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The pararotor is a biology-inspired decelerator device based on the autorotation of a rotary wing, 
whose main purpose is to guide a load descent into a certain planetary atmosphere. This paper focuses 
on a practical approach to the general dynamic stability of a pararotor whose center of mass is 
displaced from the blade plane. The numerical simulation tool developed is based upon the motion 
equations of pararotor flight, utilizing a number of simplifying hypotheses that allow the most influencing 
factors on flight behavior to be determined. Several simulated cases are analyzed to study the effect 
of different parameters associated with the pararotor configuration on flight dynamics, particularly 
the center of mass displacement from the blade plane. It was confirmed that the ability to reach 
stability conditions depends mainly on a limited number of parameters associated with the pararotor 
configuration: the relationship between principal moments of inertia, the planform shape (associated 
with blade aerodynamic coefficients and blade area) and the vertical distance between the center of 
mass and the blade plane. As a result different types of equilibrium solutions are found and the effect of 
each parameter is characterized. A bifurcation in the stability shape to a precessing conical rotation, not 
previously found in the linear stability analysis, is predicted by this numerical model.

© 2016 Elsevier Masson SAS. All rights reserved.
1. Introduction

The pararotor is a biomimetic rotary wings decelerator, unpow-
ered, and potentially deployable whose main practical use is to 
aerodynamically decelerate a load descending into a certain plane-
tary atmosphere or to perform measurements during descent. Such 
a probe offers several advantages over other recovery techniques: 
simplicity, controlled deceleration, maneuvering capabilities and 
potential land recovery. Also, this decelerator type is of interest, for 
instance, for the measurement of atmospheric conditions around 
airports for aviation operations support, or the exploration of plan-
etary atmospheres.

Works concerning the deceleration and control of falling bodies 
were published by Shpund and Levin [1–4], in the area of rotat-
ing parachutes. Karlsen, Borgström and Paulsson [5] worked on 
winged bodies for submunition applications. They reported on the 
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advantages of the pararotor over the parachute: lower sensitivity 
to lateral winds, parachute deployment problems, lower precession 
movements, and higher falling velocity.

The flight of samara wings has similarities with pararotors. 
Seter and Rosen [6,7] studied numerically the influence of differ-
ent parameters on samara flight stability. Crimi [8] has studied a 
rotating body with only one wing for submunition applications. He 
searched for a body that performed periodic movements.

Previous work has been carried out concerning modeling the 
stability of a pararotor, mainly by Nadal Mora, Sanz-Andres and 
Piechocki [9–17]. They conducted investigations concerning the 
stability behavior of pararotors whose blades where aligned with 
the center of mass of the whole device. They developed an ana-
lytical model that predicts the dynamic behavior under different 
device configurations.

An analytical linearized model was described by Piechocki et al. 
[17] presenting four different cases of analyses that are revisited in 
the current work.

Seter and Rosen [18] presented the modeling of multibody sys-
tems for a helicopter.

Pararotor decelerator potential has been investigated by differ-
ent authors [19–22], who consider applications that are centered 
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Nomenclature

C D drag coefficient of the blade
CLα slope of the curve lift vs. angle of attack of the blade
C DM model drag coefficient
CM center of mass
C P center of pressure
Fgc weight force vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N
h kinetic momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m/s2

Ii principal moments of inertia, i = 1, 2, 3 . . . . . . . . kg m2

k vertical velocity to blade-tip-speed ratio
kij ratio of coordinates of the center of pressure of the 

blade j in axis i direction, ri j/r11

ke dimensionless parameter used for the stability analysis
ni direction perpendicular to blade i surface, i = 1, 2
S area of one blade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

TM transformation matrix to convert vectors from the 
body fixed frame to the inertial frame

Vri relative velocity to the i blade . . . . . . . . . . . . . . . . . . . . m/s
Vt pararotor descent velocity . . . . . . . . . . . . . . . . . . . . . . . . . m/s
vh axial hovering velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
vi induced velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
α angle of attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad
β0, β1, β2 mean pitch angle, pitch angle of blade 1, 2, 

respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad
θ nutation angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad
ϕ spin angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad
ψ precession angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad
ω angular velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad/s
ω12 angular velocity projected in the 1–2 plane, or 

transversal angular velocity . . . . . . . . . . . . . . . . . . . . . . rad/s
in mission concepts requiring controlled descent, low-velocity 
landing, and atmospheric research capability on planet exploration.

The main objective of the current work is to develop and vali-
date a numerical simulation tool to describe pararotor flight modes 
to determine the stability behavior of a pararotor considering dif-
ferent configuration parameters, particularly the effect of the dis-
tance between the blade plane and the center of mass (illustrated 
in Fig. 1) and to study dynamic effects of parameters associated 
with the device configuration.

