidence-based threshold for inclusion.

Complexity considerations for the profiles Tradi
tionally, the DL research community has strived for 
identifying more and more expressive DLs for which 
reasoning is still decidable. The introduced profiles 
show that high expressivity is not necessary for repre
senting most of the semantics of conceptual models, 
independently of the chosen modelling language. They 
thus are ‘lean', evidence-based, profiles that, while not 
covering all corners of modelling issues, do have those 
features that are used most in practice. We summarise 
the complexity of each profile by immersion into a 
DL language in Table 5. The “Approximate DL” col
umn is not an exact match for each profile, and often 
involves some extra assumptions that explains the dif
ferent complexities. Low complexities are achievable 
by the standard profiles (i.e., those that give up on 
positionalism), due to the existence of a more accu
rate matching logic. Recall that DCs is included in 
DCUML, DCEER, and DCORM . The biggest gap be
tween the profiles and the matching DLs is given in 
DCp showing that further work is necessary on the 
associated reasoning algorithms.

An outstanding issue is whether object types in the 
diagrams are by default disjoint when not in a hier
archy, or not. Some research are convinced they are, 
and some are not; most formalisations and tools do not 
include it. Because of the lack of agreement, we have 
not included it. Note further that if this assumption 
were to be added, i.e., full negation in the profiles, 
it would affect the computational complexity of the 
profiles negatively.

It is also interesting to analyse at which point in
creasing expressiveness by adding new features to the 
language is worthwhile from the point of view of the 
modeller. If the feature is present, at least one mod
eller will use it, though mostly only occasionally. It 
is not clear if this is due to them being corner cases, 
a lack of experience on representing advanced con
straints by modellers, tooling, or another reason. On 
the other hand, UML's aggregation as ‘extra' feature 
as compared to EER's and ORM2's plain relationships 
is being used disproportionally more often than part
whole relations in EER and ORM2. It remains to be 
investigated why exactly this is the case.

Toward applicability The presented profiles may 
be applied as the back-end of CASE tools using the 
compatible profiles as unifying logics and orchestra
tion of corresponding optimised reasoners for, say, 
Ontology-Based Data Access such that it focusses on 
the perceived language needs of the modellers (instead 
of the logic and technology, as in, e.g., [68]), whilst 
still keeping it tractable. The current conceptual mod
elling tools that have a logic back-end are still sparse 
[32, 69, 70, 7i], and allow a modeller to model in 
only one language, rather than being allowed to switch 
between language families.

Using the common core for model interoperability 
by mapping each graphical element into a construct in 
DCs is an option. However, one also would want to 
be precise and therefore use more language features 
than those in the common core, and when linking mod
els, ‘mismatch' links would still need to be managed, 
and wrong ones discarded. To solve this, an interop
erability approach with equivalence, transformation, 
and approximation rules that is guided by the meta
model is possible [60, 72]. There, one can have two 
models with an intermodel assertion; e.g., between a 
UML association and an ORM fact type. The entities 
are first classified/mapped into entities of the meta
model, any relevant rules are executed, and out comes 
the result, being either a valid or an invalid link. The 
‘any relevant rules are executed' is coordinated by the 
metamodel; e.g., the metamodel states that each Rela
tionship has to have two or more Roles, which, in turn, 
have to have attached to it either an Object Type or 
Value Type, so those mapping and transformation rules 
are called as well during the checking of the link. The 
MIST EER tool [73] has a similar goal, though cur
rently it supports only EER and its translation to SQL 
and therewith is complementary to our work presented 
here.

The formal foundation presented here would enable 
such an interface were either multiple graphical ren
dering in different modelling language families could 
be generated, or link models represented in different 
languages in a system integration scenario.

6 Conclusion

A systematic logic design process was proposed that 
generalises and extends the DSL design process to 
be more broadly applicable by incorporating an on
tological analysis of language features in the process. 
This first compilation of ontological commitments em
bedded in a logic design process includes, among 
others, the ontology of relations, the conceptual vs 
design features trade-off, and 3-dimensionalist vs. 4- 
dimensionalist commitments.

Based on this extended process with explicit onto
logical distinctions and the evidence of the prevalence 
of the features in the models, different characteristic 
profiles for the three conceptual data modelling lan-
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Table 5: Profile comparison on language and complexity; “Approx. DL”: the existing DL nearest to the profile 
defined.

Profile Main features Approx. DL Subsumption complexity

DC p positionalist, binary relationships, identifiers, cardinality constraints, 
attribute typing, mandatory attribute and its functionality

DLR ExpTime

DCs standard view, binary relationships, inverses ALNI P
DCuml relationship subsumption, attribute cardinality DL-LiteHN NLogSpace
DCeer ternary relationships, attribute cardinality, 

external keys
DL-LiteNCore NLogSpace
CFD P

dcorm entity type disjunction, relationships complement, relationship subsump
tion, complex identifiers (‘multi attribute keys')

DLRifd ExpTime
CFDIV- P

guage families were specified into a suitable Descrip
tion Logic, which also brought with it insights into 
their computational complexity. The common core 
profile is of relatively low computational complex
ity, being in the tractable ALN I. Without negation, 
hardly any inconsistencies can be derived within the 
profiles. Since -A is not in the language, inconsis
tencies can only occur as side effects of incompatible 
cardinality constraints. This has as flip side that it 
promises scalable runtime usage of conceptual data 
models.

We are looking into several avenues for future work, 
including ongoing tool development and more precise 
complexity results for the profiles so that it would 
allow special, conceptual data model-optimised, rea
soners.
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