It is worth mentioning that the present paper extends the stud-
ies previously developed [17] considering nonlinear effects in the 
pararotors dynamics and their results on pararotor flight behav-
ior. Those nonlinear terms are the result of using Newton–Euler 
equations for a rigid body excited with aerodynamic loads coupled 
with inertial phenomena. In the analytical model [17] second order 
terms were consistently neglected by considering that the follow-
ing parameters are of small magnitude: blade pitch angle, relation-
ship between descent rate to the velocity induced in the blades by 
rotation, distance of blade center of pressure in e2 direction from 
center of mass, blade drag aerodynamic coefficient. The nature of 
Newton–Euler equations of a rigid body under the effect of aero-
dynamic forces (that are blade relative velocity dependent) is in 
general nonlinear. The validity of the linear analytical model [17]
is restricted to the vicinity of an equilibrium point. This numerical 
approach is a useful potential tool that allows the stability limits, 
the effects of configurational parameters, and the flight mode of 
future practical devices to be more accurately defined. This mod-
elization includes neither simplificative assumptions (magnitude 
orders neglecting criteria) nor linearization of the system near the 
equilibrium solutions, as developed in [17]. The significance of this 
work is that the nonlinear factors effects on flight dynamics can 
be considered practically, not only in terms of response time, but 
also in stability limits and flight mode, particularly with pararotors
flying near their stability limits defined in [17].

The current research shows solutions that cannot be reached 
by previous modelization, and so, a deeper understanding of the 
phenomena can be reached, with its positive practical impact on 
pararotor design.

2. Mathematical and numerical models

The approach chosen in this work to study the pararotor dy-
namic behavior was to build an analytical model of a pararotor 
based on the development of the complete motion equations, in-
cluding aerodynamic forces and torques generated by the blades 
and to compute numerically the evolution of the system from a 
particular initial flight attitude, different from the final equilibrium 
state. So, the analyses performed responds to the observation of 
patterns over specific cases. The effect of k31, the dimensionless 
distance of the center of mass to the blade plane in the falling 
direction, is analyzed together with a number of geometrical and 
aerodynamical parameters.

Induced velocity, vi , was not directly included in the model, 
following similar assumptions of former studies [16]. Other stud-
ies [21] indicated that real low aspect ratio rotary wing shows 
an induced power correction factor (that can be defined as the 
factor that modifies rotor classic momentum theory when consid-
ering nonideal blade physical effects), κ , of about 2 or greater. 
This fact indicates that the relationship of descent rate and axial 
hovering velocity, vh , is greater than 2, thus in a windmill brake 
state axial descent [22]. The current model focuses on the assump-
tion of small induced velocity, in the windmill brake state. Large 
induced power correction factors associated with low aspect ra-
tio wing are consistent with this hypothesis. Vertical tunnel tests 
performed [20] using different small aspect ratio wings pararotors 
showed induced velocities of 15% of the descent velocity on av-
erage, evidencing that the simplificative hypothesis is associated 
with a representative flight range.

Flow model for axial descent in windmill brake state [22] in-
dicates that the sensibility of induced velocity, vi , to descent rate, 
decreases with the descent velocity to the hovering velocity ratio, 
Vt/vh . This means that vertical velocity disturbances influence on 
induced velocity depends on the vi/vh magnitude, and so on κ .

However, the effect of induced velocity is included in the values 
of lift, lift slope and drag coefficients, CL , CLα and C D , which are 
determined from experiments [16]. This experimental work was 
performed in operational conditions of a pararotor model, so the 
effect of vi will result in an increment of the magnitudes of lift 
and drag if free stream velocity over the blades is considered. As 
a consequence, the model will be developed associated with this 
experimental data, that will define an operating range of validity, 
over which the lift slope can be approximated as linear. This range 
is defined in the incompressible regime.

The system analyzed is a pararotor flying in an autorotation 
regime, modeled as an inertial cylindrical body with two identi-
cal low-aspect-ratio flat blades which rotates at angular velocity ω
and falls vertically at speed Vt . The geometry is defined in Figs. 1
and 2. The body-fixed reference frame, 1, 2, 3, has its origin at the 
center of mass and directions e1, e2, e3. The axes 1, 2, 3 are the 
principal axes of the body. The inertial reference frame is X, Y , Z ; 
its axes have the directions i, j, k. The blades are located on a plane 
parallel to the plane 1, 2, in the direction P1P2.



402 J. Piechocki et al. / Aerospace Science and Technology 55 (2016) 400–408
Fig. 1. Scheme of the studied pararotor. Position of the center of mass, CM , and 
center of pressure, C P 1, in body axes.

Fig. 2. System geometry. (X, Y , Z ), inertial reference frame; (1, 2, 3), body-fixed ref-
erence frame; ψ , precession angle; θ , nutation angle; ϕ , spin angle; ω, angular 
velocity; β1, β2, blade P1 and P2 pitch angles, respectively; ζ , auxiliary axis; B, in-
tersection of blade plane with axis 3.

To develop the mathematical model used for the numerical 
simulations it was necessary to: state a representation system that 
allows migration from a body fixed coordinate frame to inertial 
coordinate frame and vice versa, set the complete dynamics equa-
tions for the pararotor, set the expressions for forces and moments 
acting on the pararotor, including aerodynamic and gravity forces, 
considering the distance from the center of mass to the blade 
plane, and state the numerical computation order and data-flow.

The tool adopted to develop the numerical simulation is an 
open source software called Scicos. To study the pararotor dynamic 
response by numerical simulation a time interval and initial con-
ditions were established.

2.1. Pararotor orientation

A very important issue for the development of a pararotor flight 
dynamics simulator is to track the spatial position and attitude 
of the pararotor. This fact implies having the capability to ex-
press vectors from the body fixed coordinate system in the inertial 
system, and the other way around, in a univocal way, avoiding sin-
gularities along the numerical process.

A normalized quaternion is used to express the pararotor ori-
entation. Therefore, the relative attitude of the pararotor in the 
inertial coordinate system is expressed in terms of four parame-
ters (or a vector plus a scalar).

The use of quaternions to express pararotor attitude implies 
setting a rotation matrix that allows coordinates and vectors to be 
transformed from one reference system to the other, in agreement 
to the expressions summarized by Diebel [23].

To numerically compute the orientation over a period of time, 
the derivative of the orientation quaternion with respect to time, 
t , is integrated from the initial conditions (given by an initial ori-
entation quaternion, equivalent to the orientation described by 
initial Euler angles) in differential steps. As a result, an orienta-
tion quaternion corresponding to each integration step over time 
is obtained, which will be the initial orientation quaternion for 
the next time step. The arithmetic operations over the quater-
nion introduce a cumulative distortion on the orthonormality of 
the element. The algebraic method introduced by Ai Chun Fang 
and Zimmerman [25] was used to reduce this effect. The method 
introduces a dimensionless constant Kε called normalization gain. 
It is demonstrated that the method is stable if hKε < 1 s (by the 
direct method of Lyapunov), where h is the time step. So the val-
ues adopted after testing the performance over different numerical 
examples are Kε = 1, and h < 1/10 s.

2.2. Initial conditions

The initial orientation conditions for the numerical simulation 
are defined by a set of Euler angles Eul0 = (ϕ0, θ0, ψ0), which cor-
responds to an initial orientation quaternion. After each time step, 
the simulation tool outputs an orientation quaternion, correspond-
ing to a set of Euler angles. To facilitate the spatial representation, 
these Euler angles are expressed in the so-called 3-1-3 order [24]: 
rotation is described by a rotation along 3-axis, a sequential rota-
tion along 1-axis, and a final rotation along 3-axis.

2.3. Dynamics model

The complete pararotor dynamics system has six degrees of 
freedom, and includes coupled rotations and translations. The ex-
pressions, in the principal inertia axes body reference frame, are:

M = I · dω/dt + ω × (I · ω), (1a)

F = m(dVb/dt + ω × Vb), (1b)

where ω = [ω1, ω2, ω3] is the rotational speed vector, Vb =
[Vb1, Vb2, Vb3] is the center of gravity velocity vector, M =
[M1, M2, M3] is the momentum vector, F = [F1, F2, F3] is the 
thrust vector, I is the principal moments of inertia tensor and m is 
the mass of the pararotor.

The numerical simulation is based on the integration of the 
dynamics equations, starting from initial values for angular ac-
celeration and translational acceleration. The integration process 
is sequenced so that it results in an angular velocity, a transla-
tional velocity and a position at every time step. The simulation 
parameters considered are: integration time, numerical integration 
method, time step, initial conditions (orientation, position, speed).

The relative velocity of the flow with regard to the blades 1 
and 2, on a quiet atmosphere, is given by:

Vr1 = −ω × r1 − Vb, Vr2 = −ω × r2 − Vb (2)

where r1 = [r11, r12, r13]T and r2 = [r21, r22, r23]T are the vector 
positions of the center of pressure of the blades 1 and 2.

Normalized vectors having the lift (eL ) and drag (eD ) directions 
are considered for each blade, as can be seen in Fig. 3. Induced 
velocity is associated with blade aerodynamic coefficients determi-
nation.
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Fig. 3. Representation of normalized vectors eD1, eL1 in the directions of the lift and 
drag of the P1 blade. e1, e2, e3, are parallel to the axes 1, 2, 3; β1, blade pitch angle 
for blade 1; Vr1 flow velocity relative to blade 1.

The normalized lift vector, eLi , is normal to the plane defined 
by the relative speed, Vr1, and the axis along the span direction of 
the blade, e1. The component of the aerodynamic load along axis 
e1 is not considered because aerodynamic forces on the blades 
in this direction are neglected as a hypothesis. The relative air 
speed to each blade may have a component along e1 when a lat-
eral pararotor displacements appear. This component is, in general, 
considerably smaller than the others, and appears with a cyclic be-
havior around a null average magnitude. The impact of neglecting 
aerodynamic load along e1 on the model was tested, initially ap-
pearing to validate the hypothesis at first look as its effects didn’t 
show a remarkable contribution to dynamics. The impact of this 
second order effect may be subject of further research. The nor-
malized drag vector, eD1, has the direction of the relative velocity 
of each blade.

The angles of attack, α1, α2, are given by the following equa-
tions:

sinα1 = n1Vr1/norm(Vr1), sinα2 = n2Vr2/norm(Vr2), (3)

where n1 = [0, sin β1, cosβ1], n2 = [0, − sin β2, cosβ2], are unit 
vectors normal to blade 1, 2 respectively.

The aerodynamic forces of lift, Li , and drag, Di , and moments, 
Mi , generated by the blades, as well as the gravity force generated 
at the center of mass, are the input elements that act over the rigid 
body dynamics. The aerodynamic forces are easily described in a 
body centered reference frame, and the gravity force in an inertial 
reference frame. The used global aerodynamic coefficients of the 
blades include the effects of the induced velocity. These aerody-
namic coefficients could be adjusted to match experimental results 
with the theoretical model. As a reference in the aerodynamic co-
efficient determination, previous work [15] has been considered.

The aerodynamic coefficient is determined experimentally. 
These coefficients are linearized around a pararotor operating a 
steady state.

This fact implies defining an operating range of validity of the 
aerodynamic coefficients over which the lift slope can be approxi-
mated as linear.

These moments and forces are given by:

Li = 1

2
ρSCLααi|Vri |2eLi, (4)

Di = 1

2
ρSC D |Vri|2eDi, (5)

Fgc = TM[0,0,−mg], (6)

M = [r1 × L1 + r1 × D1 + r2 × L2 + r2 × D2]. (7)
Table 1
Physical characteristics of the model [19].

Parameter Value

Mass, kg 0.31
Blade chord, m 0.74
Blade span, m 0.15
I1, kg m2 2.229 ·10−4

I2, kg m2 9.930 ·10−3

I3, kg m2 1.010 ·10−3

I21; I12, kg m2 −5.860 ·10−5

I13; I31, kg m2 5.690 ·10−7

I23; I32, kg m2 −1.170 ·10−5

Table 2
Mean measured performance of samara tests. Comparison with numerical results.

Performance parameter Free flight [18] Numerical simulation Error

ω3, rad/s 17.1 17.1 0.1%
Vt , m/s 2.8 2.8 0.1%
θ , rad 0.52 0.48 7.6%

2.4. Integration method

An integration method is used to integrate the completely de-
veloped equation system (1) and (4)–(7) with respect to flight 
time. Different methods were compared in practical simulations to 
determine the solution error magnitude. In particular, the Runge–
Kutta non-adaptive iterative methods, studied by Butcher [26], 
were analyzed and tested. Finally a Dormand–Prince method (5th 
order) was chosen, together with a time integration step of 0.005 s, 
as a compromise between error magnitude and computational 
cost.

To validate the numerical simulation of the pararotor dynam-
ics with a known solution, the free motion of a rigid body was 
chosen. A rigid body moving without external forces or moment 
action, whose main parameters are defined in Table 1, was numeri-
cally simulated and compared with the analytical solution, given in 
[27]. The excellent agreement between the angular velocities given 
by the analytical solution and the numerical simulation, showed 
the efficiency of the simulation tool to represent body dynam-
ics. An error parameter to compare analytical results and numer-
ical simulations at each integration step was defined as E123(t) =
sqrt((ω1T(t) − ω1N(t))2 + (ω2T(t) − ω2N(t))2 + (ω3T(t) − ω3N(t))2)

where subscripts T and N represent the analytical and numerical 
results, respectively. The result of the error parameter evaluation 
over 60 s remained bounded by a magnitude of 10−4 rad/s.

2.5. Comparison between the numerical simulation and experimental 
results

Experimental measurements over samara flights have been re-
ported by different authors. These data can be used to compare 
the numerical simulation with experimental measured parameters, 
as a complementary validation approach that is not intended to 
be fully conclusive. The samara type, single bladed pararotor, free 
flight case taken by Kellas [19] is adopted, because it includes 
enough information to obtain the necessary simulation parameters.

The physical characteristics of the model are given in Table 1.
The performance parameters used in the comparison are: spin, 

vertical velocity and nutation angle. Results are summarized in 
Table 2. They correspond to an equilibrium solution so that the 
constant parameter could be measured in an experiment. A good 
agreement can also be appreciated in this case. Differences could 
be due to the aerodynamic model employed.

On the other hand, a set of experiments were used to com-
pare their results with numerical simulation as another validation 
approach. The experimental setup consisted of a vertical wind tun-
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Table 3
Mean measured performance of pararotor tests (C05P02). Comparison with numerical results.

Pitch angles Experimental results Numerical simulation results

β1, rad β2, rad ω3, rad/s Vt , m/s θeq , rad ω3, rad/s Vt , m/s θeq , rad

−2 −2 287 4.2 0 287 4.2 0
−4 −4 308 4.3 0 296 4.8 0
−6 −6 341 4.7 0 307 5.5 0
Table 4
General parameters of the pararotor cases.

Parameter Value

CLα 1.35
C D 0.15
ρ , kg/m3 1.21
S , m2 0.0254
r11, r21, m 0.037
r12, r22, m 0.016
β1, β2, rad 0.07
ϕ0, rad 0.00
θ0, rad 0.10
ψ0, rad 0.00

nel where a pararotor was tested in a stable flight condition. The 
experimental conditions are described by Nadal Mora et al. [28]. 
The tested models consisted of a hollow cylinder with two rect-
angular blades of bare aluminum alloy, named in [28] with the 
code C05P02, with k31 = 0. The following parameters have been 
measured: the spin velocity, measured by means of a stroboscopic 
lamp (resolution 50 rpm); the blade pitch angle, with a goniome-
ter (resolution 1 deg); the flow velocity by a standard pitot-tube 
NPL type and a micromanometer (resolution 0.5 Pa). A comparison 
between experiments and numerical simulation results are shown 
in Table 3.

In Table 3 a good fit between experiments and simulations can 
be observed, for the case where k31 = 0 and the Straight Solu-
tion is presented. The nutation angle for the equilibrium point, θeq , 
presents no difference between experimental results and numeri-
cal simulation. The descent rate, Vt , displays differences from 0% 
to 11%. The spin velocity, ω3, exhibits differences from 0% to 15%.

To have more conclusive results over the simulation approach 
to pararotor flight, free flight tests, or vertical tunnel tests, should 
be performed extensively, considering different pararotors config-
urations, which are being carried out. Transient response should 
also be contrasted with experimental results.

3. Results of the numerical model

In the present section four groups of cases are considered 
regarding the relationships between principal inertia moments: 
A (I3 > I2, I1), B (I3 < I, I1); C (I1 > I3 > I2) and D (I2 > I3 > I1). 
The groups of cases are the same as those presented in previ-
ous studies [17]; they correspond to the pararotor configurations 
that can be built. Only Case A results are presented. The groups of 
cases were chosen in order to explore the dynamical response of 
the pararotor presented by Piechocki and Nadal Mora [9,10]. Each 
group includes case variants to explore the effect of the distance 
between the center of mass and the blade plane, and the pitch an-
gles, on the pararotor dynamics.

Cases A and B are pararotor configurations where the principal 
moment of inertia I3 is the highest and the smallest, respectively. 
Cases C and D are configurations where I3 has an intermediate 
value between I1 and I2.

The physical parameters of the baseline configuration consid-
ered are presented in Table 4. This baseline configuration is set to 
attain possible technological interest of pararotor use. The analysis 
Table 5
Principal moments of inertia.

Variable Case A Case B Case C Case D

I1, kg m2 5.4 ·10−6 6.0 ·10−6 22.0 ·10−6 21.0 ·10−6

I2, kg m2 21.2 ·10−6 22.0 ·10−6 6.0 ·10−6 23.0 ·10−6

I3, kg m2 25.9 ·10−6 16.0 ·10−6 16.0 ·10−6 15.0 ·10−6

of the dynamics is focused mainly on the evolution of the nutation 
angle.

The initial conditions for the numerical simulations were given 
by: ω0 = [ω10, ω20, ω30]T = [0.00 rad/s, 0.00 rad/s, ωeq]T .

In all cases, the total duration of the numerical simulation is 
set in such a way that the equilibrium solution is completely es-
tablished. The moments of inertia values are given in Table 5.

3.1. Case A (I3 > I2 , I1)

The present case considers the condition of I3 being the biggest 
moment of inertia.

Analytical results of the simplified analytical method are pre-
sented together with the numerical simulation results. The ana-
lytical results were found using the expressions of the simplified 
linear analytical model developed by Piechocki, Nadal Mora and 
Sanz Andrés [13]. The differences between numerical simulation 
and analytical results are considered to be due to the higher order 
dynamics effects and non-linear behavior. The numerical simula-
tion considers a number of effects neglected on the simplified ana-
lytical model, that extends the validity range and the tool strength. 
These neglected effects on the simplified model are originated 
from truncating terms in the aerodynamic forces and momentum 
equations, considering only the terms of highest magnitude for 
what was considered a general configuration [10]. Also, on the 
simplified analytical model, the linearization strategy followed to 
generate a coefficient matrix in order to evaluate the system sta-
bility implies neglecting nonlinear effects.

The first set of tests (Table 6) show that for cases where k31 = 0
there is only one equilibrium solution type, characterized by a nu-
tation angle, θ , which is 0 or is very close to 0 radians (axis of 
rotation aligned or almost aligned with axis 3 in the body ref-
erence frame). This family of equilibrium solutions includes small 
angular velocities ωeq1, ωeq2 in the order of 1 rad/s. For simplic-
ity this solution is named Straight Solution, or Type 1 Solution. 
The results of the simulations and of the linear analytical model 
are also shown in Table 6. It can be noted that both ways of com-
puting the equilibrium solutions are coherent if the equilibrium 
solution reached is the Straight one. In this case relative errors 
between variables are small, increasing as the difference between 
β1 and β2 increases (evidencing the influence of nonlinear terms). 
Finally, it can be noted that the analytical model tends to system-
atically overestimate the magnitude of the variables in comparison 
with the numerical simulation, when the equilibrium solution is 
a Straight Solution. These results are verified for simulation tests 
performed for k31 = 0.0.

In Table 7 the existence of two equilibrium solution types is 
shown. One of these solutions, for example for β2 = 0.07 (with 
β1 = 0.07), shows a null or a very small nutation angle, and the 
angular velocities ωeq1 and ωeq2 are constant, with magnitudes 
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Table 6
Case A – equilibrium results from numerical simulation and analytical model for k31 = 0.

Blades pitch Numerical simulation Analytical model

ωeq1, rad/s ωeq2, rad/s ωeq3, rad/s Vt , m/s θeq , rad ωeq1, rad/s ωeq2, rad/s ωeq3, rad/s Vt , m/s θeq , rad

β1 = 0.07; β2 = 0.07 0.0000 0.0000 292.8 4.57 0.000 0.0000 0.0000 292.8 4.57 0.000
β1 = 0.07; β2 = 0.09 0.0303 0.0581 294.0 4.66 2.229 · 10−4 0.0327 0.0618 294.0 4.66 2.377 · 10−4

β1 = 0.07; β2 = 0.14 0.1072 0.2056 297.2 4.88 7.802 · 10−4 0.1165 0.2198 297.2 4.88 8.370 · 10−4

β1 = 0.07; β2 = 0.19 0.1856 0.3561 300.2 5.11 1.338 · 10−3 0.2030 0.3830 300.2 5.11 1.444 · 10−3

β1 = 0.07; β2 = 0.21 0.2174 0.4170 301.4 5.21 1.560 · 10−3 0.2384 0.4497 301.4 5.21 1.689 · 10−3

β1 = 0.07; β2 = 0.25 0.2816 0.5403 303.7 5.41 2.006 · 10−3 0.3106 0.5859 303.7 5.41 2.184 · 10−3

Table 7
Case A – equilibrium results from numerical simulation and analytical model −k31 = 0.7.

Blades pitch Numerical simulation Analytical model

ωeq1, rad/s ωeq2, rad/s ωeq3, rad/s Vt , m/s θeq , rad ωeq1, rad/s ωeq2, rad/s ωeq3, rad/s Vt , m/s θeq , rad

β1 = 0.07 0.0000 0.0000 292.8 4.57 0.000 0.0000 0.0000 292.8 4.57 0.000
β2 = 0.07

β1 = 0.07 0.0322 0.0184 294.0 4.66 1.250 · 10−4 0.0298 0.0170 294.0 4.66 1.167 · 10−4

β2 = 0.09

β1 = 0.07; 0.0650 0.0355 295.3 4.75 2.490 · 104 0.0599 0.0330 295.3 4.75 2.316 · 10−4

β2 = 0.11

β1 = 0.07 0.0750∗ 0.0375∗ 295.0∗ 4.77∗ 0.117∗∗ 0.0643 0.0349 295.0 4.77 2.481 · 10−4

β2 = 0.113 (3.025∗∗) (2.908∗∗) (0.007∗∗) (0.007∗∗) (0.005∗∗)

β1 = 0.07; 0.0827∗ 0.0400∗ 294.7∗ 4.81∗ 0.156∗ 0.0747 0.0396 294.7 4.81 2.870 · 10−4

β2 = 0.12 (4.017∗∗) (3.840∗∗) (0.010∗∗) (0.011∗∗) (0.007∗∗)

β1 = 0.07; 0.1000∗ 0.0534∗ 295.1∗ 4.87∗ 0.199∗ 0.0898 0.0463 295.1 4.87 3.423 · 10−4

β2 = 0.13 (5.120∗∗) (4.917∗∗) (0.019∗∗) (0.021∗∗) (0.009∗∗)

β1 = 0.07 0.1000∗ 0.0650∗ 295.2∗ 4.93∗ 0.236∗ 0.1048 0.0524 295.2 4.93 3.968 · 10−4

β2 = 0.14 (6.100∗∗) (5.825∗∗) (0.073∗∗) (0.0315∗∗) (0.010∗∗)

β1 = 0.07 0.2250∗ 0.1075∗ 295.0∗ 5.21∗ 0.385∗ 0.1793 0.0753 295.0 5.21 6.593 · 10−4

β2 = 0.19 (9.875∗∗) (9.463∗∗) (0.075∗∗) (0.081∗∗) (0.017∗∗)

β1 = 0.07 0.2500* 0.1200∗ 294.7∗ 5.33∗ 0.437∗ 0.2089 0.0809 294.7 5.33 7.601 · 10−4

β2 = 0.21 (11.150∗∗) (10.710∗∗) (0.095∗∗) (0.105∗∗) (0.019∗∗)

β1 = 0.07 0.3750∗ 0.1750∗ 293.9∗ 5.55∗ 0.539∗ 0.2677 0.0863 293.9 5.55 9.569 · 10−4

β2 = 0.25 (13.730∗∗) (13.125∗∗) (0.144∗∗) (0.156∗∗) (0.024∗∗)
smaller than 1 rad/s. This solution is qualitatively identical to that 
found for k31 = 0, the Straight Solution. The other solution appears 
in Case A for k31 ≥ 0.7 or for k31 ≤ −1.0 (Table 9). This class of 
solution is not predicted by the analytical model, and represents 
a bifurcation of the solution. This solution type is characterized 
by: 1) nutation angles considerably larger than the previous case, 
2) a sinusoidal periodic behavior of ωeq1, ωeq2 with an amplitude 
of considerable magnitude; and 3) a sinusoidal fluctuation of ωeq3

showing small amplitude. This solution is hereafter named as the 
Conical Solution, or Type 2 Solution because the angular velocity 
vector, ω, moves along a cone with elliptical cross-section with 
small excentricity. Simulation tests for k31 > 0.7 showed a strong 
tendency to conical solutions.

As shown in Fig. 4, the equilibrium solution of the numeri-
cal simulation shows a bifurcation from the Straight Solution at a 
given limit of the pitch angle, β2, in the case k31 = 0.7. If this limit 
is surpassed, the Conical Solution appears abruptly. The nutation 
angle, θeq , for Conical Solution (θeq > 5◦) is significantly larger than 
for Straight Solution (θeq ≈ 1◦). These large angles could reduce 
the prediction capacity of the aerodynamics model. To substanti-
ate this point a campaign of experimentation would be required.

For simplicity, henceforth we will call Case A the Base Case.
Table 8 summarizes the time response and equilibrium nutation 

angle, with different k31 values. In these calculations, the inte-
gration time was increased until the nutation solution remained 
bounded between a ±0.1 degree range.
Fig. 4. Bifurcation diagram. Variation of the nutation angle at equilibrium, θeq , with 
blade 2 pitch angle β2, for β1 = 0.07 and k31 = 0.7.

The simulations performed showed that when k31 = −10, nuta-
tion angles are higher than 90 deg. This means that the pararotor 
turns upside down, and a stable solution (that can be considered 
anomalous from a practical point of view) is reached with nutation 
angles of considerable magnitude in that attitude, as in the Conical 
Solution case. This solution is denoted Type 3 Solution.

As shown in Fig. 5 and Table 8, the transient evolution of the 
system from the initial conditions and the equilibrium solution 
type are directly related to the magnitude of k31.
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Table 8
Time needed to reach the equilibrium point, tre , for different pararotor cases over the Case A.

Case β1 = 0.01, β2 = 0.01 β1 = 0.07, β2 = 0.07 β1 = 0.07, β2 = 0.14

tre , s θe , deg tre , s θe , deg tre , s θe , deg

k31 = 100 4.20 0.0T1 3.9 0.0T1 2.6 0.0T1

k31 = 10 12.0 45.8T2 12.1 45.8T2 16.2 40.7T2

k31 = 1.0 63.2 34.3T2 49.9 34.3T2 44.4 38.7T2

k31 = 0.5 30.1 0.0T1 32.2 0.0T1 37.5 0.0T1

k31 = 0.0 7.8 0.0T1 8.1 0.0T1 8.5 0.0T1

k31 = −0.5 6.8 0.0T1 7.9 0.0T1 9.6 0.0T1

k31 = −1.0 14.3 0.0T1 24.1 0.0T1 47.5 0.0T1

k31 = −2.0 43.5 39.2T2 28.2 39.2T2 23.5 45.4T2

k31 = −10 7.7 132.1T3 10.6 128.3T3 11.0 126.1T3

Table 9
Effect on the dynamic behavior of the pararotor (time to reach equilibrium, tre) of the parameters k31, k21, I1/I3, CLα/C D .

k31 k21 I1/I3 CLα/C D Equilibrium solution Results

0 Increase Type 1 tre increases.
0 Decrease Type 1 tre decreases.
0 Increase Type 1 tre increases.
0 Decrease Type 1 tre decreases.
0 Increase Type 1 tre increases.
0 Decrease Type 1 tre decreases.

>0 Type 1 or 2 tre increases. Nutation angle increases.
>0 Increase Type 1 tre decreases a second order magnitude.
>0 Increase Type 2 tre increases. Nutation angle decreases.
>0 Decrease Type 1 tre decreases.
>0 Decrease Type 2 tre increases. Nutation angle decreases.
>0 Increase Type 1 or 2 tre increases. Nutation angle increases to instability.
>0 Decrease Type 1 or 2 tre decreases.
>0 Increase Type 1 or 2 tre increases. Nutation angle increases to instability.
>0 Decrease Type 1 or 2 tre decreases. Nutation angle decreases.

<0 Type 1, 2 or 3 tre increases.
<0 Increase Type 1, 2 or 3 tre decreases.
<0 Decrease Type 1, 2 or 3 tre increases to instability.
<0 Increase Type 1, 2 or 3 tre decreases.
<0 Decrease Type 1, 2 or 3 tre increases to instability.
<0 Increase Type 1, 2 or 3 tre increases to instability.
<0 Decrease Type 1, 2 or 3 tre decreases.
Fig. 5. Variation of the nutation angle, θ , with time, t , for different values of the 
position parameter k31. Initial nutation angle is set as θ0 = 0.1 rad. Superscripts T1, 
T2, T3 denote the equilibrium type.

From the analyses of cases shown, the model behavior can be 
summarized by using a certain number of parameters, whose in-
fluence patterns are shown in Table 9.

It can be concluded that for I3 > I2, I1 four different solutions 
can be reached: Straight, Conical, Type 3 and Dynamic instability. 
For k31 = 0 only two possibilities exist: Straight solution or Dy-
namic instability.

The effect of k31 (if different from 0) depends on its magni-
tude and sign, geometrical configuration, and aerodynamics per-
formance. The effect can be described in terms of the stabilization 
time and of the solution type.

Conical solution assumes a nutation angle significantly bigger 
than 0. A considerable increase in k31 tends to diminish the sen-
sibility of the pararotor of destabilizing factors. However, if the 
sign of k31 is negative and its magnitude is significant, the solu-
tion tends to be Type 3.

With regard to the effect of increasing k21, for k31 = 0, it im-
plies an increase in stabilization time. If k31 > 0, when the solution 
is Straight, there is a value of k21 that makes the stabilization time 
maximum. When the solution is Conical, there is a value of k21
that makes the stabilization time minimum. It can be seen that if 
k31 < 0, increasing k21 leads to a decrease in stabilization time.

Regarding I1/I3 and I2/I3 (in the case I3 > I2 > I1) it can be 
observed that independently of the value of k31, the influence on 
the dynamic response is given by the relationship between the 
biggest and smallest inertia moments.

The Case A simulations indicate that an increase in I1/I3 for 
k31 = 0 implies an increase in transient time, up to instability.

Besides, the results show that an increase in I1/I3 for k31 > 0
implies an increase in transient time, up to instability, going 
through equilibrium solutions Straight and Conical. Also, if I1/I3
diminishes, for k31 > 0, then a smaller transient time appears than 
in the base case.
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Finally, it was also shown that an increment of I1/I3 for k31 < 0
implies an increment of transient time, up to instability. Also, that 
if I1/I3 diminishes, an absolute minimum transient time can be 
found, related with the moments of inertia.

With regard to the parameter CLα/C D , it was shown that inde-
pendently of k31 value, its increment implies a growth on transient 
time.

4. Conclusions

The numerical model developed to analyze the stability of the 
motion has been validated by two comparisons: 1) between ana-
lytical model results and numerical simulation, and 2) between ex-
perimental results and numerical simulations. Taking into account 
this validation approach, the numerical simulation developed can 
be considered to be a useful and reliable tool to describe pararo-
tor flight. Transient behavior should be validated with a free flight 
test campaign.

From the observations made, it can be noted that four solution 
types are possible, denoted as Straight, Conical, Type 3 and Dy-
namic instability. From these solutions, when k31 = 0, numerical 
simulations showed that the possibilities are reduced to solutions 
Straight and Dynamic instability. Therefore, it can be said that 
there are new phenomena derived from the existence of non-zero 
values of k31 that introduce Conical and Type 3 equilibrium solu-
tions, also denoted as conical solutions. It is worth noting that the 
analytical approach is able to predict accurately enough the pararo-
tor dynamic response when k31 = 0. The differences between nu-
merical simulation and analytical approach come from the higher 
order dynamics effects and non-linear behavior considered in the 
simulation model.

This higher order dynamics effects and non-linear behavior ap-
pear when the model flights near the stability limits described in 
[17]. This simulation model allows for consideration of the effect of 
not small angles of attack, of the existence of a component along 
axis 1 of the relative velocity, of existence of a distance from the 
aerodynamic center of the blades to the center of mass in the di-
rection perpendicular to the blade span, and of angular velocities 
along axis 1 and 2, ω1 and ω2, not small compared with ω3.

The variation of k31 mainly affects to stability. In the case a sta-
ble configuration is given, k31 has an impact on the type of equi-
librium solution and on stabilization time. The stability is given by 
the ratio of principal moments of inertia as it was determined on 
the work above mentioned [10].

While Straight Solution is characterized by nutation angles 
close to zero, in Conical solution a significant nutation angle ap-
pears, configuring a conical motion of the rotation axis. For k31

different from zero, the system shows a bifurcation from Straight 
Solution to Conical, depending on the pararotor configuration, the 
aerodynamic characteristics of the device, and k31 magnitude.

In any case, it can be said that a significant increment of k31

magnitude tends to reduce the sensitivity of the pararotor to desta-
bilizing factors.

The general conclusion is that the parameters k31, CLα/C D , 
β1 and β2 can be used to control the dynamic behavior of the 
pararotor. Both, the stabilization time of the system to a given per-
turbation and the type of equilibrium solution, depend on these 
parameters. So, it is possible to control this type of device by ma-
nipulating these parameters.

In general, it can be said that the distance from the rotor to the 
center of mass (k31 in dimensionless form) is a stabilizing param-
eter that can lead to the bifurcation to conical solutions.
5. Discussion

In this paper, the effect of different configuration parameters on 
stability and stabilization time of pararotors has been presented. 
Two kinds of stable response were found: straight and conical so-
lutions. The numerical results obtained show a good agreement 
with the test measurements done in previous works [12,19].

Future investigations should be conducted to explore regions 
of the N 0

e , ke plane to define the stability regions limits. In-flight 
tests should also be done in order to check results, to complement 
the wind tunnel tests. Moreover, future studies should include con-
trol strategies and guiding devices. Finally, an experimental effort 
should be devoted to characterize blade aerodynamics in order to 
complete the aerodynamic loading model of pararotor blades.
